Document Type

Honors Project On-Campus Access Only

Abstract

What makes a sequence of real numbers a Benford sequence? It turns out that a lot of sequences growing exponentially or faster are Benford sequences. However, being exponential is not sufficient to prove that the sequence is Benford. Therefore, more general sufficient conditions for Benford sequences are needed. In this paper we will explore some sufficient and necessary conditions for Benford sequences. Specifically, for any sequence $\{a_n\}$, we will explore the limit $\lim_{n \to \infty}\log_{10}{\frac{a_{n+1}}{a_n}}$. We will show how this limit assists us in determining the Benfordness of $\{a_n\}$.

Share

COinS
 
 

© Copyright is owned by author of this document