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Abstract Abstract 
Neurons are the fundamental units of the nervous system that receive stimuli as signals and pass on this 
information to other cells in different parts of the body. An action potential refers to the transmission of 
the electrical nerve impulse along the neuron. In their seminal work published in 1952, Alan L. Hodgkin 
and Andrew Huxley proposed a mathematical model of neuronal membrane action potentials based on a 
series of experiments they conducted using the giant squid neuron. This thesis is a study of the nature of 
the action potential used to transfer signals along the neuron based on the Hodgkin-Huxley (HH) model. 
The model consists of four coupled differential equations that contain non-linear terms and have no 
analytic solutions, and so numerical methods must be employed. In this work we developed MATLAB 
programs using the Runge-Kutta and Finite Difference Explicit Method to solve the space-clamped and full 
spatial and temporal HH equations respectively. Results illustrated that the solutions from these 
programs are consistent with current understanding of action potential behavior. The space-clamped 
calculations describe the behavior of an action potential as it evolves through time when a uniform 
potential is maintained in the neuron. The full spatial and temporal calculations describe how action 
potentials evolve in both space and time. The results can be interpreted as a type of non-linear diffusion 
of voltage, but with important differences compared to classical linear diffusion. Finally, some preliminary 
work on extensions of the HH model is provided. 
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“All models are wrong, but some are useful.” 
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Chapter I: Introduction 

A. Neurons and Action Potentials 

Neurons are specialized, excitable cells that are the fundamental units of the nervous system. In 

human beings, billions of neurons form a dense network to receive stimuli as signals and pass on 

this information to other cells in different parts of the body.  The human brain itself contains 

approximately 100 billion (1011) neurons [1].  The structure of a typical neuron is shown in 

Figure 1.1. The four main parts of the simplest model of the neuron are the cell body, dendrites, 

axon, and branching terminal. The connections between neurons are known as synapses, where 

chemicals called neurotransmitters are used to pass signals from one cell to the other [2].  There 

are about 100 trillion (1014) synapse connections in the human brain [3].  Dendrites are 

connected via synapses to other neurons as shown in Figure 1.1. The cell body contains the cell 

nucleus and has a long extension known as the axon. The axon is the part of the neuron 

responsible for conducting nerve impulses that are electrical in nature and is often surrounded by 

a myelin sheath. The axon ends in the presynaptic terminal. Dendrites receive neurotransmitters 

from other neurons, and if the total stimulus is above a certain threshold, an electrical pulse 

known as an action potential is generated at the axon hillock that propagates down the axon. 

When the action potential reaches the presynaptic terminal, neurotransmitters are released and 

absorbed by the dendrites of the other neurons, and the transmission process continues [4]. 

Neurons come in many different forms categorized by the different roles they play such as 

sensory neurons, motor neurons, and interneurons. In comparison to other cells, neurons have the 

unique ability to modify structure and/or function depending on the nature of stimuli from their 

environment. This feature of neurons is known as neuronal plasticity and allows learning and 

other adaptations to occur [5]. 
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Figure 1.1. Labelled diagram of the structure of the neuron with synapses. Adapted from 

‘Presynaptic Terminal’ by Casey Henley licensed under a Creative Commons Attribution Non-

Commercial Share-Alike (CC-BY-NC-SA) 4.0 International License [6] 
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B. Background for Mathematical Model of Action Potentials 

In their seminal work published in 1952, Alan L. Hodgkin and Andrew Huxley proposed a 

mathematical model of neuronal membrane action potentials based on a series of experiments 

they conducted using the giant squid axon. Given that giant squid axons can be as long as one 

meter with a diameter of one millimeter, Hodgkin and Huxley were able to use a voltage-clamp 

technique to measure the membrane potential in the axon. In this technique the membrane 

potential is maintained at a fixed value while input and output currents are measured. Through 

their observations and results they constructed a mathematical model of the cell membrane 

comprising elements of an electrical circuit [7]. This work earned Hodgkin and Huxley the Nobel 

Prize in Physiology or Medicine in 1963.  

This thesis is a study of the nature of the action potential used to transfer signals along the axon 

based on the Hodgkin-Huxley (HH) model. The remainder of this chapter will provide some 

necessary background information on potentials across membranes, specifically the derivation of 

the equilibrium or resting membrane potential.  This will be followed by a qualitative description 

of the formation of the action potential which represents a deviation from this resting potential. 

Subsequent chapters will discuss the details and computational implementation of the HH model. 

 

1. Membrane Potential and Ion Transport 

Propagation of electrical impulses in the axon is possible when there is a potential difference 

between the interior and the exterior of the neuron across the cell membrane that is different than 

the equilibrium potential difference. In the case of cells in the human body, differences in ionic 

concentrations inside and outside the cell membrane create the membrane potential difference, 
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known as the membrane potential. Movement of ions is facilitated either by ion channels 

composed of membrane bound proteins that use either active or passive transport mechanisms 

since all cell membranes are composed of lipids that are impermeable to ions. Active transport 

means that energy is required to move ions and is present in neurons in the form of 

sodium/potassium pumps that reestablish the equilibrium potential in the membrane once an 

action potential has passed. The molecule ATP supplies this energy. Passive transport includes 

voltage-gated channels and non-gated channels that are always open. These do not require 

energy input [8]. 

When the cell is at rest and there is no net transport movement of ions, the resulting membrane 

potential value is referred to as the resting potential.  The most relevant ions for membrane 

potential formation are sodium (Na+), potassium (K+) and chlorine (Cl-).  In the resting condition, 

the concentration of K+ ions is higher inside the cell and the concentrations of Na+ and Cl- are 

higher outside the cell. When Na+ ions enter the cell, the neuron is said to be depolarized 

whereas when Cl- ions enter, or K+ ions leave the cell, the neuron is said to be hyperpolarized.  

As we will see in Chapter 2, depolarization of the neuron followed by hyperpolarization is what 

constitutes the action potential.  

The resting or equilibrium membrane potential is a result of a balance between chemical 

potential driving forces due to differences in ionic concentrations between the inside and outside 

of the cell, and the electrical driving forces caused by the separation of ions. For example, if we 

consider the K+ ions by themselves, if there is a greater concentration of K+ ions inside the cell 

than outside, a chemical potential difference drives the movement of K+ ions out of the 

membrane towards an equalized concentration. However, the movement of positive ions out of 

the neuron results in a potential difference which inhibits further transfer of ions. Eventually an 
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equilibrium is reached where the diffusive driving force and the potential difference driving force 

balance.  The Nernst or equilibrium potential refers to the membrane potential when equilibrium 

of a specific ion is achieved.   

 

2. The Nernst Potential 

In this subsection the Nernst potential equation, which can be applied to one ion at a time, will be 

derived. The actual membrane potential depends on K+, Na+ and Cl- ions, and its value can be 

calculated using the Goldman-Hodgkin-Katz (GHK) equation that represents an extension of the 

Nernst equation. 

In what follows, [𝐶](𝑥) refers to the concentration of one ionic species and 𝑉(𝑥) refers to the 

potential difference at the spatial point 𝑥 in the membrane. 

As stated earlier, the movement of ions will have a diffusive aspect associated with the difference 

in concentration of ions inside and outside the cell.  Electrostatic forces develop because of the 

charge separation as the ions diffuse across the membrane through ion channels. The nature of 

the diffusive forces is illustrated by Fick’s law of diffusion. 

 
𝐹𝑑𝑖𝑓𝑓 = −𝐷

𝜕[𝐶](𝑥)

𝜕𝑥
 

(1.1) 

where Fdiff is the diffusive flux in cm-2s-1. The units of the diffusion constant 𝐷 are cm2/s.  In 

general, the value of the diffusion constant is dependent on the medium of diffusion and the size 

of the ion. As an approximation for K+, Na+ and Cl- ions that we are interested in, the typical 

value around 𝐷 = 3 × 10−6 cm2

s
 [9]. 
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The transport due to electrostatic forces can be described by the microscopic version of Ohm’s 

law resulting in the drift flux Fdrift: 

 
𝐹𝑑𝑟𝑖𝑓𝑡 = −𝜇𝑧[𝐶](𝑥)

𝜕𝑉(𝑥)

𝜕𝑥
 

(1.2) 

where  is the mobility with units cm2/V-s. The parameter 𝑧 refers to the valence of the ion. The 

partial derivative is just the expression for the electric field with units of V/cm.  

