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Abstract

Topological defects are very well understood so long as the medium in which

they exist is isotropically-elastic. They lead to director fields which are easy to

calculate and superpose linearly so that a system with any number of defects is

analytically treatable. They also have an interaction which is simple in form and

can be accurately described by the Peach-Koehler force. In an anisotropically-

elastic medium, however, such defects are very poorly understood outside of the

single-defect case which was solved by Dzyaloshinskii. In this project, numerical

and approximate analytical techniques are applied in order to better understand

the interaction between two defects in an anisotropically-elastic medium and

how it differs from the well-understood isotropically-elastic case.
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1 Background

1.1 Nematic Liquid Crystals

In the field of condensed matter, liquid crystals are considered to be systems which are

intermediate between crystals and liquids in terms of symmetry and order. Liquids

are entirely symmetric both positionally and orientationally. This is because the

constituent particles of a liquid have random distributions of position and orientation,

so the system is identical under any translations and rotations. We therefore say that
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liquids have no order.

In crystals, however, the constituent particles oscillate around lattice sites and have

a fixed orientation if they are not spherically symmetric, for example the water

molecules in an ice crystal. This heavily restricts the transformations that leave the

system invariant, thus the perfect symmetry we see in liquids is broken in crystals.

Thus, we say that crystals have both positional and orientational order.

Framing the distinction between liquids and crystals in terms of the presence or

absence of these types of order naturally leads one to consider systems where only

some order is present. We call such systems liquid crystals. There are, of course,

many systems we could imagine that fit this description of having partial order, but

for this project we focus on a particular type of system: nematic liquid crystals.

Nematics have orientational order along one axis with no preferred direction on the

axis. This is qualitatively similar to magnetic moments aligning in the Ising model,

with the important distinction that in nematics if we rotate a particle by 180 degrees

to what would be an anti-aligned state in the Ising model, the system is unchanged.

We can imagine nematic liquid crystals as describing the behavior of a soup of rod-

shaped particles which due to interactions with each other spontaneously align them-

selves. It is clear, then, that in the nematic phase the lowest energy configuration

will feature all particles oriented along the same axis, as depicted in figure 1.

1.1.1 Mathematical Description

Nematic liquid crystals can be most completely described mathematically through

the nematic order tensor,

6
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Figure 1: Depiction of a nematic in the uniform configuration

Qαβ = S

[
3

2
nαnβ −

1

2
δαβ

]
(1)

where S is the scalar order parameter and n̂ is the nematic director [4]. The nematic

director, defined up to 180 degree rotations as seen previously, describes locally at each

point in the system the direction of nematic order, and the scalar order parameter

gives information about how well the particles are aligned with the local director

at each point. If we restrict ourselves to the case of perfect nematic order, which

physically corresponds to the low-temperature limit where thermal fluctuations are

too small to disrupt order, we can assume S = 1 everywhere and we may as well

work directly with n̂. Since the director is by definition a unit vector, in the two-

dimensional case it becomes simpler for many purposes to instead describe the system

with φ, the angle the director makes with respect to the positive x-axis.

1.2 Elastic Energy

Thus far, we have defined a description for nematics in terms of the director and

established that the minimum-energy configuration is one in which all particles are

7
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oriented along the same axis, i.e. the director angle is the same everywhere. Nat-

urally, we now want to consider what happens if the director angle is not the same

everywhere, that is we want to develop an expression for the elastic energy associated

with deviations from the uniform configuration. To do so, we must first consider what

form these deviations can take.

1.2.1 Distortions

Supposing as before that n̂ is a field defined everywhere and imposing the constraint

that n̂ is also continuous and differentiable since sudden changes in the director

would be heavily disfavored energetically, we must have that the elastic energy is

associated with gradients of the director field. Since the director is a vector, there

are unsurprisingly a few ways that these gradients could be oriented with respect to

the local average director. We can best intuit what these distinct distortional modes

are by considering some examples.

Suppose there is some region in which the director points on average along the x-axis

and varies in the x-y plane depending only on the y-coordinate. This gives a behavior

that looks like the end of a rope fraying, and this type of distortion is called splay.

