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Simulation of Polymerization on Surfaces: Implications for Abiogenesis

Abstract

How did life arise from the prebiotic conditions of the early earth? This problem has vexed scientists for
decades with no consensus on its solution. Significant spontaneous formation of biopolymers such as
proteins and nucleic acids in the aqueous phase appears to be improbable due to thermodynamic
constraints. It has been proposed that mineral surfaces could have served as a catalyst for the initial
formation of biopolymers. However, the feasibility of this mechanism has not been thoroughly studied. In
this study, a particle simulation of polypeptide formation on surfaces is developed to assess the
feasibility of this mechanism. Elementary processes such as monomer adsorption, monomer and dimer
diffusion, desorption, and peptide bond formation are included in the model. The production of long
polymers that could serve as building blocks of proteins is considered as a function of bonding activation
energy, polymer desorption energy, and the number of wet-dry cycles experienced by the surface.
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Abstract

How did life arise from the prebiotic conditions of the early earth? This problem has vexed
scientists for decades with no consensus on its solution. Significant spontaneous formation of
biopolymers such as proteins and nucleic acids in the aqueous phase appears to be improb-
able due to thermodynamic constraints. It has been proposed that mineral surfaces could
have served as a catalyst for the initial formation of biopolymers. However, the feasibility
of this mechanism has not been thoroughly studied. In this study, a particle simulation of
polypeptide formation on surfaces is developed to assess the feasibility of this mechanism. El-
ementary processes such as monomer adsorption, monomer and dimer diffusion, desorption,
and peptide bond formation are included in the model. The production of long polymers
that could serve as building blocks of proteins is considered as a function of bonding acti-
vation energy, polymer desorption energy, and the number of wet-dry cycles experienced by

the surface.
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Chapter 1

Introduction

1.1 Background

The investigation into the origins of life on Earth, or abiogenesis, has captivated scientists
for centuries and is one of the most important unsolved problems in science today. Sim-
ply put, how did life arise from non-living matter? Amino acids, nucleotides, sugars, and
lipids are recognized as the fundamental building blocks of life. The first three are capable
of polymerization, forming proteins, and nucleic acids which constitute the basic biochem-
ical machinery for cellular function and reproduction . In the 1950s, the groundbreaking
Miller-Urey experiments demonstrated the synthesis of amino acids from simple molecules
in prebiotic-like conditions [1]. Subsequent research has demonstrated the synthesis of amino
acids and nucleobases under diverse prebiotic scenarios, with amino acids even being detected
on meteorites [12]. The next step in the origin of life involves the assembly of polymers from
these building blocks. Once these polymers become a critical length, they could begin folding
and exhibiting enzymatic properties or promoting self-replication. Eventually, they would
need to be encapsulated within the earliest cellular structures. However, the mere presence
of monomers does not guarantee the existence of polymers. The problem of biogenesis can

perhaps be stated more specifically as follows. Assuming that some form of biopolymers such
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as proteins and nucleic acids were necessary building blocks of primordial life the question
becomes: how did the first biopolymers arise without the complex cellular machinery that

is now apparently essential to all known life?

Geological evidence indicates a time frame between Earth’s formation approximately 4.5
billion years ago and the earliest fossil evidence of cellular life around 3.5 billion years ago
as the likely window for life to have originated [2]. However, the formation of biopolymers
under prebiotic conditions presents a considerable challenge for several reasons. One prob-
lem is the unfavorable kinetics and thermodynamics associated with bond formation. In
modern life enzyme catalysis and chemical energy input from ATP (ultimately originating
from photosynthesis) promote the formation of biopolymers, but these reaction mechanisms
were obviously not available in the prebiotic earth. Another challenge is the difficulty in
discerning the actual environmental conditions of early Earth. Researchers have proposed
ideas for the composition of the atmosphere, oceans, and land masses during that era, but

clearly, all of these proposals are currently very speculative.

The production of biopolymers in the solution phase, without enzymes and ATP energy

input, is not favorable. The formation of a peptide bond can be written as

A+A — A-A+H,0 (1.1)

and is commonly referred to as a condensation reaction. The reverse reaction where the
peptide bond is split is known as hydrolysis. Estimates of free energy formation for peptide
bonds range from about 7 to about 28 kJ/mol (or 0.07 to 0.28 e¢V) depending on condi-
tions such as pH and the type of amino acids[3]. These numbers do not include activation
barriers that may also exist above the thermodynamic free energy change. The endoergic

nature of this reaction poses a problem for the spontaneous synthesis of polypeptide chains.
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For example, based on a free energy of formation of peptide bonds of approximately 10.5
kJ/mol, Lambert calculates that the equilibrium concentration of a 14-monomer polypep-
tide is roughly 3 x 1073 mol/l, and for an 18-monomer polypeptide, it’s 1.5 x 1073% mol/1.
Lambert remarks that this scenario ”is not a promising start for metabolism” [4]. Such
thermodynamic constraints on amino acid polymerization in aqueous solutions extend to
the synthesis of nucleic acids like RNA. As a result, researchers have concluded that the
formation of biopolymers within solution phases aqueous environments is unlikely, at least

under conditions assumed for the prebiotic earth [6].

A potential solution to this challenge was proposed in 1951 by J.D. Bernal, who suggested
that biopolymers might have formed through adsorption onto mineral surfaces [6]. Surfaces
have several possible advantages in this regard. By reducing the dimensionality of the prob-
lem, they can increase the ”collision” rates of monomers, thereby increasing the probability
of a favorable bonding event. In addition, it has been proposed that the surface could have
a catalytic effect by altering the peptide bond formation mechanism resulting in a lower
activation energy. As emphasized by Lambert [4], catalytic effects cannot change the overall
free energy increase going from aqueous monomers to a desorbed aqueous polymer. How-
ever, as Lambert points out, cataytic effects cannot overcome the overall increase in free
energy from aqueous monomers to polymers. On the other hand, Lambert notes that in the
absence of water, the hydrolysis of the peptide bond (i.e. the reverse reaction of peptide
bond formation) will not occur, thereby driving the equilibrium towards polymerization. To
circumvent this equilibrium problem a dual-stage wet-dry process has been proposed. In
its simplest implementation, amino acids adsorb on the surface during the wet phase. In
the dry phase, the surface-adsorbed monomers can react to form peptide bonds without the
reverse hydrolysis reaction occuring. The problem of the activation barrier for bond for-
mation still needs to be considered, but the higher temperature expected in the dry phase

will assist in overcoming the barrier. In the next wet phase, the polymers can desorb and
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perhaps contribute to some kind of protocell formation. This sequence of events is usually en-

visioned to occur in a lagoon-like environment with tides producing the needed wet-dry cycle.

Since Bernal’s proposal, a number of studies have investigated the adsorption of amino acids
on surfaces and explored the potential catalytic effects of these surfaces, both experimentally
and theoretically. However, we are not aware of a comprehensive study that attempts to
model the wet-dry hypothesis over many cycles. This paper aims to explore what such a
model might look like using particle Monte Carlo methods. By varying parameters within
the model, we can observe how polymerization on catalytic surfaces influences the length
of produced polymers. Because we lack robust input data on kinetic parameters needed
for a comprehensive model of biopolymer formation on surfaces, our specific results will be
somewhat speculative. Thus, rather than provide a definitive answer to the proposal of
surface-mediated abiogenesis, our intention is to produce and test a viable model for such
an approach and consider trends with parameters such as activation energies which can
be updated as more experimental constraints become available. An important problem in
surface-mediated abiogenesis arises if it is assumed that the biopolymer must desorb from
the surface in order to be incorporated in a protocell. Presumably, with successive polymer-
ization events, the resulting polymer will become increasingly adsorbed to the surface. This
presents another challenge for theories on the origin of life, as longer polymers could become
permanently bound to the surface. The wet-dry cycle may help this problem, in that the
polymers could form on the surface during dry periods and then desorb during wet phases,
where the desorption is assisted by solvation of the polymer. We will consider various options

to model this aspect of the problem in Chapter 3.

1.1.1 Modeling Surface Polymer Formation

In this study, we choose to implement a particle simulation using Monte Carlo methods.

This is in contrast to a rate equation approach to surface polymerization described by the
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following set of equations for the ith surface species:

87%' 827% 82ni
- D + Dy

. +Ria—kdni—§ kyning, 1=1,2,...,m
2
ot ox -

On the right-hand side, we have terms representing 2-D diffusion (Dx% +Dy% ), adsorp-
tion rate ( R;a ), desorption rate (kqn;), and bonding (>, = kyniny,). The sum over m in the
last term is over all other species on the surface including monomers, dimers, and polymers.
Solving such a set of equations is a formidable computational problem and to our knowledge
has not yet been attempted. The problem is greatly magnified when there is more than one

type of monomer species.

Alternatively, in a particle simulation, the system is simulated by a finite number of parti-
cles, and the various elementary processes are treated using probabilities and Monte Carlo
sampling methods. This approach has the virtue of greatly simplified mathematics and pro-
gramming, and the addition of multiple processes and species is straightforward and does not
affect the basic algorithmic structure. The main disadvantage of this approach is a typically
much higher computational time with the need for a large number of particles and simulation
area to generate good statistics. In addition, simulations of this kind can sometimes obscure
the underlying physics and chemistry, which must be teased out by running the simulations
under a wide variety of conditions. In a sense the particle simulation approach is really
more like an experiment, the results of which can be used to inform a more general and

complementary theoretical approach, as well as inspire particular experimental approaches.

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5
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Chapter 2

Methods

2.1 Experimental Setup

The simulation consists of two distinct phases: an aqueous stage and a dry stage. During
the aqueous (wet) stage, a lattice surface is immersed in an aqueous solution containing
monomers. At the interface between the aqueous solution and the surface, monomers can
undergo processes of adsorption onto the surface, desorption from the surface, or diffusion
along the surface. During the dry stage, desorption, diffusion, and the formation or destruc-
tion of bonds can also take place, but likely at rates distinct from those observed during the

wet stage.

2.2 Assumptions of the Model

The model has several simplifying assumptions in order to make the computation tractable
and minimize the number of adjustable parameters. It is important to emphasize that the
aim of this model is not to present a definitive representation of polypeptide formation on
surfaces. Given the enormous uncertainties surrounding abiogenesis mechanisms and the

conditions of the early earth, drawing precise conclusions from any model cannot be justified
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at this time. Instead, we view this simulation as an initial exploration, aimed at developing
the algorithmic approach and providing a preliminary understanding of the relative signifi-

cance of various parameters, in particular activation energies, in surface reactions.

With the exception of the adsorption of monomers in the wet phase, all processes are assumed

to be thermally activated with a rate that follows the general Arrhenius form [7].

In equation 2.1 Fa; is the activation energy for the ith process, k£ is Boltzmann’s constant,
T is the temperature in Kelvin, and A; is the prefactor. In this expression, A; has units of
s~ and can be considered to be a kind of "attempt frequency”. Theoretically A; can be

calculated by using some version of transition state theory [8]. In this approach, the rate is

determined by the properties of the reactants and a putative transition state. We have:

KT QF

(2.2)
where h is Planck’s constant and (); and )] are the partition functions for the reactant state
and the transition state respectively. For the processes considered here, there is insufficient
theoretical or experimental data to unambiguously determine the parameters A; and Fa.
Our approach will be more phenomenological and instead focus on a parameterization of the
rates in terms of the activation energies for the various processes. As discussed below the
simulation ultimately only requires the relative rates of the elementary processes. In order
to minimize the number of adjustable parameters, we will make the assumption that the

prefactors A; are the same for every process. Typically the reaction rate is dominated by

the activation energy. That is, the relative rates are assumed to follow:

E .

R@' Pz Aie’ﬁl _ (Bai—Eqj)
—_ = = e = e kT (2'3)
Rj PJ Ajef%
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which also represents the relative probability of the two processes. Thus we are assuming
that the relative probabilities of the elementary processes are dominated by their differences
in activation energies. Although this approach neglects potentially important effects such
as entropy differences between reactants and transition states, at the current level of sophis-
tication of our simulation it is not a serious limitation, since the wet and dry phases are
assumed to occur at fixed temperatures. A more general expression for the relative rates is:

L —(Bai—FEaj) /KT (2.4)

Fj = pij€

where p;; represents the ratio of the prefactors. The “real” probability ratio can be ac-
commodated by simply setting p;; = 1 and adjusting the difference between the activation
energies. Because of the exponential dependence on the difference in activation energies,
even small adjustments to the activation energies can have significant effects on the relative
rates. The main point is that in the simulation, only the relative probabilities of the pro-
cesses are relevant. The use of activation energies to determine these ratios is a heuristic

guide to simplify the calculation and minimize the number of parameters.

Assuming we can characterize the relative rates based on activation energies, a crucial dif-
ference between desorption and diffusion processes lies in whether the monomers are ph-
ysisorbed or chemisorbed. Physisorption involves weak Van der Waals forces and is easily
reversible, whereas chemisorption involves stronger chemical bonds and is typically consid-
ered irreversible. Factors influencing adsorption include the surface area and properties of
the solid material, the nature of the molecules in the fluid, temperature, pressure, and the
presence of other substances. Physisorbed molecules generally exhibit desorption and dif-
fusion energies on the order of tens to hundred of of meV, whereas chemisorbed molecules
typically have corresponding energies in the eV range [9]. Limited data is available for des-
orption energies of amino acids on surfaces, and that information is primarily from molecular

dynamics simulations on single crystalline surfaces, giving values from about 0.4 to 1.5 eV

Published by DigitalCommons@Macalester College, 2024
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[10]. Some experimental data on the desorption and diffusion of organic molecules on dust
grains can be found in the astrophysics literature, where physisorption energies typically
range from 0.07 to 0.35 eV. Since it is unknown what type of adhesion would occur under
abiogenesis conditions, we opt for a middle ground, assuming desorption energies near the
upper end of the physisorbed values and the lower end of the chemisorbed values. Tables

2.1 and 2.2 summarize our default parameters for desorption and diffusion.

Activation Energy (eV)
Desorb Diffuse
Monomer 0.3 0.18
Dimer 0.4 0.24
Polymer 0.5 -

Table 2.1: Default Activation Energies Wet

Phase
Activation Energy (eV)
Desorb Diffuse
Monomer 0.4 0.24
Dimer 0.6 0.36
Table 2.2: Default Activation Energies Dry
Phase
Probabilities
Desorb Diffuse
Monomer | 3.05 x 1073 0.2

Dimer | 9.33 x 107° | 2.47 x 1072
Polymer | 2.86 x 1076 -

Table 2.3: Default Probabilities in Wet Phase

Probabilities
Desorb Diffuse
Monomer | 1.77 x 1073 0.2
Dimer 4.81 x 1076 | 5.77 x 1073

Table 2.4: Default Probabilities in the Dry
Phase

The assumption is made that the adsorption of monomers from solution onto the surface oc-

10
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curs without a barrier. The rate of this adsorption process is therefore determined primarily
by the concentration of amino acids in the wet phases of the cycle. According to elementary
kinetic theory, the rate per unit area for adsorption of particles onto a surface is given by
[11]:

R, = —sn(v) (2.5)

where s is a sticking coefficient, n is the volume concentration of the particles in solution,
and (v) is the average speed of the particles when they arrive at the surface. For impinge-
ment from a solution where the arrival of particles at the surface is diffusion-limited, (v) is
interpreted as diffusional velocity. In our simulation, the rate of adsorption is an adjustable
parameter that is specified as a probability per unit time step. This parameter thus serves
as a proxy for the concentration of monomers in the solution wet phase. In Chapter 3 we
show that the results are not strongly dependent on the choice of this probability as long as

the number of cycles is large and the initial seeding on the surface is adequate.

Monomers, dimers, and polymers can all desorb from the surface during the wet and dry
phases. As discussed in Chapter 1, presumably the activation energies for desorption increase
as the polymer grows, given the greater number of contact points between the polymer and
the surface. This suggests that the likelihood of desorption diminishes rapidly as the number
of monomer units, N, increases. Indeed, as discussed in Chapter 1, this is considered to be
one of the primary obstacles regarding abiogenesis biopolymer formation on surfaces. In
our simulation, we examine several possible models for the desorption of polymers. To com-
pare models our default assumption assumes constant probability of desorption regardless
of polymer length. We compare this with the case that the desorption energy scales linearly

with the number of monomers:

EaN =N x EadM (26)

Where E, g4 is the desorption energy of a single monomer and N is the length of the

11
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monomer. This is quite different from the previously mentioned model which assumes that
beyond a certain value of N, the desorption energy does not increase. This latter situation
might occur if, as monomers are added, the polymer becomes more loosely bound because
the monomer repeat distance is not commensurate with the surface binding sites. In essence,
a kind of “buckling” occurs. A variation of this idea is that the binding energy increases and
then decreases with polymer length periodically as the polymer length increases. Intermedi-
ate possibilities include a decrease in polymer desorption probability with N that is weaker
than that implied by a linear increase in activation energy, for example 1/N. Additionally,
the desorption energy is likely to be lower in the wet phase than in the dry phase, due to

the expected free energy advantage of solvation in the aqueous phase.

We assume that monomers and dimers can diffuse on the surface during the wet and dry
phases, although dimers have a higher activation energy to do so. Based on the literature,
the activation energy for surface diffusion is typically 0.2 to 0.8 times the activation barrier
for desorption [12]. In our simulation, this fraction is fixed at 0.6 (Tables 2.1 and 2.2).
Polymers containing three or more units do not diffuse. This assumption is somewhat incon-
sistent with the fact that polymers can desorb, but simplifies the calculations and is unlikely
to influence the results given the significantly slower diffusion rates of polymers compared

to monomers and dimers.

Given our assumption that the simulation is nominally supposed to represent polypeptide
formation, we incorporate additional characteristics typical of these systems. Specifically, we
assume that in the absence of water during the dry phase, hydrolysis of the peptide bond does
not occur. Peptide bond formation, however, can occur during the dry phase but requires an
activation energy equal to or greater than the magnitude of the enthalpy for the (exoergic)
hydrolysis reaction. Several values have been cited for this energy in the literature spanning

from about 0.1 to 0.3 ¢V (10 kJ/mol to 30 kJ/mol). This quantity does not include a possible

12
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activation energy beyond the reaction enthalpy. Variation of the bonding activation energy
is one of the main parameters we wish to study in this paper. Values between 0.16 eV (16
kJ/mol) and 0.48 eV (48 kJ/mol) were considered, with 0.24 eV (24 kJ/mol) as the default
value. This activation energy is an important parameter in our simulation, as any catalytic
effect of the surface would suggest a lower activation energy compared to the reaction in
the solution phase. The activation energy for uncatalyzed peptide bond hydrolysis (the re-
verse of peptide bond formation) is around 1 eV [13]. Such a high activation energy for
hydrolysis is consistent with the observation that proteins do not spontaneously hydrolyze
in aqueous solutions, despite the fact that the reaction is thermodynamically favorable. If
the mechanism for peptide bond formations is simply the reverse of the hydrolysis reaction,
this would imply that the peptide bond formation barrier is about 1.24 eV without catalysis.

The energetics of the bond formation are shown in Figure 2.1 below.

(" B
I |
o i E,
L hydrolysis

Ea — ] | AA + HZO _

condensation
- 10-30 kJ/mol
. A+A

Figure 2.1: Figure 2.1. Energy Diagram for Polymerization

In the wet phase we assume that the excess water present will tend to suppress peptide bond

13
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formation due to the reverse hydrolysis reaction:

A=A + H,0 — A+ A (2.7)

Thus, in our simulation we will assume that no net peptide bond formation occurs during
the wet phase. Since water is not present in the dry phase, no hydrolysis occurs during the
dry phase and once a peptide bond is formed it does not dissociate. The processes and their
default activation energies that are used in our model are given in Table 1, and Figure 2.2

summarizes the processes considered in the model.

2.3 The Simulation

The main output of the simulation is the average length of the longest polymer desorbed for
a given set of activation energies and a given number of wet-dry cycles. The 2-D simulation
space was discretized as a 1000 x 1000 lattice grid. Individual events can take place only at
grid points. Periodic boundary conditions were used for particles that reached the boundaries
by diffusion. The simulation begins with an initial seeding of the surface with monomers.
Surface diffusion corresponded to jumps between lattice points, and in both the wet and
dry phases this was the fastest process. Thus we set the time scale by setting the diffusion
probability at any given time step to be 0.2. All other probabilities were scaled to the
diffusion probability except for the adsorption of monomers from the aqueous phase, which

was set independently. Thus the probability of the ith process is:

Pi = Pdiff X 6_(Eai_EdiH) (28)

For a given particle at a given time step, the probabilities for each possible event were
summed to produce a cumulative distribution function (CDF) map. By sampling from

this CDF map using a pseudo-random number generator, the simulation probabilistically

14
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Figure 2.2: Elementary processes considered in the simulation
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selects the event that will occur for the monomer by iterating through the map, summing
up each probability until the cumulative probability exceeds the random number. At that
point, the function selects the event corresponding to the cumulative probability that first
exceeds the random number and returns it. If the random number exceeds the sum of all
probabilities, indicating that no event occurs, the function returns “None”. The algorithm
was tested by generating events based on known probabilities using the provided simulation
setup. By comparing the observed event frequencies with the expected frequencies based on
the probabilities, the algorithm’s accuracy and reliability were confirmed. Appendix A gives
a flow chart for the algorithm and Appendix B contains the entire program. The program
itself was implemented using the C++ programming language and takes up to 14 hours to
run on a Mac Studio desktop, depending on the conditions. The image below illustrates the
state of the program after a certain time. The red dots represent bonded polymers (which
are dominated by dimers), whereas the blue dots are monomers that are free to move around

the surface.

16
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Figure 2.3: Simulation
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Chapter 3

Results

We ran a series of trials aimed at understanding the relationship between the activation
energy (Ea) for bonding and the length of the longest desorbed polymer across varying trial
conditions. The activation energy for bonding was varied from 0.16 eV to 0.60 eV in incre-
ments of 0.04 eV. Furthermore, we investigated the influence of the total number of cycles
on this relationship by conducting trials comprising 30, 300, and 600 cycles, respectively.
Throughout all trials, the initial surface particle count remained constant at 100, and a
uniform probability of 0.2 was assigned to the diffusion probability (normally the fastest
process) to which all other probabilities were scaled as described in Chapter 2. The desorp-
tion and diffusion activation energies used the default values in Tables 2.1 and 2.2 unless

otherwise noted.

The results from these trials are shown in Figure 3.1

18
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Ea Bond and Maximum Desorbed vs. Cycle
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It is clear from the figure that for low activation energies (below 0.4 €V), there seems to be a
strong dependence of the maximum desorbed polymer length on the total number of wet-dry
cycles. Furthermore, for high activation energies, the largest desorbed polymers are dimers
(N = 2) across all of the trials. For trials with 30 cycles and an activation energy of 0.60 eV
for bonding, the maximum desorbed polymer had an average length of less than 2 units. Of
course to be a polymer it must consist of two or more monomers, the value of less than 2
indicates that for some of the trials no polymers desorbed. When these trials are averaged

with those where a dimer desorbed, the overall results give an average length of less than 2

units.

0.2 03 0.4 05 0.6
Ea Bond (eV)

Figure 3.1: Maximum Polymer Length vs Bond Ea for various cycles

19

Published by DigitalCommons@Macalester College, 2024

21



Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 5

To further understand the relationship between the longest desorbed polymer and the num-
ber of cycles, we looked specifically at the bonding activation energy of 0.24 eV. We ran

experiments for 30, 500, 600,1000 and 2000 cycles, with the results given in Figure 3.2

Desorption vs Number of Cycles

35 A

30 -

Max Desorbed
J (%]
[a] un

'_I
(%}
|

10 -

0 250 500 750 1000 1250 1500 1750 2000
Number of Cycles

Figure 3.2: Maximum desorbed Polymer vs Number of Cycles For Ea = 0.24

The graph above shows a strong correlation between the number of cycles and the maximum
size of the desorbed polymer. For the case of 30 cycles, the maximum desorbed polymer was
only 5 units long, but for 2000 cycles the maximum desorbed polymer was 35 units long.
This trend is promising for origin of life theories as it shows that given enough time long
polymers would form. It is interesting to note that from the graph it seems that the rate of
increase in polymer length is slightly decreasing as the number of cycles increases, so instead

of being linear may have a slight sublinear relationship. To understand this behavior better
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more trials would need to be run at a larger number of cycles.

