Document Type

Honors Project - Open Access

Abstract

An integer partition is a weakly decreasing sequence of positive integers. We study the family of packings of integer partitions in the triangular array of size n, where successive partitions in the packings are separated by at least one zero. We prove that these are enumerated by the Bell-Like number sequence (OEIS A091768), and investigate its many recursive properties. We also explore their poset (partially ordered set) structure. Finally, we characterize various subfamilies of these staircase packings, including one restriction that connects back to the original patterns of the whole family.

Share

COinS
 
 

© Copyright is owned by author of this document