Now suppose that the average director is again along the x-axis but we instead vary

the director in the plane depending on the x coordinate. This distortion is called

bend, and we can picture it as similar to bending a bundle of dry spaghetti.

Finally, consider the same picture again except with the variation depending on the z

coordinate (and still acting in the plane). This last type of distortion is called twist,

and can perhaps be best visualized as twisting some sort of flat ribbon by its ends.

These are the only three types of distortion possible in three dimensions, though of

8
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Figure 2: Illustration of the three nematic distortion modes.

course some general distortion can be a linear combination of these three distinct

modes. We now can construct expressions for each of these modes of distortion from

products of n̂ and the Del operator, ∇. Splay is calculated as n̂(∇ · n̂), bend is

n̂× (∇× n̂), and twist is n̂ · (∇× n̂) [4]. It is notable that the director has to appear

twice in each of these formulae to preserve the property of nematics that flipping the

director does not change the state.

1.2.2 Frank Free Energy

The Frank free energy describes the elastic energy of a nematic in terms of the three

modes of distortion. It is given by:

G =

∫∫∫ [
K11

2
(∇ · n̂)2 +

K22

2
(n̂ · (∇× n̂))2 +

K33

2
|n̂× (∇× n̂)|2

]
d3x (2)

Each of the three terms in the above equation is of the form k
2
(distortion)2, perhaps

unsurprisingly reminiscent of the equation for the energy of a spring, k
2
x2 since that

too describes a system that resists distortion, albeit in a much simpler scenario.

Further, each of the distortion modes has its own associated elastic constant Kii. In

principle some arbitrarily specified particle-particle interaction could be much more

sensitive to one type of distortion than another, so in general the three modes of

distortion will contribute differently to the total elastic energy.

9
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Now, restricting the system to two dimensions the twist term disappears, leaving us

with just the splay and bend terms.

G2D =

∫∫ [
K11

2
(∇ · n̂)2 +

K33

2
|n̂× (∇× n̂)|2

]
d2x (3)

Since the most interesting behavior of a nematic will depend on the relationship

between the two elastic constants and not on their overall magnitude, it is convenient

to now reexpress equation 3, substituting K = K11+K33

2
and ε = K11−K33

K11+K33
:

G2D =
K

2

∫∫ [
(1 + ε)(∇ · n̂)2 + (1− ε)|n̂× (∇× n̂)|2

]
d2x (4)

K is the overall elastic constant, and we can generally neglect it as unimportant to

the behavior of the system (assuming the low-temperature limit henceforth), more

technically choosing our units always such that K
2

= 1. ε we refer to as the elastic

anisotropy, a dimensionless parameter dictating how different the bend and splay

constants are. If both modes of distortion contribute equally to the elastic energy,

ε = 0 and we say we are in the isotropically-elastic case. All other values of ε

correspond to elastically anisotropic systems, with values approaching 1 indicating

that the contribution from bend will be very small compared with the contribution

from splay, and values approaching −1 indicating the opposite.

1.3 Topological Defects

In previous sections we established that the minimum-energy configuration of a ne-

matic is a uniform configuration, e.g. φ = 0 everywhere, and that any deviation from

this configuration results in a higher free energy and is thus disfavored. One would

10
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naively conclude from this that any nematic system will always be in a uniform con-

figuration, barring thermal fluctuations, but it turns out that this is very much not

the case.

Much as random seeding gives rise to defects in ordinary crystals, the condensation

into a nematic phase from an initial isotropic phase where all particles are oriented

randomly can also cause defects. These defects in a nematic are disclinations, the

orientational equivalent to a dislocation in an ordinary crystal, and they have the

property of being topologically protected, so they are also referred to as topological

defects. This topological protection formally means that there is no continuous trans-

formation from a defected configuration to the uniform configuration, and so defects

are stable. Physically, this means that defected configurations are very deep local

minima of the free energy where the only escape is to input enough energy to the

system to completely lift the defected region out of the nematic phase before letting

it recondense into a uniform configuration.

We must now consider exactly what form this topological protection takes. That is,

we must determine a quantity of a nematic configuration which is conserved under

continuous transformations of the director field. This conserved quantity will then be

the topological invariant associated with disