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MACALESTER COLLEGE

Abstract
Department of Physics and Astronomy

by Ross Ferguson

In this paper, we propose a novel extension of the Standard Model of particle

physics, based on the trinification gauge group SU(3)C×SU(3)L×SU(3)R. Sym-

metry breaking is achieved using a bi-adjoint Higgs field (transforming under the

left- and right-handed subgroups) along with a more conventional bi-triplet to en-

sure the correct breaking and pattern of fermion masses. To preserve a discrete

Z2 symmetry (T-parity), we also introduce a right-handed triplet to completely

break trinification symmetry to the Standard Model. The minimization conditions

and conditions for the boundedness of the potential for this model are calculated.

Additionally, the Standard Model quantum charges of the 64-component Higgs

field are determined and mass matrices for the gauge bosons are constructed. The

survival of T-parity ensures the stability of dark matter candidates in the model;

the details of such candidates and the generation of neutrino masses are left to

future work.
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CHAPTER 1: Introduction

The Standard Model of particle physics is a successful physical theory which allows

highly precise calculations of physical quantities. However, it by no means offers

a complete picture of particle physics. For example, neither the nature of dark

matter on a quantum scale nor the presence of neutrino masses can be explained

by the Standard Model [1]. To explain phenomena such as these, a higher-level

theory is needed.

The Standard Model rests on two fundamental interactions: the strong interaction

(with gauge group SU(3)C) and the electroweak interaction (with gauge group

SU(2)L×U(1)Y ). The overall gauge symmetry of the Standard Model is denoted

by SU(3)C × SU(2)L × U(1)Y . In the Standard Model, this group spontaneously

breaks down to the gauge group SU(3)C×U(1)EM due to the vacuum expectation

value (VEV) of a complex Higgs doublet [2]. This mechanism manages to explain

the electromagnetic and weak interactions as the breakdown at low temperature

of a unified electroweak interaction. It is natural, then, to suppose that the strong

and electroweak forces might also be explained by a single unified force that breaks

down at low energies. Theories that attempt to unify these interactions are called

Grand Unified Theories (GUTs).

In this paper, we consider a particular GUT: trinification, based on the gauge

group SU(3)C×SU(3)L×SU(3)R. The framework of trinification was introduced

in 1984 [3], and a discrete Z3 group is often added to the gauge symmetry, written

as [SU(3)]3 × Z3, to ensure that the groups are indeed unified at high energies

[4]. Although adding in Z3 makes the model more elegant, it is not necessary.

TeV-scale physics can be explored in the absence of this Z3 symmetry, and as

SU(3) × SU(3) × SU(3) is a maximal subgroup of E6 [5], trinification can be

realized as a broken state of an E6 gauge symmetry.

In this paper, we introduce a model of trinification with a Higgs sector that con-

tains a field transforming as an octet under both the SU(3)L and SU(3)R sub-

groups. This field has 64 components and will be referred to as a bi-octet or

1
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bi-adjoint. One neutral component of the bi-octet can acquire a VEV that, com-

bined with a triplet VEV and a bi-triplet VEV, break the symmetry of the system

to that of the Standard Model. Three bi-triplets are needed to recreate the pat-

tern of fermion masses seen in experiments, as described in Babu et al. [6]. As

we want to preserve a discrete Z2 symmetry (which we call T-parity, following

[6]) naturally present in our Lagrangian, the bi-octet and bi-triplet alone are not

enough to break the system down to the Standard Model. Hence, the presence of

another Higgs field such as a triplet is necessary.

This paper begins with several chapters of background information. In Chapter 2,

we briefly discuss elements of group theory as they relate to particle physics. In

Chapter 3, we look at key elements of particle physics and basics of the Standard

Model, and in Chapter 4 we describe spontaneous symmetry breaking and how it

is applied in the Standard Model. In Chapter 5, the basic structure of trinification

is given, along with an example of trinification symmetry breaking.

The main results of the model are contained in Chapter 6 and Chapter 7. The

bi-octet’s structure, charges and multiplets are described and listed in Appendix A

and Appendix B, and the full Higgs potential is constructed. The trinification sym-

metry breaking path using a bi-octet, a triplet, and three bi-triplets is described,

along with minimization conditions and potential boundedness conditions. Finally,

the gauge boson mass matrices are constructed and are listed in Appendix C.
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CHAPTER 2: Symmetry, Groups, and

Representations

2.1 Physical Symmetries

Much of particle physics can be formulated by considering physical symmetries.

There are main types of physical symmetries: spacetime symmetries and internal

symmetries.

To begin with a simple example of spacetime symmetry, consider a collection of

classical particles sitting in space and interacting gravitationally under the New-

tonian force FM = GmM
r2
r̂. Now, rotate all vectors in the space by some angle θ.

Because the gravitational force cares only about r2, the square of the distance r

between each pair of particles, nothing about the system’s interaction has changed

as a result of the rotation. Similarly, if we translate each vector in the space by

the same vector α, nothing physical will have changed. These considerations seem

banal, but in fact they relate to two extraordinarily important laws: invariance

under rotations leads to conservation of angular momentum and invariance under

translations leads to conservation of linear momentum. More generally, every con-

tinuous symmetry of a physical system (more specifically, its Lagrangian) leads to

the conservation of a physical quantity. This is known as Noether’s Theorem [2],

and is one example of the utility of considering physical symmetries.

Internal symmetries are more subtle. Instead of being a symmetry of physical

spacetime, internal symmetries relate to more abstract mathematical spaces. Con-

sider the wavefunction in nonrelativistic quantum mechanics. As it turns out, the

wavefunction is not unique: any complex phase of the form eiα may be multiplied

onto the wavefunction without changing any physical conclusions. This is an ex-

ample of a global internal symmetry, where the wavefunction may be “rotated” in

some abstract internal space, but the physics of the system remains the same. It

is these internal symmetries that we will consider in more depth later.

3
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2.2 Groups

Now that the significance of symmetries in physical theories is clear, we need to

translate our observations about symmetry into mathematical language. We can

do so by utilizing group theory.

A group is a set G of objects given an operation (here denoted by ·) between any

two elements of the set such that (1) the group operation is associative: g1·(g2·g3) =
(g1 · g2) · g3; (2) the set is closed under the group operation (g1 · g2 ∈ G for all

g1, g2 ∈ G); (3) there is an identity element e such that e · g = g · e = g; and (4)

every element g has an inverse such that g−1: gg−1 = g−1g = e [1].

These four algebraic requirements for a set and an operation to be a group give

what we are considering many powerful mathematical properties, some of which

we will see below. Before moving on, we give some examples of groups below.

2.2.1 Z2

One of the simplest groups, Z2 has only two elements: the identity e and another

element a. Three of the combinations are easy to work out ee = e, ae = a, and

ea = a (we will now omit the · for conciseness). Since the group must be closed

under the group operation and every element must have an inverse, we know that

the fourth combination must be aa = e. There are many ways of thinking about

Z2. In one realization of the group, its elements are the signs of numbers, with the

group operation being the multiplication of two numbers. We can then identify e

with the symbol + and a with −. In another realization, the element e is labeled

even and a odd, with the group operation of addition. Thus, we can think of the

elements of Z2 as positive and negative or as even and odd. We will use these

interpretations interchangeably later when we discuss T-parity.

11
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2.2.2 SO(n)

If we think about the set of all n × n real-valued matrices with determinant 1

(“special” matrices) such that ATA = I (orthogonal matrices, where I is the

identity matrix), they form a group under matrix multiplication. This group

is the Special Orthogonal Group of dimension n, called SO(n). The family of

groups SO(n) may be thought of as the group of rotations in n-dimensional space,

preserving distances, volumes, and handedness of coordinate axes [1].

2.2.3 U(n)

If we now consider the set of all complex -valued matrices such that A†A = I,

where A† (called the Hermitian conjugate) is the complex conjugate of AT , we

similarly find that this set has a natural group structure under the operation

of matrix multiplication. This group is U(n), the Unitary Group of dimension

n. For us, the most important example of U(n) will be U(1). This group can

be identified with the unit circle in the complex plane, parameterized as eiα for

a continuous angle α. This identification clearly satisfies the unitary condition,

since A†A = e−iαeiα = e0 = 1. The internal symmetry of the quantum mechanical

wavefunction described at the beginning of this section is an example of U(1)

symmetry.

2.2.4 SU(n)

Finally, the set of all complex -valued matrices with unit determinant such that

A†A = I forms a group under matrix multiplication, called the Special Unitary

Group of dimension n, or SU(n). Two groups in this family, SU(2) and SU(3),

will be important later.

12
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2.3 Representations and Lie Algebras

In group theory, we can represent group elements by matrices. A collection of ma-

trices that satisfies the axioms of a particular group under the operation of matrix

multiplication is called a group representation. More precisely, a representation is

a mapping D of group elements of G onto linear operators such that (1) D(e) = 1

and (2) D(g1g2) = D(g1)D(g2). Theh second requirement simply ensures that

the group operation is preserved in the space the linear operators act on. Rep-

resentations allow us to connect groups with linear algebra and give us a way of

translating the tools of group theory back into physical space. For example, if we

can represent all the elements of a group as n× n matrices, then we can think of

these matrices (or the group) as operating on physical space (itself represented by

n× 1 vectors).

Most of the groups above (the only exception being the discrete Z2) are Lie groups,

or groups whose elements can be organized by continuous parameters αi. For ex-

ample, the elements of U(1) can be described by exponentiating a single continuous

angle α. We can, in the case of a Lie group, write an element g ∈ G as g(αi).

From the definition of group representations, we know that D maps the identity

element e to the identity matrix I, and we can write D[g(0)] = D(e) = I. For an

infinitesimal variation δα in the parameters αi, we can expand D[g(0 + δα] as a

Taylor series to get

D[g(0 + δαi] = I + δαi
∂D[g(αi)]

∂αi

∣∣∣∣
αi=0

+ ...

where we sum over all parameters αi. We can rewrite the derivatives in simpler

form as

Xi = −i∂D[g(αi)]

∂αi

∣∣∣∣
αi=0

The matrices Xi are called the generators of the Lie group; the number of gener-

ators is called the Lie group’s dimension.

13
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The Taylor expansion then becomes

D[g(0 + δαi] = I + iδαiXi + ...

We will approximate this infinite series by only considering terms linear in the

infinitesimal δαi, cutting off the sum after the second term.

If we want instead to reach a finite group element instead of one an infinitesi-

mal distance away from the identity, we need to multiply an infinite number of

infinitesimal transformations, to get

lim
N→∞

(I + iαiXi)
N = eiαiXi

where, again, the index i is summed over all parameters and generators. This

section follows that given in [1]. The exponential of a matrix A is defined in terms

of the Taylor series of ex as eA = I + A+ AA
2!

+ ....

As it turns out, the generators of a Lie group form a basis for a vector space natu-

rally connected to the group, called its Lie algebra. For matrices (and particularly

generators of Lie groups), we define the commutator [Xi, Xj] = XiXj − XjXi =

ifijkXk, where the repeated index k is summed over. The numbers fijk are called

the structure constants of the group [1]. With the commutator as the bracket, the

vector space spanned by the generators forms a Lie algebra which encodes much

of the information in the group.

