IMAGINING EMERGENT METADATA, REALIZING THE EMERGENT WEB

Jason Bengtson, MLIS, AHIP

Jason Bengtson, MLIS, AHIP Emerging Technologies/ R&D Librarian University of New Mexico Health Sciences Library & Informatics Center Tel: (505) 272-0645 Email: JBengtson@salud.unm.edu

WHAT IS EMERGENCE?

Independent Agents Interacting
Agents following relatively simple rules
New levels of complexity EMERGE in the system
Organizes spontaneously, without intelligent control

EXAMPLES OF EMERGENCE

Complex behaviours by creatures of relatively low intelligence working in concert (such as social insects)

Flickr image created by lan Armstrong

EXAMPLES OF EMERGENCE (CONTINUED)

Genetic Expression (genotype becoming phenotype)

HOW DO WE KNOW IT'S EMERGENCE?

No organizing intelligence can be identified
Outcomes can only be predicted through SIMULATION
Simulations cannot be compressed
Outcomes exert constraints over the individual agents

WHY IS THIS IMPORTANT?

Emergent phenomena cause systems to
 SELF-ORGANIZE

Organize from the bottom up

Generate outcomes that cannot be predicted through ordinary means

Operate outside of traditional reductionism

WHAT COULD THIS MEAN FOR INFORMATION SYSTEMS?

- Information systems that:
 SELF-ORGANIZE
 - Operate outside the limitations of human design
 "Self repair" shortcomings in original configuration
 Respond to change DYNAMICALLY
 - Respond to change without human intervention

WHY METADATA?

Metadata, in one form or another:
Lies at the heart of all modern information systems
Allows for interoperability
Allows for searchability
Forms the basis of MACHINE SEMANTIC systems

WHAT ABOUT METADATA NEEDS TO CHANGE

Metadata units need to interact with each other

Metadata units need room to be more machine-centric

Metadata units need to be ontology-agile

HOW CAN WE MAKE THESE CHANGES?

- Use tools like bots, browsers, and evaluators to crosspollinate Metadata units
- Recreate Metadata units as code with encapsulated Metadata tags
- Create room in Metadata schemas for tags reflecting nonhuman organizing principles
- Allow Metadata units to dynamically reference external ontologies
 - Actively (as software)
 - By proxy (cross-pollination)

WHY HASN'T THIS BEEN DONE ALREADY?

Digital technology defies the physical

- Items can exist anywhere on a network
- Items just need to be linked digitally
- Extensive, offsite resources can be easily referenced
- Moving from resource to resource happens at near light-speed

Artificial processing and evaluation are now more sophisticated

Digital resources need less direct human oversight
 Processes can be automated easily

CROSS-POLLINATION

Simpler
Uses less computing power
Could be implemented using multiple mechanisms
More realistic in the short term
Would probably rely heavily on user navigation

CROSS-POLLINATION

- Browsing tools would act as catalysts
 As users moved from one item to another:
 Browsers could make changes to level 2 and 3 tags
 - Evaluate tags for retention
 - Metadata agents would interact by proxy

METADATA AS SOFTWARE

Allows for direct interactions
User navigation less important
More potential for novel connections/channels to Emerge

METADATA AS SOFTWARE Metadata would exist as information within small programs These programs could interact These programs could run on a shared network or the internet

DEFINING OUR TERMS

Metadata files are AGENTS
AGENTS contain data in FIELDS
Each discrete piece of data in a FIELD is a TAG

METADATA TAGS SET IN LEVELS

Level 1: regular, base level
Level 2: identical to level 1 but generated through navigation
Level 3: tags employing machinesemantic metadata

LEVEL I

Will often be assigned by a human cataloger Designed to be machine readable and human semantic Not meant to be edited by mechanical agency

LEVEL 2

Uses the same tag content as Level I tags Meant to be assigned/edited by mechanical rather than human

agency

LEVEL 3

Tag content meant to be machine semantic only Might be human readable/semantic but doesn't have to be Meant to be assigned/edited by mechanistic agency

AGENTS CAN BE FILE GESTALTS

With digital technology files can be split up
Level I tags could be local
Level 2 and 3 tags could be linked from a remote server

AGENTS FOR THE WEB

Should probably be stored in offsite indexes/networks
Similar to keyword indexes used by search engines now
This would keep even Level I tags from being modified unscrupulously

FOCUSING ON SUBJECT TAGS

At this time I have chosen to focus on subject heading tags
Some navigational tags are also part of Level 3
Probably the easiest place to identify useful effects

WALKING THROUGH CROSS-POLLINATION

Takes place in three cycles
Should probably be catalyzed by a browsing agent
On the web process would need to be anonymized and transparent

LEVEL 2 EXCHANGES-DYNAMISM

Designed to augment the Level I tags
May rectify shortcomings in original cataloging
May help respond dynamically to change
All Level 2 and 3 tags must keep a counter value

LEVEL 2 HANDSHAKE CYCLE

1. Handshake Cycle

For exchange to take place, there must be a certain threshold of matching tags and time on agent

LEVEL 2 INTERACTION CYCLE 2. Interaction Cycle Neoplasms **Agent One** Neoplasms by Neoplasms by Site Adolescent, **Histologic Type** Hospitalized Lymphoma Abdominal Leukemia Neoplasms Counter:1 Level:2 New Level 2 ags are created response to navigation **Agent Two** Neoplasms Neoplasms by Neoplasms by Adolescent, Site Histologic Type Hospitalized Leukemia Abdominal Counter:1 Level:2 Lymphoma Neoplasms

With compatibility established tags are exchanged. Set as Level 2 with a Counter value I

LEVEL 2 EVALUATION CYCLE

3. Evaluation Cycle

The last part of the cycle evaluates Level 2 tags by counter value for retention

EVALUATION CYCLE

Uses two types of filter: Survival Of The Fittest (SOTF) Strength Of Weak Ties (SOWT)

THE WHOLE LEVEL 2 SEQUENCE

1. Handshake Cycle

LEVEL 3 EXCHANGES-ATTEMPTING REAL EMERGENT BEHAVIOR

Using tag types distinct from the Level I and 2 tags

Designed to generate/cultivate unique information channels

Could be exploited by search and aggregation tools in a variety of ways

SOME POSSIBLE LEVEL THREE TAG TYPES

Ontology: Synonyms for tags from level I and 2 drawn from external ontology libraries Folksonomy: Synonyms for tags from level I and 2 drawn from external folksonomy libraries CrossLink: Links to other Agents that have been the subject of a successful exchange.

References: References from the Agent's Item and from any Agents that have been the subject of a successful exchange.

Search: The search terms present in the browsing mechanism at the time of a successful exchange.

Identity: Presents as string. Three separate tags generated. Top three Ontology tags+top three Folksonomy tags as determined by Counter values and random number if too many Counter values are equal.

Path: Presents as string. Three separate tags generated. Top three Reference tags+top three Crosslink tags as determined by Counter values and random number if too many Counter values are equal.

Route: Presents as string. Three separate tags generated. Top three Search tags+top three Identity tags as determined by Counter values and random number if too many Counter values are equal.

LEVEL 3 HANDSHAKE CYCLE

1. Handshake Cycle

For exchange to take place, there must be a certain threshold of matching tags and time on agent

LEVEL 3 INTERACTION CYCLE

2. Interaction Cycle

With compatibility established tags are exchanged. Set as Level 3 with a Counter value 1

LEVEL 3 EVALUATION CYCLE

3. Evaluation Cycle

The last part of the cycle evaluates Level 3 tags by counter value for retention

LEVEL 3 PUTTING IT ALL TOGETHER

1. Handshake Cycle

NEXT STEPS

Determine if the idea has utility through simulation
 Use an emergence simulator like NetLogo (if possible)

If these tools are inadequate, create a proprietary simulation methodology

WHAT ARE WE LOOKING FOR

Useful adaptations to navigation or other environmental changes
The appearance of novel channels or networks in the form of linking and navigational pathways

