Document Type
Article
Abstract
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy.
Recommended Citation
Martin, Bryan D.; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; and Fan, Yingling, "Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data" (2017). Faculty Publications. 6.
https://digitalcommons.macalester.edu/mathfacpub/6
© Copyright is owned by author of this document
Comments
To cite this article: Martin, Bryan D.; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling. 2017. "Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data." Sensors 17, no. 9: 2058.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).