Document Type

Article

Comments

Copyright: © 2013 Chatterjea D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Abstract

BACKGROUND:
Neuro-inflammatory circuits in the tissue regulate the complex pathophysiology of pain. Protective nociceptive pain serves as an early warning system against noxious environmental stimuli. Tissue-resident mast cells orchestrate the increased thermal sensitivity following injection of basic secretagogue compound 48/80 in the hind paw tissues of ND4 mice. Here we investigated the effects of pre-treatment with TNF-α neutralizing antibody on compound 48/80-provoked thermal hyperalgesia.

METHODS:
We treated ND4 Swiss male mice with intravenous anti-TNF-α antibody or vehicle 30 minutes prior to bilateral, intra-plantar compound 48/80 administration and measured changes in the timing of hind paw withdrawal observed subsequent to mice being placed on a 51oC hotplate. We also assessed changes in tissue swelling, TNF-α gene expression and protein abundance, mast cell degranulation, and neutrophil influx in the hind paw tissue.

FINDINGS:
We found that TNF-α neutralization significantly blocked thermal hyperalgesia, and reduced early tissue swelling. TNF-α neutralization had no significant effect on mast cell degranulation or neutrophil influx into the tissue, however. Moreover, no changes in TNF-α protein or mRNA levels were detected within 3 hours of administration of compound 48/80.

INTERPRETATION:
The neutralizing antibodies likely target pre-formed TNF-α including that stored in the granules of tissue-resident mast cells. Pre-formed TNF-α, released upon degranulation, has immediate effects on nociceptive signaling prior to the induction of neutrophil influx. These early effects on nociceptors are abrogated by TNF-α blockade, resulting in compromised nociceptive withdrawal responses to acute, harmful environmental stimuli.

Included in

Biology Commons

Share

COinS
 
 

© Copyright is owned by author of this document