An important representation of SU(n) is the fundamental representation. The

fundamental representation of SU(n), which has dimension n2 − 1, consists of

n × n matrices [1]. We will examine the fundamental representation of SU(2)

below.

The structure constants fijk can be used to construct another representation of

a Lie algebra, called the adjoint representation [7]. An element Ta of the adjoint

representation is defined by

[Ta]bc = −ifabc

14
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The Ta are m×m matrices, where m is the number of generators; as a represen-

tation of an m-dimensional Lie algebra, there are also m matrices Ta. For SU(n),

m = n2 − 1.

2.3.1 Examples of Group Representations

It will be instructive (and important later) to see a couple explicit examples of Lie

algebra representations.

First, we look at SU(2)’s fundamental representation. SU(2) has three generators,

and its fundamental representation can be written as

J1 =
1

2

(
0 1

1 0

)
J2 =

1

2

(
0 −i
i 0

)
J3 =

1

2

(
1 0

0 −1

)
(2.1)

These are the Pauli matrices, seen frequently in studies of spin and angular mo-

mentum in quantum mechanics [1].

Although it appears natural to represent SU(2) with 2 × 2 matrices, this is far

from the only representation. For example, the adjoint representation of SU(2)

consists of 3 × 3 matrices, since there are three generators. The generators of

SU(2) in the adjoint representation are given by [1]

J ′
1 =

1

2


0 1 0

1 0 1

0 1 0

 J ′
2 =

1

2


0 −i 0

i 0 −i
0 i 0

 J ′
3 =

1

2


1 0 0

0 0 0

0 0 −1



We will later see examples of fields that transform under each of these represen-

tations.

Finally, we move to the fundamental representation of SU(3). These eight 3 × 3

matrices are called the Gell-Mann matrices [1], and will be important for con-

structing the bi-octet later:

15
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T1 =


0 1 0

1 0 0

0 0 0

 T2 =


0 −i 0

i 0 0

0 0 0

 T3 =


1 0 0

0 −1 0

0 0 0



T4 =


0 0 1

0 0 0

1 0 0

 T5 =


0 0 −i
0 0 0

i 0 0

 T6 =


0 0 0

0 0 1

0 1 0



T7 =


0 0 0

0 0 −i
0 i 0

 T8 =


√
3
3

0 0

0
√
3
3

0

0 0 −2
√
3
3

 (2.2)
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CHAPTER 3: Particle Physics

With basic concepts from group theory in hand, we now turn to fundamental

ideas of particle physics. The basic objects of study in quantum field theory

and particle physics are quantum fields. Loosely, a field is the assignment of a

mathematical quantity at each point of a space. For example, a scalar field in

three-dimensional Euclidean space assigns a scalar to each point in space and a

vector field assigns a vector. The quantum fields we talk about here assign values

to each point in four-dimensional Minkowski spacetime; we will see scalar quantum

fields (Higgs bosons), vector quantum fields (gauge bosons), and spinor quantum

fields (fermions).

Because we are dealing with a quantum theory, one might wonder what physical

quantities need to be quantized. It turns out that in quantum field theory, it

is field excitations (the allowed jumps above vacuum values) that are quantized.

These excitations are what we normally think of as particles.

3.1 Fundamental Forces

We can organize much of particle physics in terms of four fundamental interactions:

(1) the electromagnetic force, mediated by the photon and responsible for the

classical electric and magnetic forces; (2) the strong force, which is mediated by

gluons and holds protons, neutrons, and atomic nuclei together; (3) the weak force,

which governs radioactive decay and is mediated by the W+, W−, and Z0 bosons;

and (4) gravity, a quantum theory of which is not yet fully known and which is so

weak on the energy scales considered in this paper that we will ignore it. As far as

experiments have been able to show, these forces are the only ways that particles

can interact, and form the building blocks of reality.

As mentioned in the introduction, the Standard Model provides a framework for

the unification of the weak and electromagnetic interactions at higher energies (or,

in other words, very early in the history of the universe). The unification of the

10
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strong and electroweak forces at even higher energies is the ultimate goal of a

Grand Unified Theory. The concept of unification (and much of particle physics)

can be understood in terms of symmetry and symmetry breaking. The remainder

of this section describes the first of these, symmetry, discussing gauge symmetries

and the basics of the Standard Model gauge group. To do so, we first turn to a

mathematical formulation of physics: the Lagrangian.

3.2 Lagrangians

A Lagrangian is a function that summarizes the physical properties of a system.

To begin with, we can define the classical action S =
∫
Ldt, the integral over time

of some function L, called the Lagrangian. Varying the action to find its local

extremum allows us to find the equations of motion for a system [8]. In particle

physics, we will usually write the Lagrangian as the integral over all space of a

Lagrangian density L, which itself is a function L(ϕ, ∂µϕ) of a field ϕ and its first

4-vector derivative ∂µϕ:

L =

∫
L(ϕ, ∂µϕ)d3x,

We need the 4-gradient operator ∂µ here, as we want a special relativity-compatible

theory. We will later see another 4-vector, written xµ, which represents spacetime

coordinates. The Lagrangian density is from this point simply referred to as the

Lagrangian.

There are three kinds of terms in a Lagrangian: kinetic terms, interaction (or

potential) terms, and mass terms. Kinetic terms tell us how particles (i.e., field

excitations) move in space without interacting with each other. Potential terms are

where the fundamental interactions come in; they describe how different particles

interact with each other, changing particles’ motion just like a classical force.

Mass terms are a specific kind of potential term, where a field interacts with itself

(or a complex conjugate of itself, or another field that has compatible quantum

charges). Mass terms are always quadratic in fields (the terms contain only two

total fields), and take the form 1
2
m2ϕ2 for real-valued scalar fields and m2|ϕ|2 for

complex-valued scalar fields. The quantity m denotes a particle’s mass. As an
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example, take the scalar ϕ4 theory Lagrangian [8]:

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 +

λ

4
ϕ4 (3.1)

The time-dependent first term 1
2
(∂µϕ)

2 is our kinetic term, and tells us how the

field will change as we move forward and backward in time. The second term is a

mass term, and tells us that an excitation of the field will have mass given by the

value of m. Finally, the third term is an interaction term; in this case, a quartic

term where the field interacts with itself.

From a Lagrangian, we can extremize the action to find the Euler-Lagrange equa-

tions for a system, thereby determining the equations of motions for various fields.

This process will leave us with a set of differential equations that tell us how

fields will change over spacetime. Testable predictions can be made using the La-

grangian of a theory; for example, Feynman diagrams can be constructed out of

the Lagrangian’s interaction terms. Thus, the form of the Lagrangian for a field

theory tells us, in principle, everything we need to know about a physical system.

3.3 Gauge Symmetries

A gauge theory is a physical theory with extraneous mathematical degrees of

freedom that have no impact on the spacetime symmetries of the system. These

degrees of freedom are associated with internal symmetries, and turn out to be

extraordinarily significant. In particle physics, we end up with certain quantum

fields, called gauge fields, which arise naturally when we convert global symmetries

into local ones, called “gauging a symmetry.” To see how this might arise, let us

begin with a simple Lagrangian for a complex scalar field [2]:

L = |∂µϕ|2 +mϕ∗ϕ (3.2)

This Lagrangian is invariant under U(1): If α is not a function of spacetime, the

transformation ϕ → e−iαϕ does not change the Lagrangian at all. Evidently this

is a global symmetry of the Lagrangian. What happens if we try to make the

19

Ferguson: Trinification with a Bi-Adjoint Higgs Field

Published by DigitalCommons@Macalester College, 2023



13

symmetry local? That is, what if α becomes a function of spacetime, α(xµ)? The

mass term is indeed still invariant, but the kinetic term is not. For the kinetic term

to be invariant, we would need ∂µϕ→ e−iα(x
µ)∂µϕ, as the U(1) transformation can

then cancel out when we multiple the new field by its complex conjugate. However,

when the calculation is carried out, the partial derivative transforms as

∂µϕ→ e−iα∂µϕ− i(∂µα)e
−iαϕ

Because this is a local transformation, the second term is not constant over all

spacetime, and so we cannot ignore it. We can fix this problem by adding in a

new field [2] Aµ, which (adding a factor of e, which can later be identified as an

electric charge), it transforms as Aµ → Aµ+ 1
e
∂µα. We can then define a covariant

derivative Dµ = ∂µ + ieAµ, which does leave the kinetic term invariant:

Dµϕ = (∂µ + ieAµ)ϕ→ Dµe−iαϕ = (∂µ + ieAµ + i∂µα)e
−iαϕ

= e−iα(∂µϕ+ ieAµϕ) + i∂µα
−iαϕ− i∂µα

−iαϕ

= e−iαDµϕ)

From this example, we can see that gauging a symmetry requires the introduction

of a new field; in this case Aµ. The new fields are called gauge fields, and their

excitations are gauge bosons. The field Aµ in this example, taken from scalar

quantum electrodynamics, is analogous to the photon field, which arises from the

gauging of U(1) symmetry. For this reason, it is sensible to organize the gauge

bosons - and the interactions they facilitate - according to the symmetries from

which they naturally arise. Electromagnetism in the Standard Model thus has

the gauge group U(1)EM . As we can see above, Aµ has no mass term. In fact,

for any gauge symmetry to be preserved, the associated gauge fields cannot have

mass – a mass term would be evidence that a symmetry has been broken. This

is a powerful concept, and we will return to it later when examining spontaneous

symmetry breaking.
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3.4 The Standard Model

The Standard Model has the combined gauge group of SU(3)C×SU(2)L×U(1)Y .
The subscripts C (for color) and Y (for weak hypercharge) refer to the conserved

charges associated with these groups by Noether’s Theorem. The subscript L refers

to left-handed particles, as these are the only ones that transform under SU(2)L.

Every term in a Lagrangian must be a Lorentz scalar and must be chargeless.

SU(3)C is the gauge group of the strong force; its associated gauge fields can be

identified as the eight gluons (each generator of a gauge group is associated with

a single gauge field). SU(2)L×U(1)Y is the gauge group of the electroweak force,

which breaks down to U(1)EM at low energies (see Chapter 4). These two U(1)

symmetries are not the same; U(1)EM is a linear combination of the U(1) gauge

field and one of the SU(2)L gauge fields [1].

The fermions (quarks and leptons) in the Standard Model are grouped into “mul-

tiplets,” which are essentially vectors in the space on which a gauge group acts. As

an example, let us consider the first generation of leptons. This generation consists

of the electron and the electron neutrino, which are grouped into the same multi-

plet (a doublet) under SU(2)L, written L =

(
ν

e

)
L

[1]. When SU(2)L symmetry

is unbroken, these fields are in a sense equivalent, since any linear combination

of them will be gauge invariant. Once the symmetry breaks down, the fields are

separated. U(1) symmetries are typically denoted by their charge, as opposed to

writing out a multiplet. We will use the convention

Q = T3 +
Y

2
(3.3)

where Q is the charge under U(1)EM (the electric charge), Y is the weak hyper-

charge, and T3 is the weak isospin (a charge associated with SU(2)L). The electron

has Q = −1 and the electron neutrino has Q = 0; they both have a hypercharge

of −1 [1]. The electron and neutrino fields are invariant under SU(3)C , and as a

result have no color charge. In contrast to the doublet L, the electron’s antiparti-

cle ec = eR, the positron, acts as a singlet under SU(2)L (i.e., it does not change

at all under the symmetry).
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Similar to the first generation of leptons, the first generation of quarks (the up

quark u and down quark d) are organized in a doublet under SU(2)L, written

Q =

(
u

d

)
L

[1]. The up and down quarks both have a hypercharge of 1/3; using

Eq. (3.3), the up quark has electric charge +2/3 and the down quark has electric

charge −1/3. The anti-up and anti-down quarks are SU(2)L singlets; uc = uR has

hypercharge −4/3 and dc = dR has hypercharge +2/3 [1].

The other generations can be constructed similarly, and have the same general

multiplet structure as the first. We have ignored the SU(3)C multiplets here, as

we are mainly interested in symmetry breaking in this paper and the color group

is an unbroken gauge symmetry.

An important aspect of the Standard Model that we have not discussed so far is

how particle mass is generated. It turns out that explicit mass terms for fermions

cannot simply be written down and added to the Lagrangian, as they would not

be gauge invariant [1]. To see this, note that the combination eLνL does not work

because the fields have different masses and the total charge is nonzero. On the

other hand, the term eLeR has total charge of zero and fields of the same mass,

but its overall hypercharge is +1.

This is a major issue, as particles clearly do have mass, but we can fix it by intro-

ducing a new scalar field and utilizing the phenomenon of spontaneous symmetry

breaking. It is these ideas we turn to in the next section.
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CHAPTER 4: Spontaneous Symmetry Breaking

and Higgs Fields

4.1 Symmetry Breaking

The intuition behind the idea of symmetry breaking is simple. We start with

some symmetry of an object and, after some process, this symmetry breaks down

to a smaller one. For example, consider a red triangle whose structure is invariant

under 120◦ rotations. Say we color one edge green. Then a 120◦ rotation of the

triangle will no longer leave the triangle looking exactly the same, as the green

edge will have moved - the symmetry of the triangle has been broken.

The concept of spontaneous symmetry breaking in particle physics is more specific

[2]: We have a Lagrangian that has a particular symmetry, but, after some phase

transition, the ground state of the field no longer exhibits this symmetry. The

symmetry is not exactly broken so much as it is hidden - since the Lagrangian is still

invariant - but the name has stuck nonetheless. It is helpful here to work through

an example. Consider a Lagrangian that looks similar to that in Equation 3.1,

but it now contains complex fields:

L = −1

2
|∂µϕ|2 +m2|ϕ|2 − g2

2
|ϕ|4 (4.1)

where |ϕ|2 = ϕ∗ϕ. As discussed before, this Lagrangian does not change under

any U(1) transformation ϕ→ eiαϕ. The potential in this case is

V (ϕ, ϕ∗) = −m2|ϕ|2 + g2

2
|ϕ|4 (4.2)

If we plot V vs. |ϕ|, we end up with a bowl with ground state at |ϕ|2 = 0 [1].

This ground state does respect the U(1) symmetry; a 2-dimensional cross-section

is shown in Figure 4.1.

Let us say some phase transition in the universe occurs, so that the ground state

value ⟨ϕ⟩ is shifted by some real value v, called a vacuum expectation value, or
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Figure 4.1: A cross-section of the potential V vs. the modulus of the field |ϕ|.
The unbroken U(1) symmetry can be clearly seen, as the graph is symmetric

about the ground state.

VEV. Making the change ⟨ϕ⟩ = 0 → ⟨ϕ⟩ = v, we can expand ϕ around its new

ground state, so that ϕ→ ϕ+ v. Before we do that, however, it is helpful to find

a formula for the VEV in terms of the coupling constants m and g. Since the

ground state occurs at the minimum of the potential, we can set ∂V
∂ϕ

= 0 to find

such a formula. Taking the derivative with respect to ϕ and setting ϕ = ⟨ϕ⟩ gives
us

−2m2⟨ϕ⟩+ 2g2⟨ϕ⟩3 = 0

Simplifying this equation gives us the minimization condition ⟨ϕ⟩2 = m2

g2
. This

equation has two roots, at ⟨ϕ⟩ = +m
g
and ⟨ϕ⟩ = −m

g
. The field can now be plotted

against V as before (Figure 4.2). However, we now see that at either of the two

degenerate ground states, the U(1) symmetry is no longer explicit: a rotation by

eiα does not leave the graph looking the same.

To see what is really happening mathematically, it helps to rewrite the complex

field ϕ in terms of its real and complex components, with the
√
2 normalization

chosen to get an even mixture of each field: ϕ = 1√
2
φ + i√

2
χ. With this identi-

fication, we are now thinking about two independent fields φ and χ, which have

the ground states ⟨φ⟩ =
√
2v and ⟨χ⟩ = 0. Changing from ϕ to φ and χ and

expanding φ around its vacuum value
√
2v, the potential becomes
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Figure 4.2: A cross-section of the potential V vs. the modulus of the field |ϕ|.
In this case, neither of the ground states are symmetric on each side, indicating

that the U(1) symmetry has been broken.

V (ϕ, ϕ∗) = −m2(
1√
2
φ+ v +

i√
2
χ)(

1√
2
φ+ v − i√

2
χ)

+
g2

2

[
(
1√
2
φ+ v +

i√
2
χ)(

1√
2
φ+ v − i√

2
χ)
]2

Simplifying the m2 term, we get

−m2(
φ2

2
+
χ2

2
+
√
2vφ+ v2)

Meanwhile, the quartic term becomes

1

2
g2(v4 + 3v2φ2 +

φ4

4
+
χ4

4
+ 2

√
2v3φ+ v2χ2 +

√
2vφχ2 +

√
2vφ3 +

1

2
φ2χ2)

Putting these equations together and substituting in the minimization condition

m2 = g2v2 gives us the potential

V (φ, χ) = g2v2φ2 − 1

2
g2v4 +

1

8
g2φ4 +

1

8
g2χ4 +

√
2

2
g2vφχ2 +

√
2

2
g2vφ3 +

1

4
g2φ2χ2
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We can see from this equation that the new potential has a mass term for φ, giving

it a mass of
√
2gv, but no such term exists for χ. From χ’s lack of a mass term, it

is evident that the new potential is not explicitly invariant under U(1) symmetry,

since a rotation eiα would change the physical mass of φ. The field χ is called a

Goldstone boson, which can interact with other fields (as we can see in the last

few terms in the potential) but does not itself have mass. Adding a VEV has

spontaneously broken the U(1) symmetry of the Lagrangian, resulting in one field

becoming massless. The loss of mass that can occur as a result of spontaneous

symmetry breaking is enormously important for the Standard Model, as we will

see in the next section.

4.2 Higgs Fields

With an understanding of spontaneous symmetry breaking in hand, we can now

look at the concept of a Higgs field. A Higgs field is a scalar field whose sym-

metry is broken (via the introduction of a VEV as described in the last section),

which causes other particles (fermions and gauge bosons) to obtain mass. In this

so-called Higgs mechanism, certain fields become massless (Goldstone bosons), al-

lowing other particles to “eat” them and thereby gain mass. As fermion mass

terms cannot be written into a Lagrangian, this Higgs mechanism is crucial to our

understanding of particle physics and the success of the Standard Model.

4.2.1 Symmetry Breaking in the Standard Model

At high enough energies, the Lagrangian of the universe has 3 known gauge symme-

tries, conventionally written as SU(3)C ×SU(2)L×U(1)Y . Today, or equivalently

at relatively low energies, this gauge symmetry breaks down to SU(3)C×U(1)EM .

SU(3)C , the gauge group describing the strong interaction, remains unbroken,

with eight massless gluons acting as messenger particles. The photon, written as

Aµ (with the index running from 0 to 3, giving us a 4-dimensional field living

in Minkowkski spacetime), is the gauge boson of U(1)EM , and similarly remains
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massless. What remains to be seen is how the combined group SU(2)L × U(1)Y

breaks down to U(1)EM .

To see how this happens, we start by introducing a complex field ϕ, which has a

weak hypercharge of +1 and is a doublet under SU(2)L. We can write ϕ explicitly

in terms of its real and imaginary components, so that it becomes [9]

ϕ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)

When no component of ϕ has a VEV, the Standard Model symmetry SU(2)L ×
U(1)Y remains in place. Let us see what happens when we give the second com-

ponent of ϕ a real VEV v (equivalently, ⟨φ3⟩ = v). We can then write the vacuum

expectation value of the doublet ϕ as [8]

⟨ϕ⟩ = 1√
2

(
0

v

)

The general potential for ϕ is given by [9]

V (ϕ) = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2

Minimizing this potential gives us the minimization condition [9] ⟨ϕ⟩2 = v2 = µ2

2λ
.

Writing ϕ in terms of φ1, φ2, φ3 = v+h, and φ4 and substituting the minimization

condition in the potential gives

V (ϕ) = −µ2
(
φ2
1 + φ2

2 + (v + h)2 + φ2
4

)
+ λ
(
φ2
1 + φ2

2 + (v + h)2 + φ2
4

)2
= −2λv2

(
φ2
1 + φ2

2 + (v + h)2 + φ2
4

)
+ λ
(
φ2
1 + φ2

2 + (v + h)2 + φ2
4

)2
= −2λv2φ2

1 − 2λv2φ2
2 − 2λv2h2 − 2λv2φ2

4 + 2λv2φ2
1 + 2λv2φ2

2 + 6λv2h2

+ 2λv2φ2
4 + constant + cubic + quartic

= 4λv2h2 + constant + cubic + quartic
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Thus, φ1, φ2, and φ4 are massless, whereas the field h now has a mass of 2
√
2λv2.

The introduction of a VEV has altered the masses of the fields in ϕ: one field still

has mass, but three have become massless.

What happens to the gauge sector when we give a VEV to ϕ? Ignoring the

SU(3)C symmetry but accounting for SU(2)L and U(1)Y , we can write the covari-

ant derivative for ϕ as [8]

Dµϕ =
(
∂µ − igAaµτ

a − i
1

2
g′Bµ

)
ϕ

Where Bµ is the gauge boson of U(1)Y ; A
a
µ (with a running from 1 to 3) are the

three gauge bosons A1
µ, A

2
µ, and A

3
µ of SU(2)L; τ

a are the generators of SU(2)L

(Equation 2.1); and g and g′ are coupling constants. The covariant derivative term

appearing in the Lagrangian is |Dµϕ|2, and so the introduction of the VEV has

altered the Lagrangian by a factor of [8] 1
2
v2

4

[
g2(A1

µ)
2+g2(A2

µ)
2+(−gA3

µ+g
′Bµ)

2
]
.