At rest the diffusive and the drift fluxes are equal. In addition, Einstein’s relation between the 

diffusion constant and the mobility can be used to eliminate the diffusion coefficient [10]:  

 
𝐷 =

𝑘𝐵𝑇

𝑞
𝜇 =

𝑅𝑇

𝐹
𝜇 

(1.3) 

where, 𝑘𝐵 refers to the Boltzmann’s constant with units of J/K, 𝑇 refers to the absolute 

temperature in Kelvin, and 𝑞 is charge of the ion in units of Coulombs. Combining equations 1.1, 

1.2 and 1.3 the following equations we find for the net ion flux: 

 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑑𝑖𝑓𝑓 + 𝐹𝑑𝑟𝑖𝑓𝑡  

 

(1.4) 

 
𝐹𝑡𝑜𝑡𝑎𝑙 = − 𝐷

𝜕[𝐶](𝑥)

𝜕𝑥
− 𝜇𝑧[𝐶](𝑥)

𝜕𝑉(𝑥)

𝜕𝑥
 

 

(1.5) 

 
𝐹𝑡𝑜𝑡𝑎𝑙 = −

𝑘𝐵𝑇𝜇

𝑞
 
𝜕[𝐶](𝑥)

𝜕𝑥
− 𝜇𝑧[𝐶](𝑥)

𝜕𝑉(𝑥)

𝜕𝑥
 

(1.6) 

If we multiply Ftotal by the ion valence z and use the relations 𝑘𝐵 =  
𝑅

𝑁𝐴
  where R is the ideal gas 

constant and NA is Avogadro’s number, and the Faraday constant F = q NA we can derive the 

Nernst-Planck equation below: 

 
𝐽𝑡𝑜𝑡𝑎𝑙 = − (

𝜇

𝑁𝐴
𝑧𝑅𝑇

𝜕[𝐶](𝑥)

𝜕𝑥
+

𝜇

𝑁𝐴
𝑧2𝐹[𝐶]

𝜕𝑉(𝑥)

𝜕𝑥
) 

(1.7) 

where, 𝐽𝑡𝑜𝑡𝑎𝑙, refers to the current density with units of A/cm2.  
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Setting equation 1.7 equal to 0 will allows us to derive an expression for the Nernst equation, 

which represents the equilibrium potential difference across the membrane: 

 
𝐽𝑡𝑜𝑡𝑎𝑙 = − (

𝜇

𝑁𝐴
𝑧𝑅𝑇

𝜕[𝐶](𝑥)

𝜕𝑥
+

𝜇

𝑁𝐴
𝑧2𝐹[𝐶](𝑥)

𝜕𝑉(𝑥)

𝜕𝑥
) = 0 

 

(1.8) 

 𝜕𝑉(𝑥)

𝜕𝑥
= − (

𝑁𝐴

𝜇 𝑧2

1

𝐹[𝐶](𝑥)
) (

𝜇

𝑁𝐴
𝑧𝑅𝑇

𝜕[𝐶](𝑥)

𝜕𝑥
) 

with the solution 

(1.9) 

 
𝑉𝑒𝑞 = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = −

𝑅𝑇

𝑧𝐹
 ln

[𝐶]𝑖𝑛

[𝐶]𝑜𝑢𝑡
    

(1.10) 

 

The Nernst equation is an expression for the potential difference for a single ionic species. For an 

actual membrane, the equilibrium (or resting) potential will require the net current due to all ions 

present is equal to 0. Assuming that the three main ions for a neuronal membrane are K+, Na+ 

and Cl- and that they move independently, using a similar approach to the Nernst potential 

derivation above leads to a generalized equation known as the Goldman-Hodgkin-Katz (GHK) 

equation which can be used to calculate the resting potential [8]: 

 
𝑉𝑀 =

𝑅𝑇

𝐹
ln (

PK[K+]out + PNa[Na+]out + PCl[Cl−]out

PK[K+]in + PNa[Na+]in + PCl[Cl−]in
) 

(1.11) 

 

where the parameters, PK, 𝑃𝑁𝑎 and PCl, refer to the permeabilities of the ionic species. 

In this paper the focus will be on values that are specific to the squid neuron, the case considered 

in the original Hodgkin Huxley work. The ionic permeabilities are in the ratio PK+: PNa+: PCl− as 

1: 0.03: 0.1 and Table 1.1 provides the relevant values of the concentrations [11].  At T = 20 ℃ 

we find from Equation 1.11 that the equilibrium potential difference is – 74 mV, close to the 
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equilibrium Nernst potential for K+.  This result is not surprising given the high relative 

permeability of K+ compared to Na+ and Cl- given above. 

Table 1.1 Ion concentrations in squid neuron (from Johnston and Wu, 1995 [11]) 

Ion Inside concentration 

(mM) 

Outside concentration 

(mM) 

Equilibrium potential (mV) 

𝑇 = 20 ℃ 

K+ 400 20 
58 ln

20

400
=  −75 

Na+ 50 440 
58 ln

440

50
=  +55 

Cl- 40~150 560 
−58 ln

560

40~150
= −66 to − 33 

 

 

3. Qualitative Description of the Action Potential 

An action potential refers to the transmission of the electrical nerve impulse along the axon. The 

action potential thus represents a deviation in space and time from the equilibrium potential 

described by Equation 1.11.  The crucial concept needed here is that of voltage-gated ion 

channels.  These are proteins embedded in the lipid bilayer whose permeability is sensitive to the 

membrane potential and are opened when the membrane potential sufficiently deviates from the 

equilibrium potential.  Note that the concentration of Na+ ions outside the cell is much larger 

than inside the cell, while the reverse is true for K+ ions (Table 1). When a sufficiently large 

depolarization occurs in the axon hillock (see Figure 1.1) due to the action of neurotransmitters 

in the cell body received through the dendrites, voltage-gated ion channels are opened to allow 

excess Na+ ions to enter the cell, further depolarizing the cell. The result is a rapid increase in the 

membrane potential which approaches zero from the equilibrium value of -74 mV.   
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At some value of the membrane potential the Na+ voltage-gated channels begin to close and the 

K+ voltage gated channels open, with the result that the flux of Na+ ions into the cell stops and 

K+ ions (in large concentration inside the cell) begin flowing out of the cell. Thus, the inside of 

the cell loses positive ions, and the membrane potential begins to decrease back towards the 

equilibrium potential.  When the potential reaches the equilibrium potential, the K+ channels are 

not completely closed, so that the potential overshoots the equilibrium potential, giving rise to 

the refractory period.  An important property of the refractory period is that the Na+ channels are 

not only closed but are also in an inactive state, so that another action potential cannot be 

initiated during this time at this location.  Another consequence of the inactive Na+ channels is 

that only Na+ channels downstream that have not yet experienced an action potential can 

generate a new action potential.  This has the effect of the action potential propagates in only one 

direction down the axon.  Eventually, after the action potential has passed a given point, active 

sodium-potassium pump proteins in the membrane fueled by ATP re-establish the equilibrium 

concentrations of the Na+ and K+ ions.  

Further details on the mechanism, along with their mathematical implementation, will be 

discussed in Chapter 2. 

 

C. Thesis Outline and Goals 

The processes outlined above can be modeled using the equations proposed by Hodgkin and 

Huxley in their seminal 1952 paper (HH 1952). The model consists of four coupled differential 

equations:  one partial differential equation that describes the temporal and spatial variation of 

the membrane potential, and three ordinary differential equations that represent the dynamics of 
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the voltage gated ion channels. These equations contain non-linear terms and have no analytic 

solutions, and so numerical methods must be employed. It is worth noting that there are other 

models that have been inspired by the HH equations, such as the Morris-Lecar equations, and the 

FitzHugh-Nagumo equations. They are simplified versions of the HH model and the Fitz-Hugh-

Nagumo equations in particular are often used to study excitability of neurons [8, 12]. However, 

the focus of this thesis is exploring the generation and propagation of action potentials using the 

original HH model. 

The goals of this thesis include development of algorithms using standard numerical methods to 

calculate HH action potentials, to verify that the solutions are consistent with the current 

understanding of action potential formation and propagation, and to provide a foundation for 

further applications such as addition of stochastic phenomena into the theory.   Chapter 2 will 

provide an overview of the HH model and develop the space-clamped equations.  Chapter 3 will 

focus on the results of the space-clamped calculations that describe the behavior of an action 

potential as it evolves through time when a uniform potential is maintained in the axon. Chapter 

4 will focus on the more challenging problem of how action potentials evolve in both space and 

time.  Finally, Chapter 5 will discuss some preliminary work further extensions of the HH model, 

for example the inclusion of stochastic effects. 

  

12

Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 4

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/4



 

Chapter II: Space-Clamped HH Equations 

A. Introduction 

Chapter 1 described how the movement of ions across the membrane determines the electrical 

properties of neurons and that the flow of current is dependent on the permeabilities of the 

neuron membrane to relevant ionic species. It was also claimed that for an action potential to be 

propagated along the axon, a sufficiently large depolarization must occur in the axon hillock (see 

Figure 1.1). The GHK equation (Equation 1.11) is specific to the resting condition and does not 

account for changes in permeabilities that are needed for membrane action potentials. It is the 

change in permeability of the membrane to Na+ ions that causes the initial depolarization of the 

membrane potential to start an action potential and thus there is the need for a model that goes 

beyond the equilibrium GHK equation [8]. 

 

1. Electrical Circuit Model 

A very useful model to describe the behavior of the action potential is the equivalent electrical 

circuit model, proposed and verified experimentally by Hodgkin and Huxley. In this model the 

impermeable membrane is represented by a capacitor, the ion channels by voltage dependent 

resistors, and the ion concentration gradients as voltage sources (see Figure 2.1) [7].  

13

Chandrashekhar: Computational Study of Hodgkin-Huxley Model for Action Potentials

Published by DigitalCommons@Macalester College, 2024



 

 

Figure 2.1. Equivalent Electrical Circuit Model  

where, ENa, EK, and EL refers to the Nernst potential of ionic species Na+, K+ and leak mainly 

comprising Cl-ions, gNa, gK, and gL denote their respective conductance per unit area, 

(mmho/cm2) and 𝐶𝑀 refers to membrane capacitance per unit area (µF/cm2) [7]. An external 

current I is included to account for the experimental conditions as discussed below. 

In the mathematical analysis conducted by Hodgkin and Huxley (1952) [7] the total current in 

the circuit was divided into a capacitance current and an ionic current. Recall, that for a 

capacitor: 

 𝑄 = 𝐶𝑀𝑉𝑀 

 

(2.1) 

 
𝑖𝑐𝑎𝑝 =

d𝑄

d𝑡
= 𝐶𝑀

d𝑉𝑀

d𝑡
 

(2.2) 
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where, 𝑄 refers to charge on the capacitor in Coulombs, 𝑉𝑀 is the potential difference across the 

membrane in mV, and 𝑡 refers to time in milliseconds. 𝑖𝑐𝑎𝑝 is the total capacitance current per 

unit area in the circuit.  

We can build up an understanding of this model by focusing first on a membrane that is only 

permeable to one ionic species, Na+ for instance in Figure 2.2.  

 

Figure 2.2. Equivalent electrical circuit for one ionic species, sodium 

 

If we denote �̂�𝑁𝑎 as the conductance of a single Na+ channel, and the Nernst potential as 𝐸𝑁𝑎 we 

can apply Ohm’s law and find the expression for the ionic current per channel: 

 𝑖̂𝑁𝑎 = �̂�𝑁𝑎(𝑉𝑀 − 𝐸𝑁𝑎) 

 

(2.3) 

Supposing there are 𝑁𝑁𝑎 number of Na+ channels in a given unit area of the membrane, we see 

that the circuit in Figure 2.2 is represented where 𝑔𝑁𝑎 = 𝑁𝑁𝑎 × �̂�𝑁𝑎 =
1

𝑟𝑁𝑎
. Thus, the current per 

unit area can be written as: 
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𝑖𝑁𝑎 = 𝑔𝑁𝑎(𝑉𝑀 − 𝐸𝑁𝑎) =

𝑉𝑀 − 𝐸𝑁𝑎

𝑟𝑁𝑎
 

 

(2.4) 

Applying Kirchoff’s node rule to the circuit in Figure 2.2, we see that the capacitance current per 

unit area and the ionic current from sodium channels must equal to the external current I: 

 𝑖𝑐𝑎𝑝 + 𝑖𝑁𝑎 = 𝐼 

 

(2.5) 

 
𝐶𝑀

d𝑉𝑀

d𝑡
+

𝑉𝑀 − 𝐸𝑁𝑎

𝑟𝑁𝑎
= 𝐼 

 

(2.6) 

 
𝐶𝑀

d𝑉𝑀

d𝑡
=  −

𝑉𝑀 − 𝐸𝑁𝑎

𝑟𝑁𝑎
+ 𝐼 = −𝑔𝑁𝑎(𝑉𝑀 − 𝐸𝑁𝑎) + 𝐼 

(2.7) 

 

This approach can be easily extended to include to the other ionic species, giving the following 

expression that characterizes the circuit shown in Figure 2.1: 

 
𝐶𝑀

d𝑉𝑀

d𝑡
= −𝑔𝐾(𝑉𝑀 − 𝐸𝐾)  − 𝑔𝑁𝑎(𝑉𝑀 − 𝐸𝑁𝑎) − 𝑔𝐿(𝑉𝑀 − 𝐸𝐿) + 𝐼 

 

(2.8) 

 

2. Conductance Values and Voltage Dependence 

As voltage-gated ion channels, the conductance of the Na+ and K+ channels will vary with 

membrane potential. Hodgkin and Huxley found empirically that for the potassium conductance 

the following relation provided a best fit to their experimental results: 

 𝑔𝐾 =  𝑛4�̅�𝐾 

where the opening and closing of the channel is governed by the rate equation 

 

(2.9) 

 d𝑛

d𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

 

(2.10) 
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In this expression �̅�𝐾 refers to a constant maximum value of the conductance per unit area for 

potassium channels, 𝑛 refers to a dimensionless variable that takes on values between 0 and 1. 

and𝛼𝑛 and 𝛽𝑛 are voltage dependent rate constants having units of msec-1. 

The physical interpretation of these equations is as follows. For K+ ions to cross the neuron 

membrane there are four identical components of the channel that must be activated. 𝑛 represents 

the probability that a given component is activated, and the probability that all four channels are 

open is thus n4.  Equation 2.10 is a rate equation for n where the first term represents the rate at 

which a component is open, and the second term represents the rate at which it closes.  

A similar set of equations is proposed for Na+ ions: 

 𝑔𝑁𝑎 = 𝑚3ℎ �̅�𝑁𝑎 

 

(2.11) 

 d𝑚

d𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

 

(2.12) 

 dℎ

d𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

(2.13) 

 

where, �̅�𝑁𝑎 refers to a constant maximum value of the conductance per unit area for sodium 

channels, 𝑛 and ℎ refer to dimensionless variables that takes on values between 0 and 1. Again 

the 𝛼 and 𝛽 rate constants are dependent on voltage but not time.  

The interpretation for the variable 𝑚 is similar to the explanation provided for 𝑛 in potassium 

channels. There are 3 components to the gate that must be activated to allow ion transfer. In 

addition, the ℎ variable corresponds to an inactivating component. The presence of both 

activating and inactivating components for the Na+ channels is essential to the nature and 

behavior of the action potential. As mentioned in Chapter 1, inactivation of the Na+ channel is 
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responsible for refractory period and results in unidirectional transport of the action potential 

Figure 2.3 shows a schematic picture of the Na+ channel. 

 

Figure 2.3. Model for the activating and inactivating molecules for sodium 

This model is known as the ball and chain model. When a minimum potential difference is 

present the three components of the gate will be activated the gate will open. With a higher 

voltage the inactivating component, represented by the ball locks the channel, giving the 

refractory period of an action potential. During the refractory period, a new action potential 

cannot be generated. Eventually the ball is released from the channel and the channel closes, 

ready for the next action potential. Figure 2.4 illustrates the main processes in the action 

potential. 

 

Figure 2.4. Processes of the action potential 
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Expressions for the rate constants were i and i were deduced by Hodgkin and Huxley based on 

experimental data from the squid axon: 

𝛼𝑛(𝑉) =
0.01(𝑉 + 10)

exp (
𝑉 + 10

10 ) − 1
 msec−1 

 

𝛽𝑛(𝑉) = 0.125 exp (
𝑉

80
)  msec−1 

 

𝛼𝑚(𝑉) =
0.1(𝑉 + 25)

exp (
𝑉 + 25

10 ) − 1
 msec−1 

 

𝛽𝑚(𝑉) = 4 exp (
𝑉

18
)  msec−1 

 

𝛼ℎ(𝑉) = 0.07 exp (
𝑉

20
)  msec−1 

 

𝛽ℎ(𝑉) =
1

exp (
𝑉 + 30

10 ) + 1
 msec−1 

 

Although the form of these equations are empirical fits to experimental results, subsequent work 

has proposed more physical motivations based on activation energy and thermodynamic 

considerations [12]. 

The set of equations 2.8 through 2.13 are known as the space-clamped version of the HH 

equations. The equations describe a non-propagating action potential in which a uniform voltage 

along the axon is experimentally maintained and no propagation in space occurs. In Chapter 4 we 

will discuss modifications to this model to include spatial effects.   

 

19

Chandrashekhar: Computational Study of Hodgkin-Huxley Model for Action Potentials

Published by DigitalCommons@Macalester College, 2024



 

B. Numerical Implementation 

In this section we describe the numerical methods used to solve the space-clamped HH 

equations.  The simplest procedure is known as the Euler method [13].  Given the initial value 

problem: 

𝑑𝑉

𝑑𝑡
= 𝑓(𝑉, 𝑡)             𝑉(𝑡 = 0) = 𝑉0 

the idea is that we divide the total time interval T into N divisions of length t = h.  That is, we 

have times t0 = 0, t1 = h, t2 = 2h, etc.  We then approximate the value of V(ti+1) 

𝑉(𝑡𝑖+1) = 𝑉(𝑡𝑖) + ℎ𝑓(𝑉(𝑡𝑖), 𝑡𝑖) 

The Euler method is very simple to implement, but very small values of h (and hence very large 

values of N) are needed to produce an accurate result.  More precisely, the local truncation error 

is O(h2) and the total accumulated error is O(h) [13]. The Euler method is seldom used for high 

precision calculations.  Our interest in the method is that it lends itself easily to the introduction 

of stochastic terms in the HH equation (the Euler-Maruyama method).  This will be discussed 

further in Chapter 5. 

More commonly, a version of the Runge-Kutta method is used to integrate initial value 

differential equations, with the 4th order method the most popular [14].   In the Euler method, one 

uses the slope of the line at ti to estimate the value of V at ti+h.  In Runge-Kutta methods, slopes 

are calculated using the midpoint between ti and ti+h as well as the endpoint ti + h, then averaged 

to estimate a more accurate value of V at ti + h.  The equations for the 4th order method are [14] 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑉𝑖) 
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𝑘2 = ℎ𝑓 (𝑡𝑖 +
1

2
ℎ, 𝑉𝑖 +

1

2
𝑘1 ) 

𝑘3 = ℎ𝑓 (𝑡𝑖 +
1

2
ℎ, 𝑉𝑖 +

1

2
𝑘2 ) 

𝑘4 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑉𝑖 + 𝑘3) 

𝑉𝑖+1 =  𝑉𝑖 +
1

6
𝑘1 +

1

3
𝑘2 +

1

6
𝑘4 + 𝑂(ℎ5) 

which has a local truncation error of 𝑂(ℎ5).  The total accumulated error is 𝑂(ℎ4), and thus the 

accuacy of the calculation increases much faster with decreasing h as compared to the Euler 

method [13].  Even more efficient calcuations can be obtained using so-called adaptive Runge-

Kutta methods, where the error is estimated at each point and the step size is adjusted 

accordingly. 

In the presentation of space-clamped results in Chapter 3, the 4th order Runge-Kutta method 

(without adaptation) will be used exclusively.  The accuracy of the results will be estimate 

empirically by considering key results as a function of decreasing step size. 
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Chapter III. Space-Clamped Results 

A. Introduction 

In this chapter, the results of the space-clamped calculations using the Runge-Kutta (RK) method 

will be presented.  The equations were programmed in MATLAB.  Regardless of the specific 

model used, two important features of the action potential are the “all-or-nothing” behavior and 

the presence of a refractory period. The all-or-nothing behavior refers to the sensitivity to a 

minimum threshold input, below which no action potential is generated.  Above the threshold the 

action potential fires to its full value.  No partial action potentials are generated.  The refractory 

period refers to the time period after the depolarization of the neuron where no new action 

potential can be generated even with above-threshold stimulus [15]. The refractory period arises 

because of the presence of both activating and inactivating components of the Na+ ion channels 

as discussed in Chapter 2 [7]. 

In the original set of papers by Hodgkin and Huxley, action potentials in the squid neuron were 

studied using the voltage-clamped technique where the internal potential is maintained at a fixed 

value with input and output currents being controlled and measured respectively [7]. In our 

MATLAB programs the resting potential was taken as 0 mV with all other voltages expressed 

relative to that value. The main variable that was studied were threshold values of the input 

current. Both currents and voltages can be used to initiate an action potential. The two methods 

are related, in that a stimulus current will charge up the membrane capacitance and produce a 

membrane potential that deviates from equilibrium. In the original HH work (and most 

subsequent work) current initiation was used and we will follow that practice there.  
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In numerical calculations choosing an appropriate time step is crucial in ensuring that the 

resolution of the results is sufficient at the end of the chapter the dependence of the results on the 

choice of time step will be considered. 

 

B. Results 

1. Below Threshold Current 

The threshold current (to three significant figures) for initiating an action potential was found to 

be 2.24  
µA

cm2.  When the input current per area is below threshold, an action potential does not 

fire. Figure 3.1 shows the result for a subthreshold current 𝑖𝑖𝑛𝑝𝑢𝑡 = 1.00
µA

cm2   There is a mild 

disturbance to the membrane potential but no significant deviation from the resting potential (see 

Figure 3.1).  

 

 

 

 

 

 

Figure 3.1. Below threshold input current effect on voltage as a function of time. at 𝑖𝑖𝑛𝑝𝑢𝑡 =

1.00
µA

cm2
. There is only a slight disturbance from the resting value as is seen in the magnified 

picture. 
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It is of interest to examine the behavior of n(t), m(t), and h(t) as well as VM(t).  In addition, since 

the HH are non-linear due to the voltage dependences in the i and i rate constants, phase space 

plots of the gating variables (n, m, and h versus V) are usually considered.  Phase space plots can 

provide information about the system dynamics that may not be apparent from the time plots. For 

example, characteristics such as limit cycles and chaotic behavior are often manifested in phase 

space.   Figure 3.2 gives the n(t), m(t), and h(t) and the corresponding phase plots for 

subthreshold currents. 
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Figure 3.2. Gating variables vs. time and voltage at pre-threshold 𝑖𝑖𝑛𝑝𝑢𝑡 = 1.00
µA

cm2 

 

2. Single Action Potential 

A single action potential can be generated with a current at the threshold 𝑖𝑖𝑛𝑝𝑢𝑡 = 2.24
μA

cm2.  It is 

noteworthy to observe that after firing the voltage does not go back to resting potential but a 

value slightly higher (see Figure 3.3). The gating variables cycle from their starting point in the 

phase plots in a well-defined path (see Figure 3.4), illustrating the depolarization and 

hyperpolarization of the cell membrane during the action potential. 
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Figure 3.3. Single Action Potential for 𝑖𝑖𝑛𝑝𝑢𝑡 = 2.24
µA

cm2 
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Figure 3.4. Gating variables vs. time and voltage at pre-threshold 𝑖𝑖𝑛𝑝𝑢𝑡 = 2.23
µA

cm2 

We note that the current threshold for the action potential initiation is very precise.  A current of 

2.23
μA

cm2 will not generate an action potential, but rather behavior similar to that in Figures 3.1 

and 3.2.  (to three significant figures the threshold current is 2.239 
μA

cm2, and no action potential is 

generated for i = 2.238 
μA

cm2, – see Chapter 5).  This illustrates the “all or nothing” characteristic 

of the action potential and is due to the non-linearity of the equations.  Also note that the 
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inactivating variable h does not quite return to its starting value after the action potential subsides 

for a long period of time. 

 

3. Multiple Action Potentials 

At a higher currents that exceed the threshold for a single action potential repeated action 

potentials can be generated, allowing for the expected refractory period.  As the excitation 

current is increased beyond the threshold for generating a single action potential, ripples can be 

observed in the membrane potential after the refractory period.   As the current approaches the 

threshold for repeated action potentials these perturbations grow (see Figure 3.5). At the 

minimum threshold for multiple action potentials of 5.97 
μA

cm2, two peaks are observed, with the 

second one being slightly lower in magnitude to the first peak (see Figure 3.6). 

 

Figure 3.5. Action potentials for 𝑖𝑖𝑛𝑝𝑢𝑡 = 5.50
µA

cm2
 and 𝑖𝑖𝑛𝑝𝑢𝑡 = 5.96

µA

cm2
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Figure 3.6. Action potential for 𝑖𝑖𝑛𝑝𝑢𝑡 = 5.97
µA

cm2 
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Figure 3.7. Gating variables vs. time and voltage at 𝑖𝑖𝑛𝑝𝑢𝑡 = 5.97
µA

cm2 

The phase space plots in Figure 3.7 illustrate the ion channel dynamics for the two-peak 

threshold. The small spiral features in the n and h phase space plots at V = 0 represent the ripple 

voltage versus time behavior after 40ms. 
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4. Steady-state Action Potential Generation 

With a sufficiently high current, action potentials are continuously regenerated after the refractory period 

(see Figures 3.8 and 3.9).  The observed threshold  is 𝑖𝑖𝑛𝑝𝑢𝑡 = 6.26
µA

cm2. The phase space plots (Figure 

3.10) illustrate classic limit cycle behavior, consistent with the now oscilliatory behavior of the 

membrane potential.  

 

Figure 3.8. Steady-state action potential in the first 100ms for 𝑖𝑖𝑛𝑝𝑢𝑡 = 6.26
µA

cm2. 
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Figure 3.9. Steady-state action potential generation to 1000ms for 𝑖𝑖𝑛𝑝𝑢𝑡 = 6.26
µA

cm2.. 
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Figure 3.10. Gating variables vs. time and voltage at 𝑖𝑖𝑛𝑝𝑢𝑡 = 6.26
µA

cm2 

Periodic phenomena can also be analyzed using Fourier analysis.  In Figure 3.11 we show the 

fast Fourier transform of the periodic signal.  The most salient feature is that the signal consists 

of a discrete set of frequencies, which is characteristic of non-chaotic phenomena.  This is 

consistent with the limit cycles observed in Figure 3.10.  Thus, despite the significant  non-

linearity of the HH equations, the solutions do not exhibit chaos, at least under the conditions of 

these solutions. 
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Figure 3.11.  Fast Fourier transform of the periodic HH solution.  The large dc peak at frequency 

= 0 has been supressed for clarity. 

 

To summarize, there are several key thresholds associated with of the generation of action 

potentials. The results illustrate two important features of the Hodgkin Huxley model: the “all or 

nothing” characteristic of action potential generation, and the importance of the post-peak 

refractory period.  Both of these characteristics are crucial for the role that action potentials play 

in neuron dynamics.  

 

C.  Sensitivity to Time Step 

If the value of time step h in the Runga-Kutta method is too large, the results may not be 

accurate.  However, with smaller h more time steps are needed for program execution and this 

can lead to computational times that are impractical.  We tested the effect of h on our results in 
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several ways.  A simple test is to vary h and compare the resulting voltage versus time plots.  In 

addition, given the sensitvity of the model to the current threshhold, we can also compare the 

threshold for single and multiple action potential generation. When h is sufficiently small, there 

will be no change in the results to within some acceptable difference by making h smaller.  In our 

program we varied h from 0.01, 0.001, and 0.0001 mS.  Table 3.1 give the results, where it is 

observed that there is very little difference in the results.  Figure 3.12 shows the superimposed 

plots for the three cases, where to this resolution no difference between the plots. 

Table 3.1. Current threshold, maximum potential, and time for maximum potential for the three 

cases h = 0.01, 0.001, and 0.0001. 

h (mS) 0.01 0.001 0.0001 

Threshold current 

(µA/cm2) 

2.2382 2.2382 2.2382 

maximum V (V) 11.28 11.281 11.2807 

time at maximum V(mS) 91.12180 91.12191 91.12193 

 

 

Figure 3.12. Superimposed action potential plots for different time steps  
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Chapter IV: Full Spatial-Temporal HH Equations 

A. Introduction 

1. Overview 

In this chapter we will introduce the spatial dependence into the HH equations. The derivation of 

this equation, called the cable equation, is very similar to the equation that describes wave 

propagation along an electrical cable, except in this case the equation is first order in time rather 

than second order.  As such it resembles a type of diffusion equation. Instead of the usual particle 

diffusion we can interpret the equation as a diffusion of voltage. This proposal will be discussed 

further below. 

The following diagram illustrates the essential features of a propagating action potential. 

 

Figure 4.1. Essential features of a propagating action potential 

Copyright © 2023 by Fred Rieke licensed under a Creative Commons Attribution 4.0 

International License https://uw.pressbooks.pub/physiology/chapter/action-potential-propagation/ 

(Modified from Lodish, Molecular Cell Biology) [16] 

 

36

Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 4

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/4

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://uw.pressbooks.pub/physiology/chapter/action-potential-propagation/


 

 

In this illustration, the action potential is propagating to the right.  As discussed in Chapter 2, the 

inactivation of the Na+ channels following the action potential results in the unidirectional 

propagation of the pulse. The purpose of this chapter is to derive and (numerically) solve the HH 

model including spatial propagation. The approach is similar to that used in the derivation of the 

propagation of electromagnetic waves down a coaxial cable. 

 

2. The Cable Equation 

The derivation of the cable equation is based on the following equivalent circuit: 

 

Figure 4.2. Equivalent Electrical Circuit Model (spatial consideration) 

We can apply Kirchoff’s node rule at x: 

𝑖(𝑥 − ∆𝑥, 𝑡) + 𝑖𝑡𝑜𝑡 = 𝑖(𝑥, 𝑡) 

so 

𝑖(𝑥 − ∆𝑥, 𝑡) − 𝑖(𝑥, 𝑡) =  −𝑖𝑡𝑜𝑡 
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where 

𝑖𝑡𝑜𝑡 = 𝑖𝑁𝑎 + 𝑖𝐾 + 𝑖𝐿 + 𝑖𝐶 

giving 

𝑖(𝑥 − ∆𝑥, 𝑡) − 𝑖(𝑥, 𝑡) =  −𝑖𝑁𝑎 − 𝑖𝐾 − 𝑖𝐿 − 𝑖𝐶 

If we take the outside of the neuron to be at V = 0 we have  

𝑉𝑀(𝑥, 𝑡) − 𝐸𝑁𝑎 +
𝑖𝑁𝑎

𝑔𝑁𝑎
= 0 

𝑉𝑀(𝑥, 𝑡) − 𝐸𝐾 +
𝑖𝐾

𝑔𝐾
= 0 

𝑉𝑀(𝑥, 𝑡) − 𝐸𝐿 +
𝑖𝐿

𝑔𝐿
= 0 

which gives 

-𝑖𝑁𝑎 = 𝑔𝑁𝑎(𝑉𝑀(𝑥, 𝑡) − 𝐸𝑁𝑎) 

-𝑖𝐾 = 𝑔𝐾(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐾) 

-𝑖𝐿 = 𝑔𝐿(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐿) 

The voltage across the capacitor is related to the charge by 

𝑄 = 𝐶𝑀𝑉(𝑥, 𝑡) 

so the capacitor current is 

𝑖𝐶 =
d𝑄

d𝑡
= 𝐶𝑀

d𝑉𝑀

d𝑡
 

The node equation becomes 
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𝑖(𝑥 − ∆𝑥, 𝑡) − 𝑖(𝑥, 𝑡)

= 𝑔𝐾(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐾) + 𝑔𝑁𝑎(𝑉𝑀(𝑥, 𝑡) − 𝐸𝑁𝑎) + 𝑔𝐿(𝑉𝑀(𝑥, 𝑡) − 𝑉𝐿)

− 𝐶𝑀

𝑑𝑉𝑀(𝑥, 𝑡)

𝑑𝑡
 

We have 

𝑖(𝑥 − ∆𝑥, 𝑡) − 𝑖(𝑥, 𝑡)

∆𝑥
 ≈

𝜕𝑖(𝑥, 𝑡)

𝜕𝑥
 

 

𝜕𝑖(𝑥, 𝑡)

𝜕𝑥
=

𝑔𝑁𝑎

∆𝑥
(𝑉𝑀(𝑥, 𝑡) − 𝐸𝑁𝑎) +

𝑔𝐾

∆𝑥
(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐾) +

𝑔𝐿

∆𝑥
(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐿) − 𝐶𝑀

𝑑𝑉𝑀(𝑥, 𝑡)

∆𝑥𝑑𝑡
 

 

Ohm’s Law says: 

𝑉𝑀(𝑥, 𝑡) − 𝑉𝑀(𝑥 + ∆𝑥, 𝑡) = 𝑖(𝑥, 𝑡)𝑅𝑖 

But 

𝑉𝑀(𝑥, 𝑡) − 𝑉𝑀(𝑥 + ∆𝑥, 𝑡)

∆𝑥
≈ −

𝜕𝑉𝑀

𝜕𝑥
 

so 

𝜕𝑉𝑀

𝜕𝑥
= −

𝑖(𝑥, 𝑡)𝑅𝑖

∆𝑥
 

Taking the derivative  

 
𝜕2𝑉𝑀

𝜕𝑥2
= −

𝑅𝑖

∆𝑥

𝜕𝑖

𝜕𝑥
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Substituting the current equation  

𝜕2𝑉𝑀

𝜕𝑥2
= −

𝑅𝑖

∆𝑥
(

𝑔𝑁𝑎

∆𝑥
(𝑉𝑀(𝑥, 𝑡) − 𝐸𝑁𝑎)  + 

𝑔𝐾

∆𝑥
(𝑉𝑀(𝑥, 𝑡) − 𝐸𝐾)  +

𝑔𝐿

∆𝑥
(𝑉𝑀(𝑥, 𝑡)

− 𝐸𝐿) +
𝐶𝑀

∆𝑥

𝜕𝑉𝑀

𝜕𝑡
 ) 

Re-arranging gives 

𝜕𝑉𝑀

𝜕𝑡
=  

∆𝑥2

𝐶𝑀𝑅𝑖

𝜕2𝑉𝑀

𝜕𝑥2
−

𝑔𝐾

𝐶𝑀

(𝑉𝑀 −  𝐸𝐾) −
𝑔𝑁𝑎

𝐶𝑀

(𝑉𝑀 −  𝐸𝑁𝑎) −
𝑔𝐿

𝐶𝑀

(𝑉𝑀 −  𝐸𝐿) 

The term 

∆𝑥2

𝐶𝑀𝑅𝑖
 

can be reformulated as 

1

𝑐𝑚𝑟𝑖
 

Where cm is the capacitance per unit length and ri is the longitudinal resistance per unit length.  

This term has units of cm2/s and represents an effective diffusion constant for the voltage.  

Defining 

𝐷 =  
1

𝑐𝑚𝑟𝑖
 

and substituting the expressions for gK and gNa from Chapter 2 we have 

𝜕𝑉𝑀

𝜕𝑡
=  𝐷

𝜕2𝑉𝑀

𝜕𝑥2
−

�̅�𝐾

𝐶𝑀
𝑛4(𝑉𝑀 −  𝐸𝐾) −

�̅�𝑁𝑎

𝐶𝑀
𝑚3ℎ(𝑉𝑀 −  𝐸𝑁𝑎) −

𝑔𝐿

𝐶𝑀

(𝑉𝑀 − 𝐸𝐿)            (4.1) 

Or 
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 𝜕𝑉𝑀

𝜕𝑡
=  𝐷

𝜕2𝑉𝑀

𝜕𝑥2
− 𝑓(𝑉𝑀) 

(4.2) 

which has the form of a diffusion equation for voltage having a nonlinear “source term” f(VM).  

We would therefore expect that the solutions for VM would correspond to a kind of “voltage 

diffusion” down the axon, with the nonlinear term f(VM) that in some sense counters the 

dissipation (or perhaps, more accurately, the entropy generation) that accompanies usual particle 

diffusion. Below we present some evidence for this interpretation. 

 

B. Numerical Implementation 

Equation 4.1 (coupled to the associated rate equations for n, m, and h described in Chapter 2) is a 

boundary value problem in space and time. There are various methods of solving such equations 

numerically.  In this work we apply the explicit method. The explicit method uses the results of 

the previous time step to calculate the quantities in the current time step. The voltage for t = 0 is 

given everywhere including the boundaries as an initial condition. For the next time step t = Δt, 

the voltage is calculated at each interior point using the values at the previous time step of t = 0, 

while keeping the boundary conditions fixed. At t = 2Δt, the voltage is calculated at each interior 

point using the values at the previous time step t = Δt, again keeping the boundary conditions 

fixed.  And so on.  In this way the equation is solved with both the initial and boundary 

conditions satisfied. The method can be illustrated by the following diagram: 
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Figure 4.3. Diagram of the explicit method 

The explicit method is commonly used because of its simplicity, but accurate solutions require a 

large number of small time steps.  In a sense the explicit method is analogous to the Euler 

method for solving initial value differential equations.  There are more accurate methods that 

result is a smaller error for a given time step, such as the well-known Crank-Nicholson method.  

In our case we chose to focus on the explicit method since it is more easily adaptable for 

introducing stochastic effects (see Chapter 5).  Below we will further consider the effect of the 

space and time step sizes. 

 

1. Derivation of the Finite Difference Equations 

To numerically solve Equation 4.2 (together with the accompanying channel equations 2.8 

through 2.14) we need to convert the equations into finite difference equations.  We have from 

above: 

𝜕𝑉𝑀

𝜕𝑡
=  𝐷

𝜕2𝑉𝑀

𝜕𝑥2
− 𝑓(𝑉𝑀) 

where 
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𝑓(𝑉𝑀) =  
�̅�𝐾

𝐶𝑀
𝑛4(𝑉𝑀 − 𝐸𝐾) −

�̅�𝑁𝑎

𝐶𝑀
𝑚3ℎ(𝑉𝑀 −  𝐸𝑁𝑎) −

𝑔𝐿

𝐶𝑀

(𝑉𝑀 −  𝐸𝐿) 

 

Note that n, m, and h also depend on VM.  For the time derivative at the ith position and jth time 

step we can do the usual Taylor expansion 

𝑉𝑖,𝑗+1 = 𝑉𝑖,𝑗 + 𝛿𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑖,𝑗
+ 𝑂(𝛿𝑇2) 

So  

(
𝜕𝑉

𝜕𝑇
)

𝑖,𝑗
=  

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗  

𝛿𝑇
 

For the second order spatial derivative we have 

 

𝑉𝑖+1,𝑗 = 𝑉𝑖,𝑗 + 𝛿𝑋 (
𝜕𝑉

𝜕𝑋
)

𝑖,𝑗
+

1

2!
𝛿𝑋2 (

𝜕2𝑉

𝜕𝑋2
)

𝑖,𝑗

+  𝑂(𝛿𝑋3) 

 

𝑉𝑖−1,𝑗 = 𝑉𝑖,𝑗 − 𝛿𝑋 (
𝜕𝑉

𝜕𝑋
)

𝑖,𝑗
+

1

2!
𝛿𝑋2 (

𝜕2𝑉

𝜕𝑋2
)

𝑖,𝑗

+  𝑂(𝛿𝑋3) 

Adding these equations 

 

𝑉𝑖+1,𝑗 + 𝑉𝑖−1,𝑗 = 2𝑉𝑖,𝑗 + 2
1

2
𝛿𝑋2 (

𝜕2𝑉

𝜕𝑋2
)

𝑖,𝑗

 

So 

 

(
𝜕2𝑉

𝜕𝑋2
)

𝑖,𝑗

=  
𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗

𝛿𝑋2
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Then 

𝜕𝑉𝑀

𝜕𝑇
=  𝐷

𝜕2𝑉𝑀

𝜕𝑋2
−

�̅�𝐾

𝐶𝑀
𝑛4(𝑉𝑀 − 𝐸𝐾) −

�̅�𝑁𝑎

𝐶𝑀
𝑚3ℎ(𝑉𝑀 − 𝐸𝑁𝑎) −

𝑔𝐿

𝐶𝑀

(𝑉𝑀 −  𝐸𝐿) 

Becomes 

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗 

𝛿𝑇
=  

𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗

𝛿𝑋2
−  𝑓(𝑉𝑖,𝑗) 

So 

𝑉𝑖,𝑗+1 = 𝑉𝑖,𝑗 +
𝛿𝑇

𝛿𝑋2
(𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗) − 𝛿𝑇𝑓(𝑉𝑖,𝑗) 

Including the explicit form for 𝑓(𝑉𝑀) 

𝑉𝑖,𝑗+1 = 𝑉𝑖,𝑗 + 𝑟(𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗)

− 𝛿𝑇 (
�̅�𝐾

𝐶𝑀
𝑛4(𝑉𝑖,𝑗 −  𝐸𝐾) −

�̅�𝑁𝑎

𝐶𝑀
𝑚3ℎ(𝑉𝑖,𝑗 − 𝐸𝑁𝑎) −

𝑔𝐿

𝐶𝑀
(𝑉𝑖,𝑗 −  𝐸𝐿)) 

where 

𝑟 =
𝛿𝑇

𝛿𝑋2
  

As with the space-clamped problem discussed in Chapter 2 and 3, in experimental situations it is 

often convenient to add an external current as a convenient way to initiate the excitation.  In that 

case the complete cable difference equation would be  

 

𝑉𝑖,𝑗+1 = 𝑉𝑖,𝑗 + 𝑟(𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗) 

−𝛿𝑇 (
�̅�𝐾

𝐶𝑀
𝑛4(𝑉𝑖,𝑗 −  𝐸𝐾) −

�̅�𝑁𝑎

𝐶𝑀
𝑚3ℎ(𝑉𝑖,𝑗 −  𝐸𝑁𝑎) −

𝑔𝐿

𝐶𝑀
(𝑉𝑖,𝑗 −  𝐸𝐿)) + 𝛿𝑇

𝐼

𝐶𝑚
                      (4.3) 

 

For the channel equations we have as before 

 

44

Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 4

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/4



 

d𝑛

d𝑇
=  𝛼𝑛(𝑉)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛 

Now 

(
d𝑛

d𝑇
)

𝑖,𝑗
=  

𝑛𝑖,𝑗+1 − 𝑛𝑖,𝑗  

𝛿𝑇
 

 

So 

𝑛𝑖,𝑗+1 − 𝑛𝑖,𝑗  

𝛿𝑇
=  𝛼𝑛(𝑉𝑖,𝑗)(1 − 𝑛𝑖,𝑗) − 𝛽𝑛(𝑉𝑖,𝑗)𝑛𝑖,𝑗 

 𝑛𝑖,𝑗+1 = 𝑛𝑖,𝑗 + 𝛿𝑇[(𝛼𝑛(𝑉𝑖,𝑗)(1 − 𝑛𝑖,𝑗) − 𝛽𝑛(𝑉𝑖,𝑗)𝑛𝑖,𝑗)] (4.4) 

 

with similar equations for m and h.  The equations for i and i are the same as previously 

described in Chapter 2. 