As mentioned in Chapter 1, the ability of long polymers to desorb from the surface was
likely a crucial step in biogenesis. Some researchers have proposed that as polymers on the
surface grow, they would become more tightly bound to the surface. To simulate this effect,
we varied the desorption probability as a function of the length of the polymer using several

models. In addition to the default case where the desorption probability was constant for

1
N

N > 2, we looked at the cases where the desorption probability was proportional to <, where
N is the length of the polymer. Additionally we looked at the case for which the activation
energy for desorption is given by N x Eagy, that is, the desorption energy of a polymer of
length N is simply the sum of the desorption energies of the individual monomeric units.
Additionally to simulate a potential steric or periodic “buckling” effect, a probability pro-
portional to |sin(§Ea x (N —1))| + Ea, shown in figure 3.3 d) was studied. For these trials

we ran the various desorption models with a fixed number of cycles (300). The probabilities

based on the length are shown in the graphs below for clarity:
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Figure 3.3: Desorption Models showing the probability of bonding versus the length of the
polymer
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Figure 3.3 a) presents a function for determining the probability of a polymer of length N
desorbing, given by Pryesorbp = % X Praesorbn- Here, Praesorby re€presents the probability of a
single monomer desorbing. Figure 3.3 b) illustrates the function for the probability of a poly-
mer of length N desorbing, denoted as Praesorop = Pran - exp(™ (V- Fadesorbm—Faan)/kT) Ty this
context, Prqy denotes the probability of a monomer diffusing, Fagesorbn represents the acti-
vation energy for a single monomer to desorb, and Fagys stands for the activation energy for
a single molecule to diffuse. Figure 3.3 ¢) shows the function assumed for the activation en-

ergy of a buckling polymer, expressed as as Edgesorbp = |4% Eaqn*sin(§ Eax (N —1))|+ Eaqu.
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Using these methods, we calculated the average longest polymer resulting from each ac-
tivation energy over multiple trials. We then compared the results to a scenario where the

desorption probability remains constant for N > 2, our default condition. The findings are

presented in Figure 3.4.

Max Desorbed vs Ea Bond

—e— Buckling
-m- Default
Eay =N *Eagy

—¥- Probability proportional 1/N

10 A

Max Desorbed

T T
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Ea Bond

Figure 3.4: Maximum desorbed Polymer for various Models

It is notable that for the cases of desorption proportional to % and e~ VFaesoroM | only dimers
desorb. For the desorption probability given the buckling function, there are longer desorbed

polymers than in the previous two cases, but shorter than for the default constant desorption

probability for N greater than 2.

For these same cases, we can also look at the maximum polymer that remained on the

surface, shown in Figure 3.5
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Max Surface Polymer Length vs Ea Bond
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Figure 3.5: Maximum length polymer on the Surface for various activation energies and
desorption relationships

For bond-forming activation energies above .36 eV, there is almost no difference in the maxi-
mum adsorbed polymer across the various models. At lower activation energies there appears
to be a slightly larger difference between the models. In the model with constant desorption
probabilities, at low energies the largest desorbed polymer becomes quite large, this could
potentially cause the largest polymer on the surface to differ slightly. In general, the results
are consistent with our understanding of the growth of polymers on the surface. The re-
lationship between the maximum desorbed and the surface for each model is shown below.
It is important to note that in figures a), b), and ¢) the maximum polymer on the surface
drops below 2 for high activation energies. This is due to the averaging of the results over
multiple trials and indicates that there were some trials for which there were no polymers

on the surface at the end of the simulation.
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Figure 3.6
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(b) Maximum desorbed polymer and polymer on the surface
for desorption proportional to 1/N
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Ea bond vs. Max Desorbed/Max on Surface Exponential Relation
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(¢) Maximum Desorbed polymer and polymer on the surface
for desorption activation energy proportional to N X Eaqm
with Fagy = 0.3 eV
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(d) Maxium desorbed polymer and polymer on the surface
for the desorption probability based on the ”buckling func-
tion”

From Figure 3.6 it can be seen that in general, the maximum polymer on the surface seems
to be constant across models. This is interesting because it seems to imply the polymer
desorption mechanism does not greatly affect the maximum length of polymers formed on

the surface. However, this result should be interpreted along with the fact that the number

26

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5

28



Greene: Simulation of Polymerization on Surfaces: Implications for Abiogenesis

of long polymers on the surface does change with the desorption model. For Figures 3.6 b
and c there is no polymer desorption, only dimers are desorbing from the surface, indicating
that these models will not result in significant long polymer desorption. Figures a) and d)
both show that events of long polymers desorbing occurred. However, the plot in d) appears
to have a slightly lower cut-off for desorbed polymers. In d) polymers greater than 2 units
don’t desorb until energies less than 0.42 are reached. Under a constant desorption relation-

ship, as shown in Figure a) polymers greater than 2 units begin desorbing from the surface

below 0.52 eV.

Finally, we considered the possibility that in the wet phase, the polymer desorption ac-
tivation energy followed the rule N x Fagys, but the value of Fagy, is much lower than
our default value of 0.3 eV. This may be the case in the wet phase where the solvation
effect is stronger than we have allowed for. In Figure 3.8a we show the results where we
set Fagy = 0.03 eV in the wet phase, but where we have kept the default values for the
dry phase. Despite the much lower barrier for desorption of the polymers, we do not see
significant polymer formation in this case. The reason is simply that as we decrease Fagys
we are also increasing the probability of monomer desorption, and thus (for a given flux
of monomers) the surface concentration of monomers decreases inhibiting the formation of
long polymers. Increasing the flux of monomers to the surface would presumably counter to
some extent this decrease in monomer surface concentration. When we increase the flux of
monomers by a factor of 5 we observe a 2/3 increase for an activation energy of 0.24 eV (N =
5 versus N = 3). See Figure 3.8. In addition, we tried decreasing the activation for bonding
in the dry phase to 0.16 eV under these conditions. We observed a desorbed average polymer
length of N = 4.5, which though larger than the N = 3 result at 0.24 eV, demonstrates that
large increases in polymer length are not achievable by reducing the bond activation energy
under conditions where the desorption of polymers is high. It’s important to note that at

bonding activation energy of 0.16 eV, we are approaching the thermodynamic limit, which is

27

Published by DigitalCommons@Macalester College, 2024

29



Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 5

the enthalpy of the reaction. We conclude that if the desorption energy of polymers follows
the rule N x Fagys , the desorption of large polymers is difficult to achieve, at least with the

number of wet-dry cycles considered in this work.

Figure 3.8: Graphs of Desorbed and Surface Polymers for Varying Flux
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Chapter 4

Discussion and Future Work

The results from Chapter 3 provide insights into the characteristics of this model. It is clear
that for the specified parameters, the length of the maximum desorbed polymer is highly
dependent on the number of cycles run. This is supported by the results that largest polymer
that was formed was for the trial with the most cycles run. Furthermore we see a dependence
of the maximum polymer length with the bonding activation energy. With our default acti-
vation energy of 0.24, the maximum desorbed polymer was on average 23 units long, where
as for 0.60 eV only dimers formed. This is consistent with our understanding that as the
activation energy increases, the barrier for bond formation is higher and therefore less prob-
able. For our lowest activation energy of 0.16 eV, there were polymers greater than 7 units
being formed for all the various trials we did with differing numbers of cycles. Additionally
for all of the trails with greater than 30 cycles, for an activation energy of 0.16, polymers
greater than 10 units formed. This is significant because it has been speculated that in
order to facilitate the origin of life, biopolymers would have needed to be a minimum of 10
units long [2]. The trend depicting an increase in polymer length over cycles is promising,

suggesting that given sufficient time, polymers of critical length could plausibly emerge.

Under our assumptions, we see that the activation energy in general needs to be less than
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0.32 eV to generate any polymers of significant length. However, it is possible that if the
number of cycles was increased significantly, a larger polymer would form at higher activa-
tion energies. Beyond 0.50 eV bond activation energy, our data shows that regardless of
the number of cycles there will not be large polymers forming or desorbing. Providing a
maximum value of the bond activation energy for which the surface can catalyze the bond-

forming reaction.

It is reasonable to expect that as the polymer length grows, it experiences an increasingly
strong attraction to the surface, making it less likely to desorb. Our results indicate that for
monomer desorption energies in the tenths of eV range, it is indeed difficult to get polymers
of any significant length to desorb, even when allowing for a modest decrease in the desorp-
tion energy in the wet phase due to solvation. The polymer desorption will be enhanced by
lowering the monomer desorption energy. However, this introduces another problem, in that
the surface concentration of monomers will now decrease, resulting in less polymer formation

on the surface, for a given bond activation energy.

It is of interest to compare our results with some experimental work that has been reported
in the literature. Most studies to date have not directly detected long polypeptide chains
on surfaces, but a number of students have demonstrated the formation of peptide bonds
catalyzed by mineal surfaces. El Samrout et al. observed clear evidence for glycine-glycine
bonds on amorphous silica [14]. Lahav et al. report similar findings on clay minerals using
wet dry cycles. Kitadai and Nishiuchi found clear evidence of aspartate dimerization on
the mineral goethite [15]. Liu and Rihe claim to have observed polymers up to 45 units of
B-glutamic acid on hydroxylapatite [16]. In general, many studies have observed peptide
bond formation on surfaces, but in general very long biopolymers have not been observed.
Nonetheless such studies can provide potentially valuable insights and fundamental data for

models and inspire further experiments.
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In this paper, we have developed and tested a simplified model for biopolymer formation
on surfaces, nominally using conditions appropriate for polypeptide formation. The model
predicts expected trends with the activation energy of bond formation, the number of wet-
dry cycles, and desorption models for the surface-produced polymers. Of necessity, most of
the input parameters into the model are speculative but can be adjusted as more relevant

experimental or theoretical data becomes available.

Future developments of the model will include the incorporation of effects neglected here,
such as bond-breaking events, polymer diffusion, and inclusion of various species (with po-
tentially different desorption and bond energies). Further automation of the program to
provide a more comprehensive exploration of the parameter space can lead to further in-

sights.

Finally, more attention needs to be given to time-scale issues. Diffusion, desorption, and
bonding do not necessarily occur on the same time scale as the adsorption of monomers and
may even be vastly different than the total time we simulate for the wet and dry cycles.
We need to recognize that the time scales for the formation of biopolymers could occur over
many years, far more than those simulated here if we assume that one wet and dry cycle
corresponds to one day. This is a common problem in simulations, and there are so-called

multi-scale approaches that can help.
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.1 Appendix A

Algorithm 1 Full Simulation in C++ (Part 1)

1: Initialize arrays: particles|], polymers[] (both initially empty)

2: Define total number of cycles and time steps

Let dryProbabilities be a map containing the probabilities of each event: desorb, diffuse,
bond, or stay in the dry state

@

4: Let wet Probabilities be a map containing the probabilities of each event in the wet state.
5: for each cycle do

6:  Aqueous step:

7. for each time step from t = 0 to ¢t = TotalTime incrementing by ¢ + + do
8: Call adsorption function to add monomers to the surface

9: for each particle on the surface do
10: if not bonded then
11: Let random Number be a randomly generated number between 0 and 1
12: Let eventType be the type of event selected

13: eventType < SELECTEVENT (wet Probabilities, randomNumber)
14: if eventType = desorb then

15: DESORB(particle) {Call desorb function}

16: Remove particle from particles|]

17: else if eventType = diffuse then

18: MOVE(particle) {Call move function}

19: else if eventType = bond then
20: BOND(particle) {Call bond function}
21: end if
22: end if
23: end for
24: for each polymer in polymers[] do
25: Choose random event: desorb, diffuse, break, bond, or stay
26: if eventType = desorb then
27 DESORB(polymer) {Call desorb function}
28: Remove particle from polymers|]

29: else if eventType = diffuse then
30: MOVE(polymer) {Call move function}
31: else if eventType = bond then
32: BOND(particle) {Call bond function}
33: else if eventType = break then
34: BREAK (polymer) {Call Break function}
35: end if
36: end for

37:  end for
38: end for=0
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Algorithm 2 Full Simulation in C++ (Part 2)

1: for each cycle (continued) do

2:  Dry Stage:

3:  for each time step from ¢t = 0 to ¢t = TotalTime incrementing by ¢t + 4+ do
4: for each particle on the surface do

5: if not bonded then

6: Let random Number be a randomly generated number between 0 and 1
7: Let eventType be the type of event selected

8: eventType <— SELECTEVENT(dryProbabilities, randomNumber)
9: if eventType = desorb then

10: DESORB(particle) {Call desorb function}

11: Remove particle from particles|]

12: else if eventType = diffuse then

13: MOVE(particle) {Call move function}

14: else if eventType = bond then

15: BOND(particle) {Call bond function}

16: end if

17: end if

18: end for

19: for each polymer in polymers[] do
20: Choose random event: desorb, diffuse, break, bond, or stay
21: if eventType = desorb then
22: DESORB(polymer) {Call desorb function}
23: Remove polymer from polymers]
23: add polymer to desorbedPolymers]]
24: else if eventType = diffuse then
25: MOVE(polymer) {Call move function}
26: else if eventType = bond then
27: BOND(polymer) {Call bond function}
28: end if
29: end for

30: end for
31: end for=0

.2 Appendix B

#include <iostream>
#include <vector>

#include <fstream>
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#include <utility >
#include <set>
#include<filesystem >
#include <random>

#include <map>

using namespace std;

int dim = 1000; //Dimensions of grid

int DIM dim — 1;

//when the neighbor array includes 4 nieghbors, randomly selects one neighbor to collide
with

void collideW4 (int x, int y, vector<int> &nArrX, vector<int> &nArrY, int& CollideX , int&
CollideY ){
srand (static_cast <unsigned int>(time(nullptr)));

// Generate a random integer between 0 and 3

random_device rd;

mt19937 gen(rd());

uniform_int_distribution<int> distribution (0, 3);

// Generate a random integer between 0 and 3

int RND = distribution (gen);

CollideX = nArrX [RND];
CollideY = nArrY [RND];

//when the neighbor array includes 3 nieghbors, randomly selects one neighbor to collide
with

void collideW3 (int x, int y, vector<int> &nArrX, vector<int> &nArrY, int& CollideX , int&
CollideY ){
random_device rd;
mt19937 gen(rd());

uniform_int_distribution<int> distribution (0, 2);

// Generate a random integer between 0 and 3
int RND = distribution (gen);

CollideX = nArrX[RND];

CollideY = nArrY [RND];

36

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5

38



Greene: Simulation of Polymerization on Surfaces: Implications for Abiogenesis

//when the neighbor array includes 2 nieghbors, randomly selects one neighbor to collide
with

void collideW2(int x, int y, vector<int> &nArrX, vector<int> &nArrY, int& CollideX , int&
CollideY ){

random_device rd;
mt19937 gen(rd());

uniform_int_distribution<int> distribution (0, 1);

// Generate a random integer between 0 and 1
int RND = distribution (gen);

CollideX = nArrX [RND];

CollideY = nArrY [RND];

//when the neighbor array includes 1 nieghbors, randomly selects one neighbor to collide
with

void collideW1 (int x, int y, vector<int> &nArrX, vector<int> &nArrY, int& CollideX , int&
CollideY ){

CollideX = nArrX[0];

CollideY = nArrY [0];

bool checkEdge(int x, int y){
if( x=0 || y=0 || y=DIM || x = DIM){
return true;

}

return false;

template <typename TwoD>
//Checks if the squares next to location x,y are occupied based on the occupation 2d array
void checkNeighborsToBond(int x, int y, TwoD& array, vector<int> &nArrX, vector<int> &nArrY)

{

//first make sure its not an edge

if (0<x && x<DIM && 0<y && y<DIM){

37
Published by DigitalCommons@Macalester College, 2024



Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 5

if (array [x][y+1] = 1 || array[x][y+1] = 3){
//if there is a neighbor above
nArrX. push_back (x) ;
nArrY . push_back (y+1);

}
if (array [x][y 1] — 1 || array [x][y 1] — 3){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);
}
if ((array) [x+1][y] = 1 || (array)[x+1][y] = 3 ){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);
}
if ((array) [x—1][y] = 1 || (array)[x—1][y] = 3 ){
//1if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back(y);
}

}

// if its at the top but not a corner
else if (y=— DIM && 0<x && x<DIM){
if ((array) [x][0] — 1 || (array)[x][0] — 3){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (0);

}

if ((array) [x][y—1] = 1 [|(array) [x][y—1] = 3){
//1if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);

}

if ((array) [x+1][y] = 1 [[(array) [x+1][y] = 3 ){

// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);
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}

if ((array) [x—1][y] = 1 || (array) [x—1][y] = 3 ){
//if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back (y);

}

//if its at the bottom but not a corner
else if (y = 0 && 0<x && x<DIM){
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3 ){
//1if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);

}

if ((array) [x][DIM] = 1 || (array)[x][DIM] = 3 ){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (DIM) ;

}

if ((array) [x+1][y] = 1 [| (array)[x+1][y] ==3){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back (y);

}

if ((array) [x—1][y] = 1 || (array)[x—1][y] = 3 ){
//1if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back(y);

}

// if its on the left but not a corner
else if(x = 0 && 0<y && y<DIM) {
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3 )
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);
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}
if ((array) [x][y—1] = 1 || (array)[x][y—1] = 3){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);
}
if (Carray) [x+1][y] = 1 [[ (array) [x+1][y] = 3){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);
}
if ((array) [DIM][y] = 1 || (array) [DIM][y] = 3){
//if there is a nigherbo to the left
nArrX. push_back (DIM) ;
nArrY . push_back(y);
}

// if its on the right but not a corner
else if (x = DIM && 0<y && y<DIM){
if ((array) [x][y+1] — 1 || (array) [x][y+1] — 3 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);

}
if ((array) [x][y—1] = 1 ||(array) [x][y—1] = 3 ){
//if there is a nieghbor below
nArrX. push_back (x) ;
nArrY . push_back (y—1);
}
if ((array) [0][y] = 1 [| (array)[0][y] = 3 ){
// if there is a nieghor to hte right
nArrX. push_back (0) ;
nArrY . push_back(y);
}
i ((array) [x—1[y] — 1 || (array) [x—1][y] — 3 ){
//if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back (y);
}
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//if its at the top left corner

else if (x==0 && y=—= DIM){
if ((array) [x][0] = 1 [|

= (array) [x][0] = 3 ){
//1if there

is a neighbor above

nArrX. push_back (x);

nArrY . push_back (0) ;
}

if ((array) [x][y—1] =1 []

(array) [x][y—1] = 3)
//if there

is a nieghbor below

nArrX. push_back (x);

nArrY . push_back (y—1);

}

if ((array) [x+1][y]

L | (array) [x+1][y] = 3){

is a nieghor to hte right
nArrX. push_back (x+1);

// if there

nArrY . push_back(y);

}
if ((array) [DIM][y] = 1 || (array) [DIM][y] 3)4
//if there is a nigherbo to the left
nArrX. push_back (DIM) ;
nArrY . push_back (y);
}
}
//if its

at the top right corner
else if (x = DIM && y = DIM){

if ((array) [x][0] = 1 || (array)[x][0] = 3){
//if there

is a neighbor above

nArrX. push_back (x);
nArrY . push_back (0) ;

}

if ((array) [x][y—1] = 1 || (array)[x][y—1] = 3 ){
//if there is a nieghbor below
nArrX . push_back (x) ;
nArrY . push_back (y—1);

}

if ((array)[0][y] I

(array) [0][y] = 3 ){
is a nieghor to hte right
nArrX. push_back (0) ;

// if there
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nArrY . push_back(y);

}

if ((array) [x—1][y] = 1 || (array) [x—1][y] = 3){
//if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back (y);

}

}

//if its at the bottom left corner
else if (x==0 && y==0){
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3){
//if there is a neighbor above
nArrX. push_back (x) ;
nArrY . push_back (y+1);

}

if ((array) [x][DIM] = 1 || (array)[x][DIM] = 3){
//1if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (DIM) ;

}

if ((array) [(x+1][y] — 1 || (array) [x+1][y] — 3 ){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);

}

if ((array) [DIM][y] = 1 || (array)[DIM][y] = 3 ){
//if there is a nigherbo to the left
nArrX. push_back (DIM) ;
nArrY . push_back(y);

}

}

//if its at the bottom right corner
else if (y==0 && x=DIM){
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);
}
if ((array)[x][DIM] = 1 || (array)[x][DIM] = 3 ){

//if there is a nieghbor below
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nArrX. push_back (x);
nArrY . push_back (DIM) ;

}

if ((array) [0][y] = 1 [|(array) [0][y] = 3){
// if there is a nieghor to hte right
nArrX. push_back (0);
nArrY . push_back(y);

}

if ((array) [x—1][y] = 1 || (array)[x—1][y] = 3 ){
//1if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back(y);

}

template <typename TwoD>

//Checks if the squares next to location x,y are occupied based on the occupation 2d array

void checkNeighborsToMove(int x, int y, TwoD& array,
{
//first make sure its not an edge
//move up = 0
//movedown = 1
//moveleft = 2
//moveright = 3
if (0<x && x<DIM && 0<y && y<DIM){
if (array [x][y+1] = 0 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);

}

if (array [x][y—1] = 0 ){
//if there is a nieghbor below
nArrX . push_back (x);
nArrY . push_back (y—1);

}

if ((array) [x+1][y] = 0 ){
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// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);

}

if ((array) [x—1][y] = 0 ){
//if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back (y);

}

}

// if its on the left but not a corner
else if (x = 0 && 0<y && y<DIM) {
if ((array) [x][y+1] = 1 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);

}

if ((array) [x][y—1] =1 ){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);

}

if ((array) [x+1][y] = 1 || (array) [x+1][y] = 3){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);

}

if ((array) [DIM][y] = 1 || (array) [DIM][y] — 3)

//if there is a nigherbo to the left
nArrX. push_back (DIM) ;
nArrY . push_back(y);

}

// if its on the right but not a corner
else if (x = DIM && 0<y && y<DIM){
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3 ){
//1if there is a neighbor above
nArrX. push_back (x);
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nArrY . push_back (y+1);

}
if ((array) [x][y—1] = 1 ||(array) [x][y—1] = 3 ){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);
}
if ((array) [0][y] = 1 || (array)[0][y] = 3 ){
// if there is a nieghor to hte right
nArrX . push_back (0) ;
nArrY . push_back (y) ;
}
if ((array) [x—1][y] = 1 || (array)[x—1][y] = 3 ){
//1if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back(y);
}
}
//if its at the top left corner
else if (x==0 && y=— DIM){
if ((array) [x][0] = 1 || (array)[x][0] = 3 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (0);
}
if ((array) [x][y—1] = 1 || (array)[x][y—1] = 3){
//if there is a nieghbor below
nArrX. push_back (x) ;
nArrY . push_back (y—1);
}
if ((array) [x+1][y] L || (array)[x+1][y] = 3){
// if there is a nieghor to hte right
nArrX. push_back (x+1);
nArrY . push_back(y);
}
if ((array) [DIM][y] — 1 || (array) [DIM][y] — 3){
//if there is a nigherbo to the left
nArrX. push_back (DIM) ;
nArrY . push_back (y);
}
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}

//if its at the top right corner
else if (x = DIM && y = DIM){
if ((array) [x][0] = 1 || (array)[x][0] = 3){
//1if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (0) ;

}

if ((array) [x][y—1] = 1 || (array)[x][y—1] = 3 ){
//1if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (y—1);

}

if ((array) [0][y] = 1 || (array)[0][y] = 3 ){
// if there is a nieghor to hte right
nArrX. push_back (0);
nArrY . push_back(y);

}

if ((array) [x—1][y] = 1 [|(array) [x—1][y] = 3){
//if there is a nigherbo to the left
nArrX . push_back (x—1);
nArrY . push_back (y);

}

}

//if its at the bottom left corner
else if (x==0 && y==0){
if ((array) [x][y+1] = 1 || (array) [x][y+1] = 3){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);

}

if ((array) [x][DIM] = 1 || (array)[x][DIM] = 3){
//if there is a nieghbor below
nArrX . push_back (x);
nArrY . push_back (DIM) ;

}

if ((array) [x+1][y] = 1 || (array)[x+1][y] = 3 ){

// if there is a nieghor to hte right
nArrX. push_back (x+1);
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nArrY . push_back(y);

}

if ((array) [DIM][y] = 1 [[ (array)[DIM][y] = 3 ){
//if there is a nigherbo to the

left
nArrX. push_back (DIM) ;

nArrY . push_back (y);

}
}
//if its at the bottom right corner
else if (y==0 && x=DIM) {
if ((array) [x][y+1] = 1 || (array)[x][y+1] = 3 ){
//if there is a neighbor above
nArrX. push_back (x);
nArrY . push_back (y+1);
}
if ((array)[x][DIM] = 1 || (array)[x][DIM] = 3 ){
//if there is a nieghbor below
nArrX. push_back (x);
nArrY . push_back (DIM) ;
}

if ((array) [0][y]
// if there

== 1

|| Carray) [0][y]

is a nieghor to hte
nArrX . push_back (0) ;

= 3){

right

nArrY . push_back(y);

}
i ((array) [x—1][y] = 1 || (array) [x—1][y] — 3 ){
//if there is a nigherbo to the left
nArrX. push_back (x—1);
nArrY . push_back(y);
}
}
}
class Particle
{public:

Particle () x(NULL) , y(NULL), name(” Null”), num(NULL) {}
Particle(int X, int Y,string Name,

int partNum, bool recombined)
, num(partNum) , recombined (recombined) {}

x(X), y(Y), name(Name)
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bool recombined;

bool readyToBond = false;

int getX (){

return x;

}
int getY ()
{
return y;
}

void setBonded(bool b){
bonded = b;

bool getBonded (){

return bonded;

void setX (int X){
x = X;

void setParticleNumber (int i){

num = i;

int getParticleNumber ()

{

return num;

}

void setY (int Y){

y =Y;

string getName ()

{

return name;
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void move(){
if(0 <y &y < DIM& 0 < x && x < DIM){

//move any direction

float RND = (float) rand () /RANDMAX;
if (RND <= 0.25){

y=y + 1

}

else if (RND > 0.25 && RND <= 0.5){
x =x + 1;

}

else if(RND > 0.5 && RND <= 0.75){
X =X — 1;
}

else{
y=y - 1

else if (y = DIM &% 0 < x &% x < DIM){
// top edge not corner
float RND = (float) rand()/RANDMAX;
if (RND <= 0.25) {

y = 0;

}

else if (RND > 0.25 && RND <= 0.5){
x =x + 1;

}

else if(RND > 0.5 && RND <= 0.75){
X =x — 1;
}

else{
y=y — 1;

else if(x =DM && 0 < y && y < DIM){
//Right Edge
float RND = (float) rand () /RANDMAX;
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if (RND <= 0.25){

y=y + 1

}

else if (RND > 0.25 && RND <= 0.5){
X =x — 1;

}

else if(RND > 0.5 && RND <= 0.75){
x = 0;
}

else{
y =y — 1

else if(y = 0 && 0 < x && x< DIM)

{
// Bottom edge
float RND = (float) rand()/RANDMAX;
if (RND <= 0.25){
y=y + 1
}
else if (RND > 0.25 && RND <= 0.5){
x =x + 1;
}
else if(RND > 0.5 && RND <= 0.75){
x =x — 1;
}
else{
y = DIM;
}
}

else if(x = 0&& 0 < y && y < DIM){

// Left edge

float RND = (float) rand()/RANDMAX;

if (RND <= 0.25) {
y=y + 1

}

else if (RND > 0.25 && RND <= 0.5){
x = x + 1;
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else if(RND > 0.5 && RND <= 0.75){

x = DIM;
}

else{
y=y - 1

else if(x = 0 && y = 0){
//Bottom left corner
float RND = (float) rand () /RANDMAX;
if (RND <= 0.25){

y=y + 1

}

else if (RND > 0.25 && RND <= 0.5){
X =x + 1;

}

else if(RND > 0.5 && RND <= 0.75){
x = DIM;
}

else{
y = DIM;

else if(x==0 && y = DIM){
//Top left corner
float RND = (float) rand()/RANDMAX;
if (RND <= 0.25) {

y=0;

}

else if (RND > 0.25 && RND <= 0.5){
x =x + 1;

}

else if (RND > 0.5 && RND <= 0.75){
x = DIM;
}

else{
y =y — 1

}
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else if(x = DIM && y = DIM){
// top right corner
float RND = (float) rand () /RANDMAX;
if (RND <= 0.25){

y=0;

}

else if (RND > 0.25 && RND <= 0.5) {
x = 0;

}

else if (RND > 0.5 && RND <= 0.75) {
x =x — 1;
}

else{
y=y — 1;

else if(x = DIM && y = 0){
// x=dim y==0
float RND = (float) rand()/RANDMAX;
if (RND <= 0.25){

y=y + 1

}

else if (RND > 0.25 && RND <= 0.5){
x = 0;

}

else if (RND > 0.5 && RND <= 0.75) {
X =x — 1;
}

else{

y = dim — 1;

private:
int x,y,num;
string name;

bool bonded;
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int findParticle(int x, int y, vector<Particlex> &pArray) {
for (int i = 0; i < pArray.size(); i++) {
if (pArray[i]—>getX () = x && pArray[i]-—>getY () = y) {

return i;

}

return —1;

class Chain

{

private:
int length, orientation;
vector<Particlex> memberArr;
Particlex leadParticle;
Particlex bottomParticle;
vector<int> xBondingSites;
vector<int> yBondingSites;

public:
Chain () {}
set<pair <int ,int> > bondingSites;
bool readyToBond = false;
int particleToBond = —1;

int polymerToBond = —1;

vector<Particlex> getMembers () {

return memberArr;

int getLength() const {

return memberArr. size () ;

void setBondingSites(int x, int y) {
xBondingSites . push_back(x);
yBondingSites . push_back(y);
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void clearBondingSites () {
yBondingSites. clear () ;

xBondingSites. clear () ;

vector<int> getXbondingSites (){

return xBondingSites;

vector<int> getYbondingSites () {

return yBondingSites;

bool isPointInBondingSites(int x, int y) const {
pair<int, int> pointToFind = make_pair(x, y);
return (bondingSites. find (pointToFind) != bondingSites.end());

void addMember(Particle& part){
if (memberArr. size () = 0){
setLeadParticle (part);

setBottomParticle (part);

}

else if (memberArr.size () >= 1){

if (leadParticle —>getX () < part.getX()){

setLeadParticle (part);

}

else if (bottomParticle—>getX () > part.getX()){

setBottomParticle (part);

}

if (leadParticle—>getY () < part.getY ()){

setLeadParticle (part);

}

else if (bottomParticle—>getY () > part.getY ()){

setBottomParticle (part);
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memberArr. push_back(&part) ;

void removeMember (int i){

memberArr. erase (memberArr. begin () + i);

void resetLeadAndBottom () {
setLeadParticle (*memberArr [0]) ;

setBottomParticle (xmemberArr [0]) ;

for(int i =0; i < this—>memberArr.size (); i++){
// cout << ” member x and y ” << this—>memberArr[i]—>getX () << 7 , ” << this—>
memberArr [i]—>getY () << endl;
if (this—>memberArr[i]—>getX () > getLeadParticle ()—>getX () || this—>memberArr][i
]—>getY () > getLeadParticle ()—>getY ()){
setLeadParticle (*xmemberArr[i]) ;
// cout << 7set top 7 << endl;
}
if (this—>memberArr[i]—>getX () < getBottomParticle ()—>getX () || this—>memberArr|i
]—>getY () < getBottomParticle ()—>getY ()){
// cout << ” set bottom ” << this—>memberArr[i]—>getX () << 7 , 7 << this—>
memberArr [ i]—>getY () << endl;

setBottomParticle (*xmemberArr[i]) ;

void setLeadParticle(Particle& p){
leadParticle = &p;

void setBottomParticle(Particle& p){

bottomParticle = &p;

Particlex getLeadParticle (){

return leadParticle;
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Particlex getBottomParticle (){

return bottomParticle;

int getOrientation (){
// 1 if up down O if left right
int topX = getLeadParticle ()—>getX () ;
int topY = getLeadParticle ()—>getY () ;
int bottomX = getBottomParticle ()—>getX () ;
int bottomY = getBottomParticle ()—>getY () ;

if (topX — bottomX = 0){

return 1;

}

if (topY — bottomY =— 0){
return O0;

}

return 5;

template <typename TwoD>
bool getTopNieghbor (TwoD& grid) {

if (orientation = 1){
if (grid[getLeadParticle ()—>getX () ][ getLeadParticle ()—>getY () + 1 | = 1){
}
else if(grid[getLeadParticle()—>getX () ][getLeadParticle()—>getY () + 1 ] = 2){
}
}
if (orientation = 0){
if (grid[getLeadParticle ()—>getX () + 1][getLeadParticle ()—>getY () | = 1){
}
else if(grid[getLeadParticle()—>getX () + 1][getLeadParticle()—>getY ()] = 2){
}
}
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template <typename TwoD>
bool getBottomNieghbor (TwoD& grid){
if (orientation = 1){
if (grid[getLeadParticle ()—>getX () ][ getLeadParticle ()—>getY () — 1 ] = 1){
return true;

}
else if(grid[getLeadParticle ()—>getX () ][getLeadParticle()—>getY () — 1 ] == 2){

return true;

}
if (orientation == 0){
if (grid[getLeadParticle ()—>getX () — 1][getLeadParticle ()—>getY () ] = 1){
return true;
}
else if(grid[getLeadParticle()—>getX () — 1][getLeadParticle ()—>getY ()] = 2){

return true;

template <typename TwoD>

void updateGrid (TwoD& grid, vector<Particlex> &particles){

int topX = getLeadParticle ()—>getX () ;

int topY = getLeadParticle ()—>getY () ;

int bottomX = getBottomParticle ()-—>getX () ;
int bottomY = getBottomParticle ()—>getY () ;
int o = getOrientation();

grid [topX ] [topY] = 3;

grid [bottomX | [ bottomY ] = 3;

if (checkEdge (topX, topY) = false && checkEdge(bottomX, bottomY) = false){
grid [topX ]| [topY] = 3;

grid [bottomX | [ bottomY ] 3;

for(int i = 0; i < memberArr.size (); i++){

if (!(memberArr[i]—>getX () == topX && memberArr[i]—>getY () = topY) &&
!(memberArr[i]—>getX () bottomX && memberArr[i]—>getY () = bottomY)) {
grid [memberArr [ i]—>getX () | [ memberArr[i]—>getY ()] = 2;
o7
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int generateRandomNumber(int min, int max) {

return min + std::rand () % (max — min + 1);

template <typename TwoD>
void populate(int nP, std::vector<Particlex>& pArray, TwoD& array) {

std ::srand (static_cast <unsigned >(std :: time(nullptr))); // Seed the random number

generator

int i = 0;
while (i < nP) {
int RND1 = generateRandomNumber (dim % 2 / 10, dim = 8 / 10); // Adjusted range for
the middle 80% of the x dimension

int RND2 = generateRandomNumber (dim * 2 / 10, dim * 8 / 10);

// cout << RND1 << ” < ” << RND2 << endl;
// int RND1 = generateRandomNumber (500, 2000); // Adjusted range for the middle 80%
of the x dimension
// int RND2 = generateRandomNumber (500, 2000);
// Check if the position is within the bounds of the array
if (RND1 >= 0 &% RNDI < dim && RND2 >= 0 && RND2 < dim) {
// Check if the position is already occupied
0) {
Particlex p = new Particle (RND1, RND2, ”Particle ” + std::to_string (i), i,
false);

if (array [RND1][RND2]

array [RND1] [RND2] = 1;
pArray . push_back(p);
i++;
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int findPolymer (int x,int y, vector<Chain

for (int i=0; i < pArray.size(); i++){

x> &pArray) {

for (int j = 0; j< pArray[i]—>getMembers().size (); j++){

if (pArray[i]—>getMembers () [j]—>getX () = x &&pArray[i]—>getMembers () [j]—>getY ()
= v ){
return i;

}

}

return —1;

void eraseValueFromVector(vector<int>& ve
int i = 0;

int currentValue = —1;

while (i < vec.size() && currentValue

currentValue = vec[i];

if (currentValue != value) {
i+

}

if (i < vec.size()) {

vec.erase (vec.begin() + i);

template <typename TwoD>

¢, int value) {

I= value) {

void polymerCheckMove(int polymerIndex ,TwoD& grid , Chain* &polymer, vector<Particle *> &

particles , vector<Chain*> &polymers,
// move up = 0

//move down = 1

//move left = 2

//move right = 3

moveArr. push_back (0) ;

moveArr. push_back (1) ;

moveArr. push_back (2) ;
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moveArr. push_back (3) ;

//orienation is up and down

if (polymer—>getOrientation () = 1){

for (int i =0; i < polymer—>getMembers().size (); i++){
// check move right
if (grid [polymer—>getMembers () [i]—>getX () + 1][polymer—>getMembers() [i]—>getY
O] !'=0){
eraseValueFromVector (moveArr, 3);

break;

for (int i = 0; i < polymer—>getMembers () .size(); i++){
if (grid [polymer—>getMembers () [i]—>getX () — 1][polymer—>getMembers () [i]—>getY
01 = 0){

eraseValueFromVector (moveArr, 2);

break ;
}
}
if (grid [polymer—>getLeadParticle ()—>getX () | [ polymer—>getLeadParticle ()—>getY () +
1] 1= 0){
eraseValueFromVector (moveArr, 0);
}
if (grid [polymer—>getLeadParticle ()—>getX () ][ polymer—>getLeadParticle ()—>getY () —
1] '= 0 ){
eraseValueFromVector (moveArr, 1);
}
}
else if(polymer—>getOrientation () = 0){

for (int i =0; i < polymer—>getMembers().size (); i++){
// check move up
if (grid [polymer—>getMembers () [i]—>getX () |[polymer—>getMembers() [i]—>getY ()
+ 1] 1= 0 ){
eraseValueFromVector (moveArr, 0);

break ;
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// check move down
for (int i = 0; i < polymer—>getMembers().size (); i++){
if (grid [polymer—>getMembers () [i]—>getX () |[polymer—>getMembers() [i]—>getY ()
— 1] = 0){
eraseValueFromVector (moveArr, 1);

break ;

if (grid [polymer—>getLeadParticle ()—>getX () +1][polymer—>getLeadParticle ()—>
getY ()] '= 0 ){

eraseValueFromVector (moveArr, 3);

}

if (grid [polymer—>getBottomParticle ()—>getX () — 1][polymer—>getBottomParticle
O—>gety )] 1=0){
eraseValueFromVector (moveArr, 2);

}

template <typename TwoD>

void desorb (TwoD& grid, vector<Particlex> &particles, int& desorbCount, int index){
grid [particles [index]—>getX () ][ particles [index]—>getY ()] = 0;
particles [index]—>recombined = true;
particles.erase(particles.begin() + index);

desorbCount—++;

template <typename TwoD>
void desorbPolymer (TwoD& grid , vector<Particlex> &particles, int& desorbCount, int index,
vector <Chain*> &polymers, vector<Chainx> &desorbedPolymers){

desorbedPolymers. push_back (polymers[index]) ;

for (int j = 0; j < polymers[index]—>getMembers().size (); j++){
desorbCount++;
int x = polymers[index]—>getMembers () [j]—>getX () ;

int y =polymers[index]—>getMembers () [j]—>getY () ;
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grid [x][y] = 0;

polymers [index]—>getMembers () [ j]->recombined = true;
int i = findParticle(x, y, particles);

if (i 1= —1){

particles.erase(particles.begin() + i);

polymers. erase (polymers.begin() + index);

template <typename TwoD>

void diffuse (Particlex particle, TwoD& grid ,vector<Particlex> &particles ,

polymers) {

vector<int> neighborArrayX;

vector<int> neighborArrayY;

vector <Chainx> &

checkNeighborsToMove (particle —>getX (), particle—>getY (), grid, neighborArrayX,

int
int
int

int

neighborArrayY) ;
Cx = —1;
Cy = 15

X

particle —>getX () ;

y = particle—>getY ();

if (neighborArrayX.size () = 4) {

collideW4 (x, y, neighborArrayX , neighborArrayY, Cx, Cy);

grid [x][y] = 0;

particle >setX (Cx) ;

particle —=setY (Cy) ;

grid [particle —>getX () |[ particle —>getY ()] = 1;
neighborArrayX . clear () ;

neighborArrayY . clear () ;

} else if (mneighborArrayX.size () = 3) {

collideW3(x, y, neighborArrayX , neighborArrayY, Cx, Cy);

grid [x][y] = 0;
particle —>setX (Cx) ;

62

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5

64



Greene: Simulation of Polymerization on Surfaces: Implications for Abiogenesis

particle >setY (Cy);
grid [particle —>getX () |[ particle —>getY ()] = 1;
neighborArrayX . clear () ;
neighborArrayY . clear () ;
} else if (neighborArrayX.size () = 2) {
collideW2(x, y, neighborArrayX, neighborArrayY, Cx, Cy);

grid [x][y] = 0;

particle >setX (Cx) ;
particle —=>setY (Cy);

grid [ particle —>getX () ][ particle—>getY ()] = 1;

neighborArrayX. clear () ;
neighborArrayY . clear () ;
} else if (mneighborArrayX.size () = 1) {

collideW1(x, y, neighborArrayX, neighborArrayY, Cx, Cy);
grid [x][y] = 0;

particle >setX (Cx) ;

particle —=setY (Cy) ;

grid [particle —>getX () ][ particle —>getY ()]

Il
—

)

neighborArrayX . clear ()
neighborArrayY . clear () ;

template <typename TwoD>

void polymerMove(int i,TwoD& grid ,vector<Particlex> &particles, vector<Chainx> &polymers){

vector<int> moveArray ;

polymerCheckMove (i, grid, polymers[i], particles, polymers, moveArray);
if (moveArray.size () = 0){

return ;
}

random_device rd;
mt19937 gen(rd());

uniform_int_distribution<int> dist (0, moveArray.size () — 1);

int random_index = dist (gen);
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int movement = moveArray [random_index |;
if (movement =— 0) {
//move up

if (polymers[i]—>getOrientation () = 1){

for (int j = 0; j

A

polymers [i]—>getMembers () . size (); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();
grid [currentX ] [currentY ] = 0;
polymers [ i]—>getMembers () [ j]—>setY (currentY + 1);
grid [ polymers [ i]—>getMembers () [ j]—>getX () | [ polymers [i]—>getMembers () [ j]—>
gty ()] = 2;
}
polymers[i]—>clearBondingSites () ;

polymers[i]—>updateGrid (grid, particles);

}
if (polymers[i]->getOrientation() = 0){
for (int j = 0; j < polymers[i]—>getMembers().size (); j++){
int currentX = polymers[i]—>getMembers () [j]—>getX () ;
int currentY = polymers[i]—>getMembers () [j]—>getY ();
grid [currentX ][ currentY] = 0;
polymers [i]—>getMembers () [ j]—>setY (currentY + 1);
}
polymers[i]—>clearBondingSites () ;
polymers[i]—>updateGrid (grid , particles);
}
} else if (movement 1) {
//move down
if (polymers[i]—>getOrientation() = 1){

for (int j = 0; j

A

polymers [ i]—>getMembers () . size (); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();
grid [currentX ][ currentY ] = 0;
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polymers [ i]—>getMembers () [ j]—>setY (currentY — 1);
grid [ polymers [i]—>getMembers () [ j]—>getX () | [ polymers [i]—>getMembers () [ j]—>
getY ()] = 2;
}
polymers[i]—>clearBondingSites () ;

polymers [i]—>updateGrid (grid, particles);
} else if(polymers[i]->getOrientation() = 0) {

for (int j = 0; j < polymers[i]—>getMembers().size (); j++){
int currentX = polymers[i]->getMembers () [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();

grid [currentX ][ currentY] = 0;

polymers [ i]—>getMembers () [ j]—>setY (currentY — 1);

}
polymers[i]—>clearBondingSites () ;

polymers[i]—>updateGrid (grid , particles);

}

else if (movement

2){
//move left

if (polymers[i]—>getOrientation ()

= 1){

for (int j = 0; j < polymers[i]—>getMembers().size(); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();
grid [currentX ] [currentY ] = 0;
polymers [ i]—>getMembers () [ j]—>setX (currentX — 1);
grid [ polymers [ i]—>getMembers () [ j]—>getX () | [ polymers [i]—>getMembers () [ j]—>

getY ()] = 2;

}

polymers[i]—>clearBondingSites () ;

polymers [i]—>updateGrid (grid, particles);

}

else if(polymers[i]—>getOrientation ()

= 0){

for (int j = 0; j < polymers[i]—>getMembers().size (); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();

grid [currentX | [ currentY ] = 0;
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polymers [i]—>getMembers () [ j]—>setX (currentX — 1);

}
polymers[i]—>clearBondingSites () ;

polymers [i]—>updateGrid (grid, particles);

}

else if (movement = 3){

//move right
if (polymers[i]—>getOrientation () = 1){

for (int j = 0; j < polymers[i]—>getMembers().size (); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();
grid [currentX ][ currentY] = 0;
polymers [i]—>getMembers () [j]—>setX (currentX + 1);
grid [ polymers [ i]—>getMembers () [ j]—>getX () | [ polymers [i]—>getMembers () [ j]—>
getY ()] = 2;
}
polymers[i]—>clearBondingSites () ;

polymers [i]—>updateGrid (grid , particles);

}
else if(polymers[i]—>getOrientation () = 0){
for (int j = 0; j < polymers[i]—>getMembers().size (); j++){
int currentX = polymers[i]—>getMembers() [j]—>getX () ;
int currentY = polymers[i]—>getMembers() [j]—>getY ();
grid [currentX |[currentY] = 0;
polymers [ i]—>getMembers () [ j]—>setX (currentX + 1);
}
polymers|[i]—>clearBondingSites () ;
polymers[i]—>updateGrid (grid, particles);
}

}

moveArray . clear () ;
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template <typename TwoD>
void bond(Particlex &p, TwoD& grid ,vector<Particlex>& particles, vector<Chainx>& polymers){
// cout << 7 P X7 << p.getX() << ” , 7 << p.getY () << endl;
vector<int> neighborArrayX;
vector<int> neighborArrayY;
int Cx = —1;
int Cy = —1;
checkNeighborsToBond (p—>getX (), p—>getY (), grid, neighborArrayX 6 neighborArrayY);
if (neighborArrayX.size () = 4){

collideW4 (p—>getX () ,p—>getY () ,neighborArrayX ,neighborArrayY ,Cx,Cy) ;
}

else if (neighborArrayX.size ()

3){
collideW3 (p—>getX () ,p—>getY () ,neighborArrayX ,neighborArrayY ,Cx,Cy) ;

}
else if (neighborArrayX.size() = 2){

collideW2 (p—>getX () ,p—>getY () ,neighborArrayX ,neighborArrayY ,Cx,Cy) ;

}
else if (neighborArrayX.size() = 1){

collideW1 (p—>getX () ,p—>getY () ,neighborArrayX ,neighborArrayY ,Cx,Cy) ;

}
if (grid [Cx][Cy] = 3){

int polymerIndex = findPolymer (Cx, Cy, polymers);

if (polymerIndex != —1){
int orientation = polymers|[polymerIndex]| —>getOrientation () ;
if (orientation = 0 && p—>getY () = polymers|[polymerIndex]—>getLeadParticle ()—>
getY ()){
grid [p—>getX () [ [p>getY ()] = 3;

p—>setBonded (true);
polymers [polymerIndex]|—>addMember (*p) ;

polymers [polymerIndex]—>updateGrid (grid , particles);

}

else if(orientation = 1 && p—>getX () = polymers|[polymerIndex]—>getLeadParticle
()—>getX ()){
grid [p—>getX () [[p—>getY ()] = 3;

p—>setBonded (true);
polymers [ polymerIndex|—>addMember (*p) ;

polymers [polymerIndex]—>updateGrid (grid , particles);

67
Published by DigitalCommons@Macalester College, 2024 69



Macalester Journal of Physics and Astronomy, Vol. 12, Iss. 1 [2024], Art. 5

}
else if(grid[Cx][Cy] = 1){
int index = findParticle(Cx, Cy, particles);
if (index != —1){
Chainx poly = new Chain();

polymers. push_back (poly);
poly—>addMember (*p) ;

particles [index]—>setBonded (true);
poly—>addMember (x particles [index]) ;
poly—>updateGrid (grid , particles);
p—>setBonded (true);

particles [index]—>setBonded (true);

}
double rnd() {

// Use std::random_device to obtain a seed for the random number engine

std :: random_device rd;

// Use std::mt19937 as the random number engine
std :: mt19937 gen(rd());

// Use std::uniform_real_distribution to generate a random number between 0 and 1

std :: uniform_real_distribution <double> dis (0.0, 1.0);

// Generate and return the random number

return dis(gen);

template <typename TwoD>

void polymerCheckBond (int polymerIndex ,TwoD& grid , Chain* &polymer, vector<Particle *> &
particles , vector<Chainx> &polymers, vector<int> &nArrX, vector<int> &nArrY){
int leadX = polymer—>getLeadParticle ()—>getX () ;
int leadY = polymer—>getLeadParticle ()—>getY ();

int bottomX = polymer—>getBottomParticle ()—>getX () ;
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int bottomY = polymer—>getBottomParticle ()—>getY () ;

if (polymer—>getOrientation () = 1){
if ( grid[leadX][leadY 4+ 1] = 1 ){

findParticle (leadX particles);

,leadY + 1,

int index =
if (index != —1){
nArrX. push_back (leadX) ;

nArrY . push_back (leadY + 1);

}
if (grid[leadX][leadY + 1]
findPolymer (leadX

= 3){
int pIndex = leadY + 1, polymers);
if (pIndex != —1){
if (polymers[pIndex]—>getOrientation () == 1){
nArrX . push_back (leadX) ;

nArrY . push_back (leadY + 1);

}
}
}
if ( grid [bottomX][bottomY — 1] = 1 ){
nArrX . push_back (bottomX) ;
nArrY . push_back (bottomY — 1);
}
if (grid [bottomX ][ bottomY — 1] = 3){
int pIndex = findPolymer (bottomX, bottomY — 1, polymers);
if (pIndex != —1){
— 14

if (polymers [pIndex]—>getOrientation ()
nArrX. push_back (bottomX) ;
nArrY . push_back (bottomY — 1);

if (polymer—>getOrientation () = 0 ){
if (grid[leadX + 1][leadY] = 1 ){
nArrX. push_back (leadX + 1);
nArrY . push_back (leadY) ;

}

if (grid[leadX + 1][leadY] = 3){
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int pIndex = findPolymer (leadX+1, leadY , polymers);
if (pIndex != —1){
if (polymers[pIndex]—>getOrientation () = 0){
nArrX. push_back (leadX + 1);
nArrY . push_back (leadY) ;

}
}
}
if (grid [bottomX — 1][bottomY]| = 1){
nArrX. push_back (bottomX — 1);
nArrY . push_back (bottomY') ;
}
if (grid [bottomX — 1][bottomY] = 3){
int pIndex = findPolymer (bottomX—1, bottomY , polym
if (pIndex != —1){
if (polymers[pIndex]—>getOrientation () == 0){
nArrX. push_back (bottomX — 1);
nArrY . push_back (bottomY') ;
}
}
}

template <typename TwoD>
void polymerBond(int polymerIndex ,TwoD& grid , Chainx &polymer,
, vector<Chain*> &polymers){
vector<int> neighborArrayX;
vector<int> neighborArrayY;
int Cx = —1;

int Cy = —1;

int leadX = polymer—>getLeadParticle ()—>getX () ;
int leadY = polymer—>getLeadParticle ()—>getY () ;
int bottomX = polymer—>getBottomParticle ()—>getX () ;

int bottomY = polymer—>getBottomParticle ()—>getY () ;
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ers) ;

vector<Particle x> &particles
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polymerCheckBond (polymerIndex, grid, polymer, particles, polymers, neighborArrayX,
neighborArrayY) ;
if (neighborArrayX.size () = 4){

collideW4 (polymer—>getLeadParticle ()—>getX () ,polymer—>getLeadParticle ()—>getY (),

neighborArrayX ,neighborArrayyY ,Cx,Cy) ;

}
else if (neighborArrayX.size() = 3){
collideW3 (polymer—>getLeadParticle ()—>getX () ,polymer—>getLeadParticle ()—>getY (),
neighborArrayX ,neighborArrayY ,Cx,Cy) ;
}
else if (neighborArrayX.size () = 2){
collideW2 (polymer—>getLeadParticle ()—>getX () ,polymer—>getLeadParticle ()—>getY (),
neighborArrayX ,neighborArrayY ,Cx,Cy) ;
}
else if (neighborArrayX.size() = 1){
collideW1 (polymer—>getLeadParticle ()—>getX () ,polymer—>getLeadParticle ()—>getY (),
neighborArrayX ,neighborArrayY ,Cx,Cy) ;
}

if (grid [Cx][Cy] = 3){

int index = findPolymer(Cx, Cy, polymers);

if (index != —1){
for (int j = 0; j < polymers[index]—>getMembers().size(); j++){

polymer—>addMember (* polymers [ index]—>getMembers () [j]) ;

}
polymers. erase (polymers.begin() + index);
polymer—>clearBondingSites () ;

polymer—>updateGrid (grid , particles);

}
}
else if(grid[Cx][Cy] = 1){
int index = findParticle (Cx, Cy, particles);
if (index != —1){
grid [Cx][Cy] = 3;
polymer—>addMember (* particles [index]) ;
particles [index]—>setBonded (true);
polymer—>clearBondingSites () ;
polymer-—>updateGrid (grid , particles);
}
}
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template <typename TwoD>
void breakPolymer (int i,TwoD& grid ,vector<Particle %> &particles , vector<Chain*> &polymers){
if (polymers[i]—>getMembers () .size () = 2){
for (int j =0; j < polymers[i]—>getMembers().size (); j++){
polymers [i]—>getMembers () [j] —>setBonded(false);
grid [polymers [i]—>getMembers () [ j|—>getX () ][ polymers[i]—>getMembers () [ j]—>getY () ]
= 1;
}
polymers. erase (polymers.begin() + 1);

}

if (polymers[i]—>getMembers () .size () > 2){

float RND = rnd () ;

if (RND > .5){

int X = polymers[i]->getLeadParticle ()—>getX();
int Y =polymers[i]—>getLeadParticle ()—>getY () ;
for(int j =0 ; j < polymers[i]—>getMembers().size (); j++){
if (polymers[i]—>getMembers () [j]—>getX () = X && polymers|[i]—>getMembers () []
|->getY () = YV){

polymers [ i]—>removeMember (j);

}
grid [X][Y] = 1;
int particleIndex = findParticle (X, Y, particles);
if (particleIndex != —1){
particles [particleIndex]—>setBonded (false);
// cout << 7 calling reset lead and bottom ” << endl;
polymers [i]—>resetLeadAndBottom () ;

polymers [i]—>updateGrid (grid , particles);

}
else if(RND < .5){

int X = polymers[i]->getBottomParticle ()—>getX () ;
int Y = polymers[i]—>getBottomParticle ()—>getY () ;
for(int j =0 ; j < polymers[i]—>getMembers().size (); j++){

if (polymers[i]—>getMembers () [j]—>getX () = X && polymers[i]—>
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getMembers () [j]l—>getY () = Y){

polymers [ i]—>removeMember () ;

}
grid [X][Y] = 1;
int particleIndex = findParticle (X, Y, particles);
if (particleIndex != —1){
particles [particleIndex]—>setBonded (false);
polymers [i]—>resetLeadAndBottom () ;

polymers [i]—>updateGrid (grid , particles);

string generate_event (const map<string , float>& probabilities) {

// Generate a random number between 0 and 1

std :: random_device rd;

std :: mt19937 gen(rd());

std:: uniform_real_distribution <double> dis (0.0, 1.0);

// Generate a random number between 0 and 1

double rand_num = dis(gen);

// Calculate cumulative probabilities

double cumulative_prob = 0;

for (const auto& pair : probabilities) {

cumulative_prob 4= pair.second;

// If the random number is less than the cumulative probability ,

// the corresponding event occurs
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if (rand-num < cumulative_prob) {

return pair. first;

// If the random number exceeds the sum of all pr

// then no event occurs

return ”None”;

double generatePolymerDesorbProbability (int N){

double EaMonoDiffuse = 0.18;

double EaDesorbMono = 0.3;

double T = 333;

double probDesorb = 0.2 % exp(—(N % EaDesorbMono — EaMonoDiffuse)/T % 11610);

return probDesorb;

}

double generateSinProbability (double Ea){

double Ediff = 0.18;

int T = 333;

double prob = 0.2 % exp(—(Ea — Ediff)/T % 11610);

return prob;

string generateMonomerProbabilitiesDry (double diffuseToNothingRatio, double

74

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5

76



//
//
//
//

Greene: Simulation of Polymerization on Surfaces: Implications for Abiogenesis

diffuseToDesorbRatio , double diffuseToBondRatio) {
double diffuseProbability = 0.2;

double desorbProbability = 0.00177;

double bondProbability = 0.2;

double diffuseProbability = .6;
double desorbProbability = 0;
double bondProbability = .4;

cout << ”Diffuse Probability: ” << diffuseProbability << ”

Desorb Probability: 7 <<

desorbProbability << ” BOND probability ” << bondProbability << endl;

// Store probabilities in a map

map<string , float> monomer_probabilities = {{” Desorb”, desorbProbability}, {” Diffuse”,

diffuseProbability }, {?”Bond”, bondProbability }};

// Generate event using probabilities

return generate_event(monomer_probabilities);

string generateMonomerProbabilitiesWet (double diffuseToNothingRatio, double

diffuseToDesorbRatio) {

double diffuseProbability = .2;
double desorbProbability = 0.003048;
double bondProbability = 0;

map<string , float> monomer_probabilities = {{” Desorb”, desorbProbability}, {” Diffuse”,

diffuseProbability }, {"Bond”, bondProbability }};

return generate_event(monomer_probabilities);

string generatePolymerProbabilitiesDry (double desorbToNothingRatio, double desorbToBondRatio

//
//

) A

double desorbProbability = 0;
double desorbProbability = 0;
double bondProbability = 0.5;

double bondProability = 0;

map<string , float> polymer_probabilities = {{”Desorb”, desorbProbability}, {”Bond”,

bondProability } };

// Generate event using probabilities

return generate_event(polymer_probabilities);

5
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string generatePolymerProbabilitiesWet (double desorbToNothingRatio, double desorbToBreak,
int length) {
// double Ea =generatePolymerDesorbProbability (length);
// double desorbProbability = generateSinProbability (Ea);
double desorbProbability = 0.000002855696835;
double breakProbability = 0;
map<string , float> polymer_probabilities = {{” Desorb”, desorbProbability}, {”Break”,
breakProbability }};

return generate_event(polymer_probabilities);

string generateDiamerProbabilitiesDry (double diffuseToNothingRatio, double
diffuseToDesorbRatio, double diffuseToBondRatio){
double diffuseProbability = 0.00577;
double desorbProbability = 0.0000048;
// double desorbProbability = 0;
double bondProbability = 0.2;

map<string , float> diamer_probabilities = {{”Desorb”, desorbProbability}, {” Diffuse”,
diffuseProbability }, {"Bond”, bondProbability }};

return generate_event(diamer_probabilities);

string generateDiamerProbabilitiesWet (double diffuseToNothingRatio, double
diffuseToDesorbRatio, double diffuseToBreak ) {
double diffuseProbability = 0.02468;
double desorbProbability = 0.00009329;
double breakProbability = 0;

// cout << ”Diamer Probabilities Dry: ” << diffuseProbability << 7 , 7 <<
desorbProbability << 7 , 7 << breakProbability << endl;
map<string , float> diamer_probabilities = {{”Desorb”, desorbProbability}, {” Diffuse”,

diffuseProbability }, {”Break”, breakProbability }};

return generate_event(diamer_probabilities);

//void checkOutOfBounds(int x, int y, int index, vector<Particle x> &particles, vector<Chain

x> &polymers) {

// if(x >dim || x< 0 || y>dim || y < 0){
// if (particles [index]—>getBonded () = true){
// int polymerIndex

76

https://digitalcommons.macalester.edu/mjpa/vol12/iss1/5 78



Greene: Simulation of Polymerization on Surfaces: Implications for Abiogenesis

// }
// }
//}

template <typename TwoD>
void particleLoopDry (std :: ofstream& outputFile, int t, int i,TwoD& grid, vector<Particle*>
&particles ,vector<Chain*> &polymers, int& totalEventCount , int& bondEventCount, int&

desorbEventCount, int& moveEventCount){

double diffuseToNothingRatioMonomerDry = 1.0 / 5;
double diffuseToDesorbRatioMonomerDry = 111.7;
double diffuseToBondRatioMonomerDry = 1;

outputFile << t << 7 , 7 << 1 << 7 , 7 << particles[i]->getX () << ” , ” << particles[i

]=>getY () << ” , 7 << particles [i]->getBonded () << 7\n”;

vector<int> neighborArrayX;

vector<int> neighborArrayY ;

bool bondOption = false;

checkNeighborsToBond (particles [i]—>getX (), particles[i]—>getY (), grid, neighborArrayX,

neighborArrayY) ;

if (particles [i]—>getBonded () = true || particles[i]->recombined = true){
return;

}

if (neighborArrayX.size () != 0){

bondOption = true;

string event = generateMonomerProbabilitiesDry (diffuseToNothingRatioMonomerDry ,

diffuseToDesorbRatioMonomerDry , diffuseToBondRatioMonomerDry);

totalEventCount += 1;
cout << enerate vent : << event << endl;
G d E ? dl

// change so it always bonds

if (bondOption = true && event = ”"Bond”){

bond(particles[i], grid, particles, polymers);
bondEventCount += 1;
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else if (event = ” Diffuse”){
moveEventCount 4= 1;

diffuse (particles[i], grid, particles, polymers);

}
// else if(event == ”"Bond” && bondOption = true){
// bond(particles[i], grid, particles, polymers);
// bondEventCount += 1;
// }
else if(event = ”Desorb”){
// desorb(grid, particles, desorbEventCount, i);
// desorbEventCount 4= 1;
}
// cout << 7 particles.size() : ” << particles.size () << endl;

template <typename TwoD>
void particleLoopWet (std:: ofstream& outputFile, int t, int i,TwoD& grid, vector<Particlex>
&particles ,vector<Chainx> &polymers, int& totalEventCount , int& bondEventCount, int&

desorbEventCount , int& moveEventCount){

double diffuseToNothingRatioMonomerWet = 1.0 / 5;
double diffuseToDesorbRatioMonomerWet = 65;
double diffuseToBondRatioMonomerWet = 0;