The physical (mass eigenstate) fields can be found by replacing A1
µ, A

2
µ, A

3
µ, and

Bµ by

W±
µ =

1√
2
(A1

µ ∓ iA2
µ)

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ)

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ)

Making these substitutions allows us to see [8] that Aµ remains massless, whereas

W+
µ and W−

µ obtain masses of g v
2
and Z0

µ acquires a mass of
√
g2 + g′2 v

2
. Before

the VEV was introduced, none of the gauge bosons had mass. With the VEV

in place, three bosons have mass; these can be identified as the W+, W−, and

Z0 bosons observed by experiments today. The last field Aµ can be identified

as the photon. The gauge group SU(2)L × U(1)Y has been broken. We can see

evidence of this breaking in the fact that the fields now have a range of different

masses and can no longer be freely rotated into each other by any arbitrary gauge

transformation. Only one gauge symmetry of the Lagrangian remains: the U(1)

symmetry whose gauge boson is the photon Aµ. We call this symmetry U(1)EM ,

the gauge symmetry corresponding to the electromagnetic interaction.
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The above analysis demonstrates the utility of the Higgs mechanism. By introduc-

ing the Higgs field and giving it a VEV, we can break the electroweak interaction

SU(2)L × U(1)Y down into the weak interaction (mediated by W+, W−, and Z0)

and the electromagnetic interaction (mediated by Aµ). One Higgs field remains

massive, and one gauge field stays massless. This is an example of a general rule:

every gauge boson that acquires a mass should correspond to a Higgs field los-

ing mass. Furthermore, by introducing couplings between the Higgs field and the

fermion fields, called Yukawa terms, we can see that fermion masses, like the gauge

bosons above, arise from the spontaneous symmetry breaking of the Higgs field

[1]. The fermion sector for the model we develop in Chapter 6 and Chapter 7 is

left to future work; in this paper, we look mainly at symmetry breaking and the

gauge sector.
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CHAPTER 5: Trinification

The Standard Model of particle physics is a robust, effective theory with con-

siderable explanatory power. Even so, it is incomplete. As mentioned in the

introduction, the Standard Model is unable to describe the origins of dark matter

and neutrino mass. For these outstanding question in particle physics, we need a

new (or at least extended) theoretical structure.

The path to extending the Standard Model we take in this paper is called trinifica-

tion. Trinification is a GUT based on the gauge group SU(3)C×SU(3)L×SU(3)R.
In trinification models, a Higgs field transforming as some multiplet of the gauge

group is introduced so that the overall gauge symmetry breaks down to the Stan-

dard Model SU(3)C × SU(3)L × U(1)Y , and then to SU(3)C × U(1)EM .

As always, the relevant gauge bosons live in the adjoint representation [4], and so

each gauge boson can be assigned to a generator of SU(3). Since SU(3) has eight

generators Equation 2.3.1, there are eight gauge bosons for each copy of SU(3) in

the gauge symmetry. Eight of these bosons (the gluons) correspond to SU(3)C ,

and will be ignored in the rest of this paper.

We can write the gauge bosons in a useful form by using the Gell-Mann matrices.

Writing the gauge bosons of SU(3) as W µ
i (with µ denoting 4-vector Lorentz

indices) and the Gell-Mann matrices Equation 2.3.1 as Ti, we can sum over all i

to obtain the 3× 3 matrix [6]

Ti ·W µ
i =


W3 +W8/

√
3

√
2W+

√
2V +

√
2W− −W3 +W8/

√
3

√
2V 0

√
2V −

√
2V 0∗ −2W8/

√
3


µ

(5.1)

where we have used the substitutions

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ)

V ±
µ =

1√
2
(W 4

µ ∓ iW 5
µ)
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V 0(∗)
µ =

1√
2
(W 6

µ ∓ iW 7
µ)

In this new notation, under the relevant SU(2) subsymmetry of SU(3), {W+
µ ,Wµ3,W

−
µ }

is a triplet of hypercharge 0, {V +
µ , V

0
µ } is a doublet of hypercharge +1 (and its

conjugate {V 0∗
µ , V −

µ } is a doublet of hypercharge −1), andWµ8 is a neutral singlet.

In trinification (ignoring the color group), we will need two copies of Equation 5.1

to represent all 16 gauge bosons - one corresponding to SU(3)L and one to SU(2)R.

A family of fermions in trinification belongs to a 27-plet [4], with each of the 27

fermion fields transforming as parts of triplets in two of the gauge groups and as

singlets in the last. A 27 can be visualized as a cube with three layers, each of

which is a 3× 3 matrix (a “bi-triplet”). Each of these layers can be visualized as

a 3× 3 matrix. The first two, containing the quarks, are [6]

QL =


u1 u2 u3

d1 d2 d3

D1 D2 D3


L

QR =


u1 u2 u3

d1 d2 d3

D1 D2 D3


R

(5.2)

where u refers to up quarks, d to down quarks, and D to a new set of quarks. The

subscript indices denote color (red, green, and blue), and the L and R subscripts

outside the matrices label whether these are right- or left-handed bi-triplets. The

final bi-triplet, which contains fields transforming as triplets under SU(3)R and

SU(3)L and as singlets under SU(3)C , contains the leptons and can be visualized

as [6]

ξL =


E0 E− e−

E+ Ec0 ν

e+ νc N

 (5.3)

where ν is the left-handed neutrino, e− is the electron, e+ is the positron, and E0,

Ec0, E+, E−, νc, and N are new fields not seen in the Standard Model. Once the

symmetry breaks down to the Standard Model, the fermions break up into various

singlets and doublets [6]: {E+, E0} is a doublet of hypercharge +1; its conjugate

{E0∗, E−} is a doublet of hypercharge −1; {ν, e−} is a doublet of hypercharge

−1; ec is a singlet of hypercharge +2; and νc and N are neutral singlets. The
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hypercharge Y and weak isospin T3 values are shown in Table 5.1. With the basic

field content of trinification in hand, we look at a specific example of trinification

symmetry breaking.

Table 5.1

Field Y T3

E0 +1 -1/2

E+ +1 +1/2

E− -1 -1/2

Ec0 -1 +1/2

e− -1 -1/2

ν -1 +1/2

e+ +2 0

νc 0 0

N 0 0

5.1 Bi-Triplet Higgs Model

In this section, we introduce one of the simplest versions of trinification symmetry,

as it is a good example and will be used in later calculations.

In what we will call the “Bi-Triplet Higgs Model,” the trinification symmetry

groups are broken to the Standard Model by a pair of bi-triplet Higgs fields. A

bi-triplet Higgs field has a similar field content to the lepton field ξL described in

Equation 5.3; that is, both transform in the same way under SU(3)C , SU(3)L, and

SU(3)R. Thus the scalar fields in the matrices below have the same hypercharges,

weak isospins, and SU(2)L multiplets as those in Equation 5.3. We will, from now

on, write a bi-triplet ϕ as ϕαi , where each index runs from 1 to 3. Left-handed

indices will be written as subscripts and have Latin letters; right-handed indices

will be superscripts and have Greek letters.
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The two bi-triplets in this model acquire two VEVs in order to break the gauge

symmetry down to SU(2)L × U(1)Y , which we will call V1 and V2. These VEVs

are placed in neutral positions ⟨ϕ3
3⟩1 = V1 and ⟨ϕ3

2⟩2 = V2, or in matrix form [4]

ϕ1 =


0̂ 0 0

0 0̂ 0

0 0 V1

 ϕ2 =


0̂ 0 0

0 0̂ 0̂

0 V2 0̂

 (5.4)

The bi-triplet components which are neutral with respect to Standard Model

charges are able to obtain VEVs; these are denoted above with carets. The fields

with carets gain smaller VEVs than V1 and V2, so that these components break

the Standard Model symmetry SU(2)L×U(1) down to U(1)EM at the electroweak

scale. Due to the presence of a VEV in the position ϕ3
2, this model breaks the

T-parity symmetry naturally present in trinification; without this symmetry, a

natural path towards stabilizing dark matter is not present in the model (see

Chapter 6.3). However, because this model does break down to the Standard

Model in a simple, clean way, in the next section we will use this pattern of VEVs

to determine the charges and multiplets of the more complex bi-octet.
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CHAPTER 6: Bi-Adjoint Model

The main result presented in this paper is a bi-octet model of trinification sym-

metry breaking. Previous authors have used various combinations of multiplets

to achieve this symmetry breaking, such as a bi-triplet [4] (which on its own must

break T-parity) or both a bi-triplet and a bi-sextet [6]. By contrast, we achieve

breaking using three Higgs fields: a bi-triplet ϕn, a single triplet χ, and a bi-

octet ψ. To maintain a consistent pattern of fermion masses, each of these models

requires 3 copies of the bi-triplet.

6.1 General Structure of a Bi-Octet

The bi-octet ψ is a field introduced in this paper whose components transform

as members of octets in the adjoint representation of SU(3). As this is a new

addition to models of trinification, we consider it in depth in this section. We first

consider general properties of ψ which can be deduced from first principles, then

move to a more exact description using group theory.

To perform future calculations, we need to find a component form for ψ. In ψ,

each component of a right-handed octet is also a left-handed octet, so ψ must have

64 individual components. Thus, any tensor representation of ψ should have four

indices: two to locate the left-handed octet and the component’s place within it,

and two more to do the same for the right-handed octet. To this end, we write

the bi-octet as a four-index tensor ψαβij , with each index running from 1 to 3. As

before, Latin indices are left-handed; Greek indices are right-handed. Since it has

four indices, ψ can be visualized as a matrix of matrices. First, we must choose a

specific pattern of how to locate an element of ψαβij inside an array (as the actual

choice is arbitrary); we choose here to let the outer matrices indicate left-handed

indices and inner matrices indicate right-handed indices, giving us the array

27
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


ψ11
11 ψ12

11 ψ13
11

ψ21
11 ψ22

11 ψ23
11

ψ31
11 ψ32

11 ψ33
11




ψ11
12 ψ12

12 ψ13
12

ψ21
12 ψ22

12 ψ23
12

ψ31
12 ψ32

12 ψ33
12




ψ11
13 ψ12

13 ψ13
13

ψ21
13 ψ22

13 ψ23
13

ψ31
13 ψ32

13 ψ33
13



ψ11
21 ψ12

21 ψ13
21

ψ21
21 ψ22

21 ψ23
21

ψ31
21 ψ32

21 ψ33
21




ψ11
22 ψ12

22 ψ13
22

ψ21
22 ψ22

22 ψ23
22

ψ31
22 ψ32

22 ψ33
22




ψ11
23 ψ12

23 ψ13
23

ψ21
23 ψ22

23 ψ23
23

ψ31
23 ψ32

23 ψ33
23



ψ11
31 ψ12

31 ψ13
31

ψ21
31 ψ22

31 ψ23
31

ψ31
31 ψ32

31 ψ33
31




ψ11
32 ψ12

32 ψ13
32

ψ21
32 ψ22

32 ψ23
32

ψ31
32 ψ32

32 ψ33
32




ψ11
33 ψ12

33 ψ13
33

ψ21
33 ψ22

33 ψ23
33

ψ31
33 ψ32

33 ψ33
33





Since ψ has four indices which can each take three values, ψ must have 34 = 81

total entries. Additionally, since each entry of ψ can in theory be complex, our

degrees of freedom double, and it would seem that there are 162 independent fields

contained in the bi-octet. However, certain conditions limit the total number of

fields to 64, as we expect for the joining of two octets (see the similar case of the

bi-triplet in Equation 5.3).

First, the bi-octet has a “hermiticity” condition: (ψαβij )
∗ = ψβαji . That is, although

entries can be complex, the “opposite” entries in the bi-octet will be complex

conjugates of each other, limiting the degrees of freedom to 81 (the same as if all

entries were real). For example, ψαβ13 is the Hermitian conjugate of ψαβ31 .

Second, 17 tracelessness conditions limit the number of independent fields from 81

to 64. These conditions stem from the fact that the generators of SU(3) (which the

adjoint representation is built from) are traceless themselves. In light of this, every

right-handed submatrix should be traceless (the sum of its diagonal components

must be 0). For example, summing over α, ψαα11 = 0. Since there are nine right-

handed submatrices, these tracelessness conditions lower the overall degrees of

freedom by nine. Similarly, every left-handed submatrix must be traceless (i.e,

summing over i, ψ12
ii = 0), which limits the degrees of freedom by another eight.

It seems as if these conditions should remove 18 degrees of freedom (nine from

the right-handed submatrices and nine from the left-handed ones), but the six

conditions along the “main diagonal” (where i = j and α = β) turn out to contain
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only five independent equations. These 17 additional constraints indicate that

only 64 independent fields exist, as we would expect for a bi-octet. The degrees

of freedom and conditions are summarized in Table 6.1.

Table 6.1

Conditions Degrees of Freedom

None 162

Hermiticity -81

Tracelessness -17

Total 64

The tensor ψ can be constructed using a different - and in some ways more useful

- method based in group theory, which is quite similar to the strategy used to

construct Equation 5.1. We start with 64 real fields W γ
k , each of which can be

identified as the field attached to a unique pairing of a right-handed generator

T γ and a left-handed generator Tk. Since T γ and Tk are each 3 × 3 matrices

Equation 2.3.1, we can write Tk = (Tij)k and T γ = Tαβ)γ. With this notation in

hand, we can find each component ψαβij of our bi-octet in terms of the fields W γ
k

by summing over the generators of SU(3))L and SU(3)R:

ψαβij = (Tij)kW
γ
k (Tαβ)γ

In this form, the entire bi-octet is too large to be reproduced in-text, but some

examples can be given. Carrying out the sum, the lower left submatrix is (holding

left-handed indices constant) ψαβ31 :

W 3
4+

√
3W8

4
3

−iW 3
5−

√
3iW8

5
3

W 1
4−iW 2

4−iW 1
5−W 2

5 W 4
4−iW 5

4−iW 4
5−W 5

5

W 1
4+iW

2
4−iW 1

5+W
2
5 −W 3

4+

√
3W8

4
3

+iW 3
5−

√
3iW8

5
3

W 6
4−iW 7

4−iW 6
5−W 7

5

W 4
4+iW

5
4−iW 4

5+W
5
5 W 6

4+iW
7
4−iW 6

5+W
7
5 − 2

√
3W8

4
3

+
2
√
3iW8

5
3



The tracelessness of this submatrix can be seen visually by adding its diagonal

components. The “hermiticity” condition can be seen by comparing ψαβ31 to the
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upper right submatrix ψαβ13 shown below. Looking at the entries of both, we can

see that the opposite entries in each are indeed complex conjugates of each other.

W 3
4+

√
3W8

4
3

+iW 3
5+

√
3iW8

5
3

W 1
4−iW 2

4+iW
1
5+W

2
5 W 4

4−iW 5
4+iW

4
5+W

5
5

W 1
4+iW

2
4+iW

1
5−W 2

5 −W 3
4+

√
3W8

4
3

−iW 3
5+

√
3iW8

5
3

W 6
4−iW 7

4+iW
6
5+W

7
5

W 4
4+iW

5
4+iW

4
5−W 5

5 W 6
4+iW

7
4+iW

6
5−W 7

5 − 2
√
3W8

4
3

− 2
√
3iW8

5
3



6.2 Triplet Structure

Our symmetry breaking model requires not just a bi-octet and the bi-triplets

discussed in Chapter 5, but also two single triplets χL and χR. Later on, we

will give a VEV to the third component of χR, leaving χL out of the symmetry

breaking process, but it is still necessary to include χL in our model to keep left-

right symmetry in place. We can write these triplets in component form as

χL =


χL1

χL2

χL3

 χR =


χR1

χR2

χR3


Table 6.2 shows the hypercharge and isospin values of these fields. In terms of

multiplets, {χL1, χL2} form a doublet of hypercharge +1, whereas the other four

fields are all singlets. The charges were obtained from the gauge-invariant coupling

χiLϕ
α
i χ

α
R.
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Table 6.2

Field Y T3

χL1 +1 +1/2

χL2 +1 -1/2

χL3 0 0

χR1 +2 0

χR2 0 0

χR3 0 0

6.3 T-Parity

Trinification naturally has a discrete Z2 symmetry which, following [6], we call

T-parity. This parity symmetry, under which particles are either “even” or “odd,”

allows us to stabilize any potential dark matter candidates.

The T-parity of a field (or fields) can be computed directly using the indices of a

field. The T-parity of a field Y αβ...
ij... is given by the equation [6]

(−1)Xi+Xj+Xα+Xβ+...+2S (6.1)

where S is the field’s spin and

Xi =

+1 if i = 1, 2

−2 if i = 3

The Standard Model leptons all have even T-parity, as is easily verified from the bi-

triplets in Equation 5.3. To be a reasonable dark matter candidate, a field should

not have interactions where it decays into Standard Model particles. Our T-odd

fields are then perfect candidates. Letting dark matter be our lightest T-odd field

further stabilizes it against decay.
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In order to preserve this symmetry after trinification symmetry breaking, the

VEVs we give to the fields should have even T-parity. In the bi-triplet model de-

scribed in Section 5.1, the ϕ2 VEV has odd T-parity, making the model somewhat

less viable. By contrast, the symmetry breaking model we develop in Chapter 7

does preserve T-parity, allowing us to stabilize dark matter using this symmetry

in the future.

6.4 Higgs Potential

The bi-octet model requires three different multiplets to achieve consistent sym-

metry breaking while keeping the T-parity symmetry intact: the bi-octet ψ, the

bi-triplets ϕ, and a right-handed triplet χR (as mentioned above, to keep left-right

symmetry we also need a triplet χL, but since it does not obtain a VEV we ignore

it for the rest of this paper and right χ = χR for simplicity).

For this model, we first need to determine the potential terms in the Higgs sector.

These terms can be used to find the necessary minimization conditions and the

masses of the Higgs field once the symmetry is broken to the Standard Model. The

total scalar potential can be broken down into five parts: the bi-triplet potential

V (ϕ); the single triplet potential V (χ); the bi-octet potential terms V (ψ); the bi-

octet and bi-triplet potential V (ψ, χ); the triplet and bi-triplet potential V (ϕ, χ).

It is not necessary to consider a joint potential V (ψ, ϕ, χ) here, as it would require

χL, which does not obtain a VEV.

The first of these, V (ϕ), is found in [6]. Utilizing the Levi-Civita symbol and

denoting Hermitian conjugates with an overline

V (ϕ) = −m2
ϕϕ

α
i ϕ

α
i + (µϕϕ

α
i ϕ

β
j ϕ

γ
kϵijkϵαβγ + h.c.) + λ6ϕ

α
i ϕ

α
i ϕ

β
j ϕ

β
j + λ7ϕ

α
i ϕ

α
j ϕ

β
j ϕ

β
i

(6.2)

Similarly, V (χ) was found by [10]. In index form
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V (χ) = −m2
χχ

αχα + λ18(χ
αχα)2 (6.3)

The most general potential for the bi-octet ψ must be determined using group

theory. The relevant ways for two octets to contract are given by 8×8 = 1s+8s+8a

[11]. There is therefore one path for two octets to contract to a singlet (mψ below),

and two paths for four octets: ψijψjiψklψlk and ψijψjkψklψli. Since we are dealing

with a bi-octet, these two paths become four (λ1 through λ4). Finally, three

octets appear to have two possible paths (8s× 8 and 8a× 8), but we find only one

independent term λ5. The mystery surrounding the cubic terms is left to future

work. In index form, we find the following contractions:

V (ψ) =−m2
ψψ

αβ
ij ψ

βα
ji + λ1ψ

αβ
ij ψ

βα
ji ψ

γδ
kl ψ

δγ
lk + λ2ψ

αβ
ij ψ

βγ
ji ψ

γδ
kl ψ

δα
lk

+ λ3ψ
αβ
ij ψ

βα
jk ψ

γδ
kl ψ

δγ
li + λ4ψ

αβ
ij ψ

βγ
jk ψ

γδ
kl ψ

δα
li + λ5ψ

αβ
ij ψ

γα
ki ψ

βγ
jk

(6.4)

The combined potential V (ψ, ϕ) was found by considering the paths for an octet

and a triplet to contract. The relevant paths are 8× 3 = 3 + 6 and 3× 3 = 1 + 8

[11]. Combining these paths, we find three possible ways for two octets and two

triplets to contract: ψijψjiϕkϕk, ψijψjkϕiϕk, and ψijψknϕlϕmϵikmϵjnl. Since we are

dealing with bi-octets and bi-triplets here, all possible combinations of right- and

left-handed paths give us a total of nine potential terms (λ8 through λ16 below).

We find one term for an octet, a triplet, and a conjugate triplet to contract, giving

us λ17.

V (ψ, ϕ) =λ8ψ
αβ
ij ψ

βα
ji ϕ

γ
kϕ

γ
k + λ9ψ

αβ
ij ψ

βγ
ji ϕ

α
kϕ

γ
k + λ10ψ

αβ
ij ψ

γδ
ji ϕ

σ
kϕ

ρ
kϵαγρϵβδσ

+ λ11ψ
αβ
ij ψ

βα
jk ϕ

γ
i ϕ

γ
k + λ12ψ

αβ
ij ψ

βγ
jk ϕ

α
i ϕ

γ
k + λ13ψ

αβ
ij ψ

γδ
jkϕ

σ
i ϕ

ρ
kϵαγρϵβδσ

+ λ14ψ
αβ
ij ψ

βα
knϕ

γ
l ϕ

γ
mϵikmϵjnl + λ15ψ

αβ
ij ψ

βγ
knϕ

α
l ϕ

γ
mϵikmϵjnl

+ λ16ψ
αβ
ij ψ

γδ
knϕ

σ
l ϕ

ρ
mϵikmϵjnlϵαγρϵβδσ + λ17ψ

αβ
ij ϕ

α
i ϕ

β
j

(6.5)

40

Macalester Journal of Physics and Astronomy, Vol. 11, Iss. 1 [2023], Art. 5

https://digitalcommons.macalester.edu/mjpa/vol11/iss1/5



34

Next, V (ψ, χ) looks quite similar to Equation 6.5, but since χL is not involved

in the symmetry breaking, we only need three quartic potential terms (the other

analogues to the terms in Equation 6.5 involve χL). No cubic term is needed here,

as it would also require χL:

V (ψ, χ) =λ19ψ
αβ
ij ψ

βα
ji χ

γχγ + λ20ψ
αβ
ij ψ

βγ
ji χ

αχγ + λ21ψ
αβ
ij ψ

γδ
ji χ

σχρϵαγρϵβδσ (6.6)

Finally, V (ϕ, χ) was found by [10]. In index form, we have

V (ϕ, χ) = λ22ϕ
α
i ϕ

α
i χ

βχβ + λ23ϕ
α
i ϕ

β
i χ

βχα (6.7)

6.5 Bi-Octet Charges and Multiplets

Opening up ψ in terms of W γ
k as in Section 6.1 is useful, but in general the

fields which live in Standard Model multiplets are not the fields W γ
k , but rather

specific linear combinations of these fields. There are four possible types of linear

combinations: four-field combinations (e.g., W 1
4 − iW 2

4 − iW 1
5 −W 2

5 ) corresponding

to single entry ψαβij , two-field combinations (e.g., W 6
4 − iW 6

5 ) which appear in

exactly two ψαβij entries, or singlet fields such as W 8
8 and W 3

8 (which appear in six

and nine entries of ψ, respectively).