𝛼𝑛(𝑉) =
0.01(𝑉 + 10)

exp (
𝑉 + 10

10 ) − 1
 msec−1 

 

𝛽𝑛(𝑉) = 0.125 exp (
𝑉

80
)  msec−1 

 

𝛼𝑚(𝑉) =
0.1(𝑉 + 25)

exp (
𝑉 + 25

10 ) − 1
 msec−1 

 

𝛽𝑚(𝑉) = 4 exp (
𝑉

18
)  msec−1 

 

𝛼ℎ(𝑉) = 0.07 exp (
𝑉

20
)  msec−1 

 

𝛽ℎ(𝑉) =
1

exp (
𝑉 + 30

10 ) + 1
 msec−1 
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2. Boundary Conditions, Spatial and Temporal Resolution 

There are several possibilities for boundary conditions. With Dirichlet boundary conditions, the 

value of VM is specified on the boundaries. For Neumann boundary conditions, the slope of VM 

at the boundaries is specified. For mixed boundary conditions, a relation between the value and 

the slope is specified at the boundary. The choice of boundary conditions is in general prescribed 

by the conditions of the experiment. Both Dirichlet and Neumann boundary conditions have been 

employed in HH studies and we have considered both in our work.  However, for the purposes of 

this study it makes no difference which conditions are used. We have therefore chosen to focus 

on Dirichlet conditions as a somewhat more intuitive approach. The boundary conditions used 

for the results below are V(0,t) = 0 and V(L, t) = 0, except for the first 1 ms where V(0, t < 1ms) 

= V0 and V0 is a voltage above the threshold voltage for initiating an action potential. 

As with all finite difference reductions of differential equations, attention must be given to the 

effects of the intervals used in the calculation.  In the present case there are two relevant 

intervals:  the spatial interval X and the temporal interval T.  In studies of the diffusion 

equation, it has been shown that for a stable and convergent solution we must have (Morton 

thesis page 17 [15]),  

𝛿𝑇

𝐷 𝛿𝑋2
< 0.5 

If we chose a value of X, we can find T according to 

𝛿𝑇 <
𝐷 𝛿𝑋2

2
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In our case we opted for a more conservative criteria (recognizing that the accuracy of the 

explicit method requires a small time step) and chose T as 

𝛿𝑇 =
𝐷 𝛿𝑋2

6
 

The effect of the choice of X will be discussed below. 

 

C.  Results 

Figure 4.4 shows a typical solution of Equation 4.3 with D = 0.04 cm2/mS and X = 0.01 cm. 

The action potential propagates down the axon after the initial excitation at x = 0 and t < 1ms. 

The presence of the refractory part is apparent on the trailing edge of the voltage spike. In Figure 

4.5 the peak position versus time is given for the three cases of X = 0.05 cm, 0.025 cm, and 

0.01 cm. The spike is observed to propagate at a constant speed after initiation. There is a small 

but measurable difference between the X = 0.025 cm case and the X = 0.01 cm case. For X = 

0.01 cm the runtime of the MATLAB program is about 1 hour for the 200 ms case.  Values of X 

smaller than 0.01cm start to become impractical due to the program runtime (note that the time 

interval decreases very quickly as X is decreased).  Of course this is not an intrinsic limitation, 

but a better way to decrease the runtime would be to use a more efficient algorithm (for example 

the Crank-Nicholson method) and/or use a compiled language (such as C++) instead of the 

interpreted language MATLAB. Nevertheless, our results do not seem to have a significant 

dependence on X for X ≤ 0.025cm (Figure 4.5).   
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The results in Figure 4.5 confirm that the action potential propagates at a constant speed, in this 

case a speed of 0.4243 cm/ms = 424.3 cm/s (X = 0.01cm). This is close to the experimental 

speed observed by Hodgkin and Huxley (HH 1952) of 1070 cm/s.  This speed occurs after a 

short latency period of ∆𝑡 =  
0.6207

0.4243
= 1.463 ms apparently required to establish the action 

potential, as implied by the non-zero intercepts in Figure 4.3. This is apparently the time it takes 

to establish a propagating action potential for the 1.0 ms initial voltage.   
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Figure 4.4. Action potential propagation for D = 0.04 cm2/s.  
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Figure 4.5. Distance versus time for different values of 𝛿x.  D = 0.04 cm2/s 

 

1. Diffusion Aspects of the HH Model 

As mentioned above, the HH voltage equation has the mathematical form of a (non-linear) 

diffusion equation.  It is therefore of interest to explore in what ways the solutions demonstrate 

diffusion effects.  Surprisingly, this aspect of the HH model does not seem to have received much 

attention in the literature, at least quantitatively.  One often finds the statement the HH represents 

a voltage diffusion phenomena, but we have not been able to find any kind of mathematical 

justification of this idea.  Below we present an interpretation of what may be meant by voltage 

diffusion in the HH model, and how this diffusion contrasts with classical (Fickean) particle 

diffusion. 

In ordinary particle diffusion without sinks or sources, the diffusion equation is 

50

Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 4

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/4



 

𝜕𝑛

𝜕𝑡
=  𝐷

𝜕2𝑛

𝜕𝑥2
 

For a point source at the origin, it is easy to verify the solution for t > 0 is a Gaussian centered at 

the origin that spreads in time: 

𝑛(𝑥, 𝑡) =  
𝑀

2√𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡 

where M is the total mass of the diffusing particles.  The characteristic distance over which the 

particles have diffused in time t is given by: 

 ∆𝑥 = √4𝐷𝑡  (4.5) 

which can be interpreted as the mean distance the particles have diffused in time t.  This is the 

well-known “square root” relation between space and time in diffusion (or generally random 

walk or Brownian motion) phenomena.  Solutions for n(x,t) at different times is shown in Figure 

4.6. 

 

Figure 4.6.  Linear diffusion (Equation 4.6) with v = 0 at times t = 1, 5, and 20 units (D = 1) 
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Returning to the HH equation, it is interesting to examine in what way the relationship Equation 

4.5 can apply.  Figure 4.7 shows the action potential for at t = 100 ms for D = 0.005, 0.01, 0.02, 

0.04, and 0.08 cm2/s.  In Figure 4.7 we have plotted the action potential as a function of the 

diffusion coefficient at a fixed time of 100 ms.  In Figure 4.8 we have plotted the distance travel 

in 100 ms versus D.  From the fit we see that the distance traveled in this fixed time goes exactly 

as √𝐷 as predicted by Equation 4.5.  The proportionality factor is much large than that predicted 

by Equation 4.5, with 209.56 cm from the data fit compared to √4 × 100 = 20 cm predicted 

form Equation 4.5. Nonetheless, the close agreement with the functional dependence on D is 

striking. 

 

 
 

Figure 4.7.  Action potentials for various values of D (in cm2/s) at 100 ms.  The curves have been 

offset from VM = 0 for clarity. 
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Figure 4.8.  Peak position versus D for the data in Figure 4.6. 
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it is striking that the width of the pulse scales almost exactly with √𝐷.  However, it is important 

to point out that this does not represent a “spreading” of the pulse in time (as one expects in an 
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Figure 4.9.  Pulse peak full width at half maximum versus D for the data in Figure 4.6. 

 

We see that the diffusional nature of the action potential is manifested in the propagation speed’s 

as well as the width of the action potential’s dependence on D, the effective diffusion constant.  

However, we must be careful not to over-interpret these results.  The diffusion of the voltage in 

the action potential is not a classical Fickean diffusion problem.  The closest analog might be 

obtained by adding a drift term to the diffusion term.  In that case we have: 

 𝜕𝑛

𝜕𝑡
=  𝐷

𝜕2𝑛

𝜕𝑥2
− 𝑣

𝜕𝑛

𝜕𝑡
 

(4.6) 

giving a solution 

𝑛(𝑥, 𝑡) =  
𝑀

2√𝜋𝐷𝑡
𝑒−

(𝑥−𝑣𝑡)2

4𝐷𝑡  

which can be verified by making the substitution  

𝑥 → 𝑥 − 𝑣𝑡 

y = 3.3582x0.4979

R² = 0.9998

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

w
id

th
 (c

m
)

D (cm2/mS)

54

Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 4

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/4



 

This solution represents a Gaussian propagating in the +x direction with constant speed v. For the 

pulse moving in space, the characteristic behavior of this solution is that for a fixed value of the 

diffusion constant the Gaussian does not retain its shape and over time and space spreads out in 

space (see Figure 4.10). 

 

Figure 4.11.  Linear diffusion (Equation 4.6) with v = 2 at times t = 1, 5, and 20 units (D = 1) 

However, there are significant differences between this solution and the HH solutions. First, in 

classical Fickean diffusion there is no dependence of the propagation speed v on D; rather v is an 

independently specified parameter. Secondly, in this solution the Gaussian pulse spreads with 

time, as noted above, does not occur with the HH solution. Of course, the main difference 

between Equation 4.6 and the HH equation is that the Fickean diffusion with drift Equation 4.6 is 

linear, whereas the HH equation is non-linear due to the dependences of the channel variables n, 
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that would be expected with classical random walk diffusion while still maintaining a constant 

propagation speed.   
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As far as we are aware there is no general theory of non-linear diffusion phenomena, at least 

none that we have encountered in the HH/action potential literature. If this is such a theory, it is 

beyond the scope of this paper, and the results presented here perhaps might serve as some 

experimental support for a more rigorous theoretical treatment. 

In summary, there is an important sense that the action potential represents a type of voltage 

diffusion.  The propagation speed and the width of the voltage pulse both exhibit a Fickean √𝐷 

dependence.  However, the pulse does not exhibit the random walk spreading in time 

characteristic of particle diffusion.  Rather, the pulse propagates with constant width, implying 

that the non-linear channel terms counter the spreading of the pulse expected from the linear 

terms in the voltage equation.  It is perhaps surprising that these features of the HH equation do 

not seem to have been noticed (or at least recorded) in the literature.  The reason might simply be 

that for a given neuron, there is no reason to think that D would take on different values.  Recall 

that D is given by  

𝐷 =  
1

𝑐𝑚𝑟𝑖
 

where cm and ri are the membrane capacitance per unit length and the longitudinal resistance per 

unit length respectively.  For a given cell, there is no obvious mechanism where these parameters 

would vary.  In any case, the results here are an attempt to clarify in a more precise sense what it 

means for the HH model to exhibit voltage diffusion. 
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Chapter V: Extension of the HH Model and Future Work 

A. Introduction 

Our original goal in this work was to study stochastic effects in action potential models, by 

converting the HH equations into a set of stochastic equations.  Stochastic effects are common in 

biophysical systems.  For example, in action potentials stochastic effects are present in the 

dynamics of the voltage-gated ion channels.  The opening and closing of these channels is 

ultimately a statistical problem, with the equations for n, m, and h in the HH model actually 

representing average behavior over large number of channels.  Indeed, this is a frequent criticism 

of the applicability of the HH equation, that these stochastic effects are not explicitly included in 

the basic theory. 

The theory of stochastic differential equations is highly developed.  However, the theory is 

complex and application of these methods to non-linear problems such as the HH equations can 

be very challenging.  The main issue is that stochastic terms do not have well-defined 

derivatives, so advanced methods of analysis (for example the Ito calculus) are required to solve 

the equations.  One of the simplest approaches is the Euler–Maruyama method, which adds 

stochastic terms to the Euler algorithm as follows: 

𝑌𝑡+1 = 𝑌𝑡+1 + 𝑎(𝑌𝑡, 𝑡)∆𝑡 + 𝑏(𝑌𝑡, 𝑡)∆𝑊𝑡 

where Wt is Wiener process that represents a kind of Brownian motion and 𝑏(𝑌𝑡, 𝑡) depends on 

the nature of the stochasticity.  In in the most basic formulation Wt can be represented as 

∆𝑊𝑡 =  𝑧𝑖√∆𝑡 
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where zi is a pseudo-random number between 0 and 1.  The square root dependence is 

reminiscent (and ultimately related to) the basic relation 4.5, which itself is a consequence of the 

random walk nature of Brownian diffusion 

 ∆𝑥 = √4𝐷𝑡  (4.5) 

 

We can incorporate terms like 𝑏(𝑉𝑡, 𝑡)∆𝑊𝑡 in the HH model, but it is not a trivial matter to 

determine the correct form for 𝑏(𝑉𝑡, 𝑡).  For example, in applying this approach to the channel 

equations, the 𝑏(𝑉𝑡, 𝑡) will depend in a complex way on the rate constants i and i. In this 

preliminary work, we will greatly simplify the dynamics and treat b as a constant that specifies 

the strength of the stochastic effects. We will consider a modified form of the voltage equation as 

follows: 

𝑉𝑖+1 = 𝑉𝑖 − [
𝑔𝐾

𝐶𝑀

(𝑉𝑖 − 𝐸𝐾)  −
𝑔𝐾

𝐶𝑀

(𝑉𝑖 − 𝐸𝑁𝑎) − 𝑔𝐿

𝑔𝐾

𝐶𝑀

(𝑉𝑖 − 𝐸𝐿) +
𝐼

𝐶𝑀
] + 𝜎𝑧𝑖√𝑑𝑇 

where the last term represents a stochastic contribution to the membrane voltage.  In this simple 

example the channel equations are unchanged.  A physical interpretation of this equation is that 

the last term represents voltage fluctuations caused by fluctuations in ions that do not participate 

in the action potential. 

We can now consider the effects the stochastic term has on the threshold potential for a single 

action potential.  Figures 5.1 and 5.2 give the results.  First, we note that without the stochastic 

term, the threshold for initiating an action potential is very sharp (Figure 5.1).  When 

stochasticity is added, the value of  has a strong effect on the value of the threshold current for 

a successful action potential (recall that the threshold with no stochastic term is 2.24
µA

cm2).  In 
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addition, near the threshold there is now a distribution of probability for successful action 

potentials versus current.  For the case of  = 0.005 mV/ms1/2, a current of 3.035
µA

cm2is needed to 

reliably initiate an action potential (Figure 5.2).  Below this value, there is a non-zero probability 

that an action potential will be initiated, down to a lower threshold of 3.031
µA

cm2 when no action 

potentials will be generated.  For   = 0.05 mV/ms1/2, reliable success for action potentials 

requires a current of 10.158
µA

cm2
, but there is a decreasing non-zero probability that an action 

potential can occur down to 10.140
µA

cm2 (Figure 5.3).  In addition to the shift in threshold for 

initiating action potentials, the range over which an action potential can be generate with 

probability less than one also increases with increasing  (0.004 mV/ms1/2in the case of  = 

0.005 mV/ms1/2, and 0.018 mV/ms1/2in the case of  = 0.05 mV/ms1/2).   

 

Figure 5.1. Success rate for action potential firing with no stochasticity  
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Figure 5.2.  Success rate for single action potential firing for σ = 0.005  

 

Figure 5.3.  Success rate for single action potential firing for σ = 0.05  
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greater than 2.24
µA

cm2
.  Secondly, there was a non-zero probability for below threshold currents to 

generate an action potential.  

These results are just a preliminary sketch of how stochastic processes can be incorporated and 

interpreted in the Hodgkin Huxley model.   Future work will focus on a more rigorous 

implementation of the theory of stochastic differential equations to this model.  In particular, 

there has been relatively little work on incorporating stochastic terms in the full temporal-spatial 

equations; the vast majority of studies confine themselves to the space-clamped model. 
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Chapter VI:  Conclusions 

 

In this work we have demonstrated the essential features of the solutions to the Hodgkin Huxley 

model for neuron action potentials including all-or-nothing and refractory properties.  In the full 

temporal-spatial solutions based on the cable equation, we have provided an initial interpretation 

in terms of a non-linear diffusion process.  Finally, we have made some preliminary 

investigations into including stochastic effects in the model. 

The Hodgkin Huxley model is a landmark achievement in the quantitative description of action 

potentials.  Although other usually simpler models have also been proposed since their seminal 

work, the HH model continues to generate interest even after over 70 years, both as a fascinating 

problem in non-linear dynamics, as well as a robust model of actual processes occurring in 

neurons. 
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