// outputFile << t << 7 , 7 << i << 7 , 7 << particles[i]—>getX () << ” , ” << particles[i

]—>getY () << 7 , 7 << particles[i]—>getBonded () << "\n”;

vector<int> neighborArrayX;

vector<int> neighborArrayY;

bool bondOption = false;

checkNeighborsToBond (particles [i]—>getX (), particles[i]—>getY (), grid, neighborArrayX,

neighborArrayY) ;

if (particles [i]—>getBonded () = true || particles|[i]->recombined = true){
return;

}
if (neighborArrayX.size () != 0){

bondOption = true;
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cout << ” Bond option =— true ” << endl;

string event = generateMonomerProbabilitiesWet (diffuseToNothingRatioMonomerWet ,
diffuseToDesorbRatioMonomerWet ) ;

totalEventCount 4= 1;
// cout << ”Generated Event: ” << event << endl;
if (bondOption = true && rnd() < .5){
bond (particles[i], grid, particles, polymers);
bondEventCount += 1;

}
if (event = ” Diffuse”){
moveEventCount += 1;
diffuse (particles[i], grid, particles, polymers);
}
if (event = ”Bond” && bondOption = true){
bond (* particles [i], grid, particles, polymers);
bondEventCount += 1;
}
else if (event = ”Desorb”){
desorb (grid, particles, desorbEventCount, i);
desorbEventCount += 1;
}
cout << ” particles.size () 7 << particles.size () << endl;

template <typename TwoD>

void polymerLoopDry(std :: ofstream& outputFile, int t, int i, TwoD& grid, vector<Particles>

&particles ,vector<Chainx> &polymers, int& totalEventCount , int& bondEventCount, int&
desorbEventCount, int& moveEventCount, vector<Chain*> &desorbedPolymers, int&
desorbedPolymerCount , int& breakEventCount){

vector<int> neighborArrayX;

vector<int> neighborArrayY ;

double desorbToNothingRatioPolymerDry = 1.0 / 200;
double desorbToBondRatioPolymerDry = 1;

double diffuseToNothingDiamerDry

1.0/328.06 ;
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double diffuseToDesorbDiamerDry = 1181.009;
double diffuseToBondDiamerDry = 0.02886;

bool bondOption = false;

string event;

polymerCheckBond (i, grid, polymers[i], particles, polymers, neighborArrayX,

neighborArrayY) ;

if (neighborArrayX.size () != 0){

bondOption = true;

if (polymers[i]—>getMembers () .size () > 2){
event = generatePolymerProbabilitiesDry (desorbToNothingRatioPolymerDry ,
desorbToBondRatioPolymerDry) ;

}
else{
event = generateDiamerProbabilitiesDry (diffuseToNothingDiamerDry ,
diffuseToDesorbDiamerDry , diffuseToBondDiamerDry) ;
}

totalEventCount 4= 1;
// cout << ”Generated Event: ” << event << endl;

//changed so it always bonds

if (bondOption = true && event = ”Bond” ){
bondEventCount += 1;

polymerBond (i, grid, polymers[i], particles, polymers);

}

else if (event =

”Diffuse”){

moveEventCount 4= 1;

polymerMove (i, grid, particles, polymers);

}
if (event = ”Bond” && bondOption = true){
bond(xparticles[i], grid, particles, polymers);
bondEventCount 4= 1;
}
else if (event = ”Desorb”){
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desorbPolymer (grid , particles , desorbedPolymerCount, i, polymers, desorbedPolymers);

// desorbEventCount += 1;

}

else if (event = ”Break”){

breakPolymer (i, grid, particles, polymers);
breakEventCount += 1;

}

neighborArrayX . clear () ;

neighborArrayY . clear () ;

template <typename TwoD>

void polymerLoopWet (std :: ofstream& outputFile, int t, int i, TwoD& grid, vector<Particlex>
&particles ,vector<Chainx> &polymers, int& totalEventCount , int& bondEventCount, int&

desorbEventCount , int& moveEventCount, vector<Chain*> &desorbedPolymers, int&

desorbedPolymerCount, int& breakEventCount){

vector<int> neighborArrayX;

vector<int> neighborArrayY;

double desorbToNothingRatioPolymerWet = 1.0 / 345829.9;
double desorbToBreakPolymerWet = 0;

double diffuseToNothingRatioDiamerWet = 1/40; // changethis later
double diffuseToDesorbRatioDiamerWet = 261.2;
double diffuseToBreakRatioDiamerWet = 0;

bool bondOption = false;

string event;

polymerCheckBond (i, grid, polymers[i], particles, polymers, neighborArrayX,

neighborArrayY) ;

if (neighborArrayX.size () != 0){

bondOption = true;

if (polymers[i]—>getMembers () .size () > 2){

event

generatePolymerProbabilitiesWet (desorbToNothingRatioPolymerWet ,
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desorbToBreakPolymerWet, polymers|[i]—>getMembers().size());

}
else{
event = generateDiamerProbabilitiesWet (diffuseToNothingRatioDiamerWet ,
diffuseToDesorbRatioDiamerWet , diffuseToBreakRatioDiamerWet) ;
}

totalEventCount += 1;
// cout << ”Generated Event: ” << event << endl;
if (bondOption = true && event =— ”Bond”){

bondEventCount += 1;

polymerBond (i, grid, polymers[i], particles, polymers);

}
else if (event = ” Diffuse”){

moveEventCount 4= 1;

polymerMove (i, grid, particles, polymers);
}

else if(event = ”Desorb”){

desorbPolymer (grid , particles , desorbedPolymerCount, i, polymers, desorbedPolymers);

desorbEventCount 4= 1;

}

else if (event = ”Break”){
breakPolymer (i, grid, particles, polymers);
breakEventCount += 1;

}

int main() {

//

int totalTime = 1000;

int totalCycles = 100;

//running for sheet 14

//ea 0.24
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vector<int> cycleVector{1};

const std::string csvFileName = ”"runl_particle_positions.csv”;
std :: ofstream outputFile (csvFileName);

outputFile << ”Timestep, ParticleID ,X,Y,Bonded\n”;

const std::string csvFileName2 = ”"runl_particle_positions.csv”;
std :: ofstream outputFile2 (csvFileName2);
outputFile2 << ”Timestep, ParticleID ,X,Y,Bonded\n”;

const std::string csvFileName3= ”"runl_inalPolymers.csv”;
std :: ofstream outputFile3 (csvFileName3);

outputFile3 <<”PolymerNum, Length\n”;

const std::string csvFileNamed4= ”"runl_desorbedPolymers.csv”;
std :: ofstream outputFile4 (csvFileName4);

outputFile4 <<”’PolymerNum, Length\n”;

const std::string csvFileName5= "manyCylcles.csv”;
std :: ofstream outputFile5 (csvFileName5);
outputFile5 << ”Total Cycles, Total Particles ,Total Polymers, Total Desorbed Polymers ,Max

Polymer, Max Desorbed Polymer\n”;

const std::string csvFileName6= "cyclesVsTime.csv”;
std :: ofstream outputFile6 (csvFileName6) ;
outputFile6 << ”Cycles, Total Particles ,Total Polymers, Total Desorbed Polymers, Max

Polymer, Max Desorbed Polymer,Dimers on Surface\n”;

for (int k =0; k < cycleVector.size (); k++){

int totalCycles = cycleVector [k];

vector<Particlex> particles;

vector <Chain*> polymers;

vector<Chainx> desorbedPolymers;
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double adsorptionProbability = 0.2;

int desorbCount = O0;

int bondEventCount = 0;
int moveEventCount = 0;
int totalEventCount = 0;
int desorbEventCount = 0;
int breakEventCount = 0;
int adsorbEventCount = 0;

int desorbedPolymerCount = 0;

int grid[1000][1000];
for (int i =0; i < dim; i++){
for(int j = 0; j < dim; j++){
grid [i][j] = 0;

int totalParticles = 100;

populate (totalParticles , particles , grid);

for (int ¢ =0 ; ¢ < totalCycles; c++){

cout << 7 cycle: 7 << ¢ << "particles size: 7 << particles.size () << endl;

for (int t =0; t < totalTime; t++){
if (rnd () < adsorptionProbability){
populate (1, particles ,grid);
adsorbEventCount += 1;

for(int i =0 ; i < particles.size(); i++){

// int particlesToAdd = totalParticles — particles.

// populate (particlesToAdd, particles, grid);

particleLoopWet (outputFile2, t, i, grid, particles,

totalEventCount , bondEventCount, desorbEventCount, moveEventCount) ;

for (int i =0; i < polymers.size(); i++){

polymerLoopWet (outputFile2, t, i, grid, particles,
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totalEventCount , bondEventCount, desorbEventCount, moveEventCount,
desorbedPolymers, desorbedPolymerCount, breakEventCount);
}
}
for(int t = 0; t < totalTime; t++){
for(int i = 0 ; i < particles.size(); i++){
particleLoopDry (outputFile, t, i, grid, particles, polymers,
totalEventCount , bondEventCount, desorbEventCount, moveEventCount);
}
for(int 1 =0; i < polymers.size(); i++){
polymerLoopDry (outputFile, t, i, grid, particles, polymers,
totalEventCount , bondEventCount, desorbEventCount, moveEventCount,
desorbedPolymers, desorbedPolymerCount, breakEventCount);
}
}
int maxPolymer = 0;
for (int i =0; i < polymers.size(); i++){
int polymerLength = polymers|[i]—>getMembers().size ();
if (polymerLength > maxPolymer) {
maxPolymer polymerLength ;
}
outputFile3 << i << ” , ” << polymers|[i]—>getMembers().size () << endl;
}
int maxDesorbedPolymer = 0;

for (int i =0; i < desorbedPolymers.size();

i++){
int polymerLength

desorbedPolymers [ i]—>getMembers ()
if (polymerLength > maxDesorbedPolymer) {

.size ();

maxDesorbedPolymer = polymerLength;

}

outputFiled << 1 << ” ? << polymerLength << endl;

int dimerCount = 0;

for (int i =0; i < polymers.size(); i++){
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if (polymers[i]—>getMembers() .size () = 2){

dimerCount 4= 1;

outputFile6 << ¢ << ” , ” << particles.size() << 7 , 7 << polymers.size () <<

? << desorbedPolymers.size () << ” , 7 << maxPolymer << 7 | 7 <<

maxDesorbedPolymer << 7, 7 << dimerCount<< endl;

// cout << ¢ << 7 , 7 << particles.size() << 7 , 7 << polymers.size () <<

desorbedPolymers. size () << 7 , 7 << maxPolymer << 7 , 7 << maxDesorbedPolymer << endl;

}

// cout << ”"Total ” << totalEventCount << 7 bond ” << bondEventCount << ” desorb

desorbEventCount << 7 diffuse ” << moveEventCount << ” breakCount : 7 <<
breakEventCount << ” adsorb events: ” << adsorbEventCount << endl;
//
int FinalMaxPolymer = 0;
for (int i =0; i < polymers.size(); i++){
int polymerLength = polymers[i]—>getMembers().size ();
if (polymerLength > FinalMaxPolymer){

FinalMaxPolymer = polymerLength;

}

outputFile3 << i << ” , ” << polymers|[i]—>getMembers().size () << endl;
}
int fmaxDesorbedPolymer = 0;

for (int i =0; i < desorbedPolymers.size (); i++){
int polymerLength = desorbedPolymers[i]—>getMembers().size ();
if (polymerLength > fmaxDesorbedPolymer) {

fmaxDesorbedPolymer = polymerLength;

}
outputFiled << i << ” , 7 << polymerLength << endl;
}
cout << "Total Particles: ” << particles.size () << endl;
cout << "Total Polymers: ” << polymers.size () << endl;
cout << ”Total Desorbed Polymers: ” << desorbedPolymers.size () << endl;

cout << "Maximum Polymer length ” << FinalMaxPolymer << endl;
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cout << ”"Maximum Desorbed Polymer Length: ” << fmaxDesorbedPolymer << endl;

outputFiles << cycleVector[k] << 7 , 7 << particles.size () << 7

”

<< polymers.size

() << ” , 7 << desorbedPolymers.size () << 7 , ” << FinalMaxPolymer << 7 | 7 <<

fmaxDesorbedPolymer << endl;

cout << ”"desorb events ” << desorbEventCount << endl;

cout << ” DONE ” << endl;

return O;
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