To find the Standard Model multiplets, we use two things: (1) a gauge invariant

cubic coupling between ψ and a bi-triplet ϕ and (2) the bi-triplet model discussed

in Chapter 5.

Firstly, to be a gauge-invariant tensor, each entry ψαβij must have a unique set

of Standard Model charges (weak hypercharge Y and weak isospin T3). These

charges can be found by pairing ψ with a field we whose charges we already know

- such as a bi-triplet (Equation 5.3). The simplest such term is cubic, and (in

index form) reads ψαβij ϕ
α
i ϕ

β
j . This is the cubic term that appears in Equation 6.5

accompanied by the coupling constant λ17.

41

Ferguson: Trinification with a Bi-Adjoint Higgs Field

Published by DigitalCommons@Macalester College, 2023



35

For the Lagrangian to be gauge-invariant, each term must contain fields whose

total quantum charges sum to 0 (otherwise a gauge transformation would change

the Lagrangian, which would make it no longer a gauge transformation). Since the

charges of ϕαi are known, it is simple to extrapolate what the charges of ψαβij must

be by summing over all indices in ψαβij ϕ
α
i ϕ

β
j and looking at each term. For example,

the term in the sum containing ψ21
11 is E−Ec0ψ21

11. The combined hypercharge and

isospin values of E− and Ec0 are −2 and 0, respectively, so ψ21
11 should contain

fields with isospin 0 and hypercharge +2.

Since the fields ψαβij may not be the Standard Model interaction eigenstates, we

need to find the linear combinations that are interaction eigenstates. To determine

these, we use the bi-triplet model discussed in Chapter 5, treating the bi-octet not

as a Higgs field to be given VEVs, but as a simple scalar field whose mass is

determined by the bi-triplet Higgs. Mathematically, we couple the bi-octet ψ to

the minimized fields ϕ1 and ϕ2 (Equation 5.4) using V (ψ, ϕ) (Equation 6.5). In

general, we need three separate potentials: V (ψ, ϕ1), V (ψ, ϕ2), and V (ψ, ϕ1, ϕ2)

(in the last, all possible combinations of ϕ1 and ϕ2 are considered). However,

the first two of these turn out to be sufficient to determine the multiplets. This

substitution will give the fields mass terms; the fields with the same masses and

hypercharges but different isospins must be in the same multiplets.

Quantum mechanical triplets contain fields with charges of +1, 0, and−1; doublets

take T3 values of 1/2 and −1/2; and singlets have charges of 0 (except in the case

of U(1). Thus the correct multiplets can be found by matching fields with the

right charges and the same masses after the bi-triplets break the symmetry to the

Standard Model. The new combinations of fields W γ
k that are in Standard Model

multiplets were found and confirmed by substituting the redefined fields into ψ

until the precise multiplets were found. The redefined fields and their charges are

listed in Appendix A; the Standard Model multiplets found using this process are

listed in Appendix B.
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CHAPTER 7: Bi-Octet Symmetry Breaking

The symmetry breaking pathway we present here has VEVs in three fields: the

bi-octet ψ, the bi-triplet ϕ, and a right-handed triplet χR. We give give VEVs to

⟨W 3
8 ⟩ = Vψ, ⟨ϕ3

3⟩ = Vn, and ⟨χ3⟩ = Vχ. To replicate the pattern of fermion masses

we use three copies of the bi-triplet, although it is sufficient to deal with only one

in our analysis [6]. Finally, to break electroweak symmetry, ϕ1
1 and ϕ2

2 acquire

VEVs at the electroweak scale. Writing the trio of bi-triplets implicitly with the

index n, the VEVs considered here are

⟨W 3
8 ⟩ = Vψ ⟨χR⟩ =


0

0

Vχ

 ⟨ϕn⟩ =


vun 0 0

0 vdn 0

0 0 Vn

 (7.1)

This paper is mainly concerned with symmetry breaking to the Standard Model,

so we will largely ignore the electroweak-scale VEVs vun and vdn, which are taken

to be far smaller than Vψ, Vn, and Vχ. Since the three bi-triplet Vn VEVs V1, V2,

and V3 are all in the same position, only one linear combination of these three

VEVs acquires a VEV on the order of Vψ and Vχ [6], which we will simply write

as Vn (the other two combinations are, like vun and vdn, on the electroweak scale).

Since the Standard Model fields all have even T-parity, we can preserve this T-

parity symmetry if we give VEVs only to T-odd fields. Since W 3
8 is found along

the main diagonal of the bi-octet (where i = j and α = β), it has an even T-parity

according to Equation 6.1. Similarly, since any VEVs in the bi-triplets occur in

positions where i = j, these fields are also T-even. Finally, since Vχ has index

α = 3, it also has even T-parity. Since all our VEVs are in T-even fields, the T-

parity symmetry is preserved down to SU(3)C × U(1)EM , allowing us to stabilize

any potential dark matter candidates in the future.

It is instructive to examine what each of the three relevant VEVs does to the

trinification symmetry on their own. To do so, we must examine the effect of

these VEVs on the gauge sector.
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7.1 Gauge Sector

Just as in Section 4.2.1, the gauge bosons in trinification gain mass when Higgs

fields acquire vacuum expectation values. The gauge boson masses can be found

by inserting the VEVs into the covariant derivatives for each field and examining

how the Lagrangian changes. For each gauge boson given mass, a Higgs field must

become massless; for this reason it is often said that massive gauge bosons “eat”

the Higgs. In this section, we will give the precise covariant derivatives for our

Higgs fields.

For a single bi-triplet, the covariant derivative is given by [6]

Lkin = Dµϕαi (D
µϕαi )

†

where all indices are summed, with the µ representing a Lorentz 4-vector. For

multiple bi-triplets, we simply carry out this summation three times. This format

can extended quite simply to the bi-octet and triplets to get a total kinetic term

Lagrangian:

Lkin = Dµϕαi (D
µϕαi )

† +Dµχα(Dµχα)† +Dµψαβij (D
µψαβij )

†

It is sufficient for us to work out D for each type of field and then sum over all

indices. The covariant derivative for a single bi-triplet can be found in [6], and is

given by

Dµϕαi = ∂µϕαi −
igL
2

(T ·W µ
L )

k
i ϕ

α
k +

igR
2

(T ·W µ
R)

α
kϕ

k
i (7.2)

where ∂µ denotes the usual 4-vector derivative; gL is a coupling constant related

to gauge transformations of SU(3)L; gR is a coupling constant related to SU(3)R;

and T ·W µ
L and T ·W µ

R are 3× 3 matrices containing the gauge bosons of SU(3)L

and SU(3)R, respectively (constructed in the manner of Equation 5.1).

The covariant derivative for a single right-handed triplet can be obtained easily

from Equation 7.2 by simply ignoring any left-handed indices:
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Dµχα = ∂µχα +
igR
2

(T ·W µ
R)

α
kϕ

k (7.3)

The covariant derivative for ψ is a bit trickier. Firstly, we will need five terms

instead of the three seen in the bi-triplet, as we will need to sum over each index

of ψ separately. Second, we find that for any sensible breaking pattern, the pattern

of negative signs in the terms of Dµψαβij is slightly different from that found in the

bi-triplet, and from the covariant derivative for the otherwise-similar bi-sextet in

[6]:

Dµψαβij =∂µψαβij +
igL
2

(T ·W µ
L )

k
iψ

αβ
kj − igL

2
(T ·W µ

L )
j
kψ

αβ
ik

+
igR
2

(T ·W µ
R)

γ
αψ

γβ
ij − igR

2
(T ·W µ

R)
β
γψ

αγ
ij

(7.4)

Instead of left-handed terms having negative signs and right-handed terms having

positive signs (as for the bi-sextet in [6]), it is necessary to have one term positive

and one negative. It seems not to matter precisely which term is positive and which

negative, but the pattern must be present. If it is not, then no known breaking path

from SU(3)L×SU(3)R can be seen in the gauge sector (not to mention electrically

charged terms enter into the Lagrangian, which violates U(1)EM symmetry). Since

the covariant derivative in Equation 7.4 allows for such paths through certain fields

acquiring VEVs, its form appears to be correct. Nevertheless, we have not yet

determined why this form is correct using group theory, and efforts to check the

breaking path by finding which Higgs fields become massless are incomplete. The

reasons for the form taken by this covariant derivative are left to future work.

7.2 Symmetry Breaking and Gauge Boson Masses

Using the covariant derivatives Equation 7.2, Equation 7.3, and Equation 7.4, we

can now examine the effects of giving the VEVs in Equation 7.1. The remain-

ing symmetries below are determined by looking at which gauge bosons remain

massless.
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On its own, Vn breaks trinification to SU(2)L × SU(2)R × U(1). On the other

hand, Vχ breaks the symmetry to SU(3)L × SU(2)R. Together, these two VEVs

break the symmetry to SU(2)L × SU(2)R. Evidently, breaking trinification down

to the Standard Model requires another VEV - such as the bi-octet.

Vψ breaks the trinification symmetry to SU(2)L × U(1)L × U(1)R1 × U(1)R2. As

a general rule, Higgs fields in the adjoint representation should not be able to

break the rank of a symmetry. Since SU(3)L × SU(3)R is rank 4, it should be

the case that the remaining symmetry has four diagonalizable generators. Since

SU(2) and U(1) each have one diagonalizable generator, this is precisely what we

find. In order to successfully break trinification to the Standard Model, we require

two more VEVs (Vn and Vχ) to break the extraneous U(1) symmetries.

Combining Vn, Vψ, and Vχ gives mass to 12 gauge bosons, leaving us with the

residual symmetry SU(2)L×U(1)R. Letting this last U(1) (whose associated gauge

boson corresponds to W3R) be U(1)Y gives us the Standard Model symmetry and

a viable symmetry breaking pathway. The various symmetry breaking paths are

summarized in Table 7.1.

Table 7.1

VEV Remaining Gauge Symmetry

Vn SU(2)L × SU(2)R × U(1)

Vχ SU(3)L × SU(2)R

Vψ SU(2)L × U(1)L × U(1)R1 × U(1)R2

Vϕ, Vχ SU(2)L × SU(2)R

Vϕ, Vχ, Vψ SU(2)L × U(1)R
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The combined VEVs Vn, Vψ, and Vχ change the Lagrangian L by

∆L =
1

2
g2LV

2
n V

µ+
L V µ−

L + 6g2LV
2
ψV

µ+
L V µ−

L +
9

2
g2RV

2
χ V

µ+
R V µ−

R +
1

2
g2RV

2
n V

µ+
R V µ−

R

+ 2g2RV
2
ψV

µ+
R V µ−

R +
1

2
g2LV

2
n V

µ0
L V µ0∗

L + 6g2LV
2
ψV

µ0
L V µ0∗

L +
9

2
g2RV

2
χ V

µ0
R V ∗

R

+
1

2
g2RV

2
n V

µ0
R V µ0∗

R + 2g2RV
2
ψV

µ0
R V µ0∗

R + 3g2RV
2
χ (W

µ
8R)

2 +
1

3
g2LV

2
n (W

µ
8L)

2

+
2

3
gLgRV

2
nW

µ
8LW

µ
8R +

1

3
g2RV

2
n (W

µ
8R)

2 + 8g2RV
2
ψW

µ+
R W µ−

R

(7.5)

From Equation 7.5, we can see that on the scale of trinification symmetry breaking,

12 gauge bosons gain mass: V ±
L , V ±

R , V 0,0∗
L , V 0,0∗

R , W±
R , W8R, and W8L. The

remaining four massless gauge bosons are W±
L , W3L, and W3R. The first three of

these are associated with SU(2)L, while the last is the gauge boson of U(1)Y .

Adding the electroweak-scale VEVs vun and vdn makes ∆L significantly more com-

plicated, but we can sum up these results using what are called mass matrices. To

construct these, we take a basis of fields with the same electric charge and T-parity

(say, x = (W+
L ,W

+
R )) and write the quadratic couplings in matrix form, so that

xTAx returns us the sum of the terms that we had originally. The off-diagonal

terms - such as the coefficient of W+
LW

−
R - correspond to mixing of the fields; the

existence of these terms indicates that the basis we have chosen is not that of the

mass eigenstates (i.e., our basis fields do not have definite mass). The advantage

of the mass matrix notation is that the eigenvalues of the mass matrix are the

definite masses, and its eigenvectors are the linear combinations of fields that cor-

respond to definite mass eigenstates. The mass matrices of the gauge bosons after

electroweak symmetry breaking are given in Appendix C.

7.3 Minimization Conditions

The final aspect of the bi-adjoint model considered here is the minimization con-

ditions. These conditions must be met for the potential to be minimized, and are
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found by taking partial derivatives of the vacuum potential V with respect to each

of the VEVs Vψ, Vχ, and Vn. The potential V is the sum of Equation 6.2 through

Equation 6.7, or

V (ψ, ϕ, χ) = V (ψ) + V (χ) + V (ϕ) + V (ψ, ϕ) + V (ψ, χ) + V (ϕ, χ)

To obtain the minimization conditions, we substitute into V the VEVs Vψ, Vχ, and

Vn and set all other fields to zero (that is, we only need the vacuum expectation

values of the fields). This gives the vacuum potential

V =− 4m2
ψ −m2

ϕV
2
n −m2

χV
2
χ + 16λ1V

4
ψ + 8λ2V

4
ψ + 8λ3V

4
ψ + 4λ4V

4
ψ + λ6V

4
n

+ λ7V
4
n + 4λ8V

2
ψV

2
n − 4λ10V

2
ψV

2
n +

8λ11V
2
ψV

2
n

3
−

8λ13V
2
ψV

2
n

3
+

4λ14V
2
ψV

2
n

3

−
4λ16V

2
ψV

2
n

3
+ λ18V

4
χ + 4λ19V

2
χ V

2
ψ − 4λ21V

2
χ V

2
ψ + λ22V

2
χ V

2
n + λ23V

2
χ V

2
n

(7.6)

We can now take the derivatives ∂V
∂Vψ

, ∂V
∂vϕ

, and ∂V
∂Vn

and set them equal to 0:

∂V

∂Vψ
= 0 =− 8m2

ψVψ + 64λ1V
3
ψ + 32λ2V

3
ψ + 32λ3V

3
ψ + 16λ4V

3
ψ + 8λ8VψV

2
n

− 8λ10VψV
2
n +

16λ11VψV
2
n

3
− 16λ13VψV

2
n

3
+

8λ14VψV
2
n

3

− 8λ16VψV
2
n

3
+ 8λ19V

2
χ Vψ − 8λ21V

2
χ Vψ

∂V

∂Vn
= 0 =− 2m2

ϕVn + 4λ6V
3
n + 4λ7V

3
n + 8λ8V

2
ψVn − 8λ10V

2
ψVn +

16λ11V
2
ψVn

3

−
16λ13V

2
ψVn

3
+

8λ14V
2
ψVn

3
−

8λ16V
2
ψVn

3
+ 2λ22V

2
χ Vn + 2λ23V

2
χ Vn

∂V

∂Vχ
= 0 =− 2m2

χVχ + 4λ18V
3
χ + 8λ19VχV

2
ψ − 8λ21VχV

2
ψ + 2λ22VχV

2
n + 2λ23VχV

2
n

These equations can easily be solved for mψ, mϕ, and mχ:
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m2
ψ =8λ1V

2
ψ + 4λ2V

2
ψ + 4λ3V

2
ψ + 2λ4V

2
ψ + λ8V

2
n − λ10V

2
n +

2λ11V
2
n

3
− 2λ13V

2
n

3

+
λ14V

2
n

3
− λ16V

2
n

3
+ V 2

χ λ19 − λ21V
2
χ

(7.7)

m2
ϕ =2λ6V

2
n + 2λ7V

2
n + 4λ8V

2
ψ − 4λ10V

2
ψ +

8λ11V
2
ψ

3
−

8λ13V
2
ψ

3
+

4λ14V
2
ψ

3

−
4λ16V

2
ψ

3
+ λ22V

2
χ + λ23V

2
χ

(7.8)

m2
χ = 2λ18V

2
χ + 4λ19V

2
ψ − 4λ21V

2
ψ + λ22V

2
n + λ23V

2
n (7.9)

These are the conditions on the coupling constants in the potential necessary

for the symmetry breaking to occur. Substituting these conditions into the full

potential, with the fields no longer set to 0, allows us to determine the mass

matrices for the fields, and find which Higgs fields become massless. This process

is not yet complete, and is left to future work.

7.4 Potential Boundedness Conditions

In order for the vacuum potential Equation 7.6 to open upward (i.e., for the vacuum

to be a potential minimum), a set of conditions on the coupling constants are

needed. Although all the restrictions on the couplings are not easy to determine,

some conditions needed for the quartic terms to be bounded below can be given.

Following the treatment in [6], it must be the case that the quartic terms given an

overall nonnegative contribution to the potential. We can write xT = (V 2
ψ , V

2
χ , V

2
n )

and format the quartic term coefficients in a matrix A so that xTAx returns the

sum of the quartic potential terms contained in Equation 7.6. In the basis xT , this

coefficient matrix is
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
8λ1 + 2λ4 + 4λ 2(λ19 − λ21) 2(λ8 − λ10) + Λ

2(λ19 − λ21) λ18
1
2
(λ22 + λ23)

2(λ8 − λ10) + Λ 1
2
(λ22 + λ23) λ6 + λ7



where we have used the convenient substitutions λ = λ2 + λ3 and Λ = 2
3
(2λ11 −

2λ13 + λ14 − λ16). In this notation, the potential opens up only if xTAx ≥ 0; that

is, if the coefficient matrix is copositive [6]. The conditions for a 3×3 matrix to be

copositive are given in [12]; for the above matrix, we have the necessary conditions

8λ1 + 2λ4 + 4λ ≥ 0 (7.10)

λ18 ≥ 0 (7.11)

λ6 + λ7 ≥ 0 (7.12)

2(λ19 − λ21) ≥ −
√
λ18(8λ1 + 2λ4 + 4λ) (7.13)

1

2
(λ22 + λ23) ≥ −

√
λ18(λ6 + λ7) (7.14)

2(λ8 − λ10) + Λ ≥ −
√
(8λ1 + 2λ4 + 4λ)(λ6 + λ7) (7.15)

Additionally, one of the following must be true:

detA ≥ 0 or (7.16)

2
√
λ6 + λ7(λ19 − λ21) +

√
8λ1 + 2λ4 + 4λ(λ22 + λ23) + 2

√
λ18(λ8 − λ10)

+ Λ
√
λ18 + 2

√
(8λ1 + 2λ4 + 4λ)λ18(λ6 + λ7) ≥ 0

(7.17)
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CHAPTER 8: Conclusion and Future Work

In this paper, we develop a model of trinification symmetry breaking using a bi-

adjoint Higgs field. In the first 5 chapters, we describe the basics of group theory,

particle physics, spontaneous symmetry breaking, and trinification.

In Chapter 6, we describe the structure of the bi-octet and find its Standard Model

charges and multiplets. We then write the Higgs potential for the bi-octet in tensor

form and find its couplings to a bi-triplet and a right-handed triplet.

Our model uses three VEVs to break trinification to the Standard Model: one

bi-octet VEV, one bi-triplet VEV, and one VEV in the right-handed triplet.

In Chapter 7, with the VEVs in place, we evaluate each Higgs field’s covariant

derivative to determine which gauge bosons gain mass. This calculation con-

firms that these three VEVs do indeed break trinification to the Standard Model.

Two more VEVs along the diagonal of the bi-triplet then break the Standard

Model down to SU(3)C × U(1)EM , and we calculate the resulting gauge boson

masses. We find minimization conditions for the first stage of symmetry breaking

(to SU(3)C×SU(2)L×U(1)Y ) and some necessary conditions for the boundedness

of the Higgs potential.

Much work has been done to develop this model, but there is more to be done in

the future. Two of the most interesting avenues for future work are finding ways

that neutrino masses can be generated and determining the phenomenological

properties of dark matter candidates. Dark matter can be stabilized in our model

due to the preservation of T-parity; the lightest T-odd scalar is the most probable

dark matter candidate. Other work that must be done to complete the basic

structure of our model includes finding the mass matrices for the Higgs sector and

developing the Yukawa sector.
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APPENDIX A: Bi-Octet Fields and Charges

Here we list the redefined bi-octet fields that live in Standard Model multiplets,

along with their hypercharge and weak isospin values. The electric charges of the

fields are shown in superscript in the name of the field.

Table A.1

New Notation Field Combination Y T3

W 3
3 W 3

3 0 0

W 8
3 W 8

3 0 0

W 3
8 W 3

8 0 0

W 8
8 W 8

8 0 0

2Y 0
45 W 4

4 − iW 5
4 − iW 4

5 −W 5
5 −1 +1

2

2Y 0∗
45 W 4

4 + iW 5
4 + iW 4

5 −W 5
5 +1 −1

2

2Y ++
45 W 4

4 − iW 5
4 + iW 4

5 +W 5
5 +3 +1

2

2Y −−
45 W 4

4 + iW 5
4 − iW 4

5 +W 5
5 −3 −1

2

2Z−
45 W 4

6 + iW 5
6 + iW 4

7 −W 5
7 −1 −1

2

2Z+
45 W 4

6 − iW 5
6 − iW 4

7 −W 5
7 +1 +1

2

2Z+
54 W 4

6 + iW 5
6 − iW 4

7 +W 5
7 +3 −1

2

2Z−
54 W 4

6 − iW 5
6 + iW 4

7 +W 5
7 −3 +1

2

2X++
45 W 4

1 + iW 5
1 − iW 4

2 +W 5
2 +2 +1

2X−−
45 W 4

1 − iW 5
1 + iW 4

2 +W 5
2 −2 −1

2X0
45 W 4

1 − iW 5
1 − iW 4

2 −W 5
2 −2 +1

2X0∗
45 W 4

1 + iW 5
1 + iW 4

2 −W 5
2 +2 −1

2Y 0
12 W 1

4 + iW 2
4 + iW 1

5 −W 2
5 +1 −1

2

2Y 0∗
12 W 1

4 − iW 2
4 − iW 1

5 −W 2
5 −1 +1

2

2Y −−
12 W 1

4 − iW 2
4 + iW 1

5 +W 2
5 −3 −1

2

2Y ++
12 W 1

4 + iW 2
4 − iW 1

5 +W 2
5 +3 +1

2
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Table A.1 (contd.)

New Notation Field Combination Y T3

2X++
12 W 1

1 + iW 2
1 − iW 1

2 +W 2
2 +2 +1

2X−−
12 W 1

1 − iW 2
1 + iW 1

2 +W 2
2 −2 −1

2X0
12 W 1

1 − iW 2
1 − iW 1

2 −W 2
2 −2 +1

2X0∗
12 W 1

1 + iW 2
1 + iW 1

2 −W 2
2 +2 −1

2Z+
12 W 1

6 + iW 2
6 + iW 1

7 −W 2
7 +1 +1

2

2Z−
12 W 1

6 − iW 2
6 − iW 1

7 −W 2
7 −1 −1

2

2Z+
21 W 1

6 + iW 2
6 − iW 1

7 +W 2
7 +3 −1

2

2Z−
21 W 1

6 − iW 2
6 + iW 1

7 +W 2
7 −3 +1

2√
2Z0

67 W 6
6 + iW 6

7 −1 +1
2√

2Z0∗
67 W 6

6 − iW 6
7 +1 −1

2√
2Z0

76 W 7
7 − iW 7

6 −1 +1
2√

2Z0∗
76 W 7

7 + iW 7
6 +1 −1

2√
2Y −

67 W 6
4 + iW 6

5 −1 −1
2√

2Y +
67 W 6

4 − iW 6
5 +1 +1

2√
2Y −

76 W 7
5 − iW 7

4 −1 −1
2√

2Y +
76 W 7

5 + iW 7
4 +1 +1

2√
2X−

67 W 6
1 + iW 6

2 0 −1
√
2X+

67 W 6
1 − iW 6

2 0 +1
√
2X−

76 W 7
2 − iW 7

1 0 −1
√
2X+

76 W 7
2 + iW 7

1 0 +1
√
2V −

L3 W 3
4 + iW 3

5 −1 −1
2√

2V +
L3 W 3

4 − iW 3
5 +1 +1

2√
2V −

L8 W 8
4 + iW 8

5 −1 −1
2√

2V +
L8 W 8

4 − iW 8
5 +1 +1

2√
2W−

L3 W 3
1 + iW 3

2 0 −1
√
2W+

L3 W 3
1 − iW 3

2 0 +1
√
2W−

L8 W 8
1 + iW 8

2 0 −1
√
2W+

L8 W 8
1 − iW 8

2 0 +1
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Table A.1 (contd.)

New Notation Field Combination Y T3√
2V +

R3 W 4
3 + iW 5

3 +2 0
√
2V −

R3 W 4
3 − iW 5

3 −2 0
√
2V +

R8 W 4
8 + iW 5

8 +2 0
√
2V −

R8 W 4
8 − iW 5

8 −2 0
√
2U0

R3 W 6
3 + iW 7

3 0 0
√
2U0∗

R3 W 6
3 − iW 7

3 0 0
√
2U0

R8 W 6
8 + iW 7

8 0 0
√
2U0∗

R8 W 6
8 − iW 7

8 0 0
√
2W+

R3 W 1
3 + iW 2

3 +2 0
√
2W−

R3 W 1
3 − iW 2

3 −2 0
√
2W+

R8 W 1
8 + iW 2

8 +2 0
√
2W−

R8 W 1
8 − iW 2

8 −2 0
√
2U0

L3 W 3
6 + iW 3

7 −1 +1
2√

2U0∗
L3 W 3

6 − iW 3
7 +1 −1

2√
2U0

L8 W 8
6 + iW 8

7 −1 +1
2√

2U0∗
L8 W 8

6 − iW 8
7 +1 −1

2
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APPENDIX B: Bi-Octet Multiplets

Here we list the bi-octet’s multiplets under the Standard Model symmetry SU(2)L×
U(1)Y , organized by hypercharge. Doublets and triplets are organized so that

isospin decreases downward (the highest-isospin field is labeled at the top). Sin-

glets are written without parentheses.

• Y = +3

Y ++
45

Z+
54

 Y ++
12

Z+
21


• Y = +2 

X++
45

V +
R3

X0∗
45




X++

12

W+
R3

X0∗
12


V +
R8 W+

R8

• Y = +1 Z+
45

Y 0∗
45

 Y +
67

Z0∗
67

Y +
76

Z0∗
76

 V +
L3

U0∗
L3

 V +
L8

U0∗
L8

 Z+
12

Y 0
12


• Y = 0 

X+
67

U0
R3

X−
76




W+
L3

W 3
3

W−
L3




W+
L8

W 8
3

W−
L8


W 3

8 W 8
8 U0

R8

These multiplets fully determine the structure of the bi-octet fields once the sym-

metry has broken to the Standard Model. The remaining 28 fields are simply the
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Hermitian conjugates of the above multiplets. For convenience, these remaining

multiplets are listed below.

• Y = −3

 Z−
54

Y −−
45

  Z−
21

Y −−
12


• Y = −2


X0

45

V −
R3

X−−
45




X0

12

W−
R3

X−−
12


V −
R8 W−

R8

• Y = −1 Y 0
45

Z−
45

 Z0
67

Y −
67

Z0
76

Y −
76

 U0
L3

V −
L3

 U0
L8

V −
L8

 Y 0∗
12

Z−
12


• Y = 0 

X+
76

U0∗
R3

X−
67


U0∗
R8
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APPENDIX C: Gauge Boson Mass Matrices

Using the VEVs in Equation 7.1, we calculate the mass-squared matrices of the

gauge bosons (including breaking of electroweak symmetry). Although the entries

of these matrices are technically squared masses, we will simply refer to them as

mass matrices.

Carrying out the summations in Equation 7.2, Equation 7.3, and Equation 7.4

gives us four mass matrices. Two matrices are uncharged and have opposite T-

parity (so the fields do not mix); the other two are charged and have opposite

T-parity. Lorentz indices for the fields are suppressed.

The charged T-even gauge bosons W+
L , W

−
L , W

+
R , and W−

R form a 2 × 2 mass

matrix. Using the basis (W+
L ,W

−
R ), we obtain

M2
W± =

(
g2Lv

2
dn

2
+

g2Lv
2
un

2
gLgRvdnvun

gLgRvdnvun 8g2Rv
2
ψ +

g2Rv
2
dn

2
+

g2Rv
2
un

2

)
(C.1)

Clearly, vψ is responsible for giving mass to the W±
R fields, breaking SU(3)R at

energies far above the electroweak scale.

The four T-odd charged gauge bosons V +
L , V −

L , W+
R , and W

−
R form another 2× 2

mass matrix; in the basis (V +
L , V

−
R ) this gives

M2
V ± =

(
6g2Lv

2
ψ +

g2Lv
2
n

2
+

g2Lv
2
un

2
gLgRvnvun

gLgRvnvun 2g2Rv
2
ψ +

9g2Rv
2
χ

2
+

g2Rv
2
n

2
+

g2Rv
2
un

2

)
(C.2)

Next are the four T-odd uncharged gauge bosons: V 0
L , V

0∗
L , V 0

R, and V
0∗
R . We write

their mass matrix in the basis (V 0
L , V

0
R), giving us

M2
V 0,0∗ =

(
6g2Lv

2
ψ +

g2Lv
2
dn

2
+

g2Lv
2
n

2
gLgRvnvdn

gLgRvnvdn 2g2Rv
2
ψ +

9g2Rv
2
χ

2
+

g2Rv
2
dn

2
+

g2Rv
2
n

2

)
(C.3)
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The four T-even neutral gauge bosons form the final matrix, this time 4 × 4 due

to mixing between all the fields. Writing this matrix in the basis (W 8
L, W

8
R, W

3
R,

and W 3
L) gives us the mass-squared matrix


g2Lv

2
dn

12
+
g2Lv

2
n

3
+
g2Lv

2
un

12

gLgRv
2
dn

12
+
gLgRv

2
n

3
+
gLgRv

2
un

12
−

√
3gLgRv

2
dn

12
+

√
3gLgRv

2
un

12

g2Lv
2
dn

4
+
g2Lv

2
un

4

gLgRv
2
dn

12
+
gLgRv

2
n

3
+
gLgRv

2
un

12
3g2Rv

2
χ+

g2Rv
2
dn

12
+
g2Rv

2
n

3
+
g2Rv

2
un

12
−

√
3g2Rv

2
dn

12
+

√
3g2Rv

2
un

12

g2Lv
2
dn

4
+
g2Lv

2
un

4

−
√
3gLgRv

2
dn

12
+

√
3gLgRv

2
un

12
−

√
3g2Rv

2
dn

12
+

√
3g2Rv

2
un

12

g2Rv
2
dn

4
+
g2Rv

2
un

4

g2Lv
2
dn

4
+
g2Lv

2
un

4

−
√

3g2Lv
2
dn

12
+

√
3g2Lv

2
un

12
−

√
3gLgRv

2
dn

12
+

√
3gLgRv

2
un

12

gLgRv
2
dn

4
+
gLgRv

2
un

4

g2Lv
2
dn

4
+
g2Lv

2
un

4


(C.4)

Plugging in benchmark values for the couplings and VEVs demonstrates that this

matrix has 1 massless field (corresponding to the photon) and 3 massive fields, as

desired. Solving for the precise eigenvalues and eigenvectors to get the physical

masses and field combinations is left to future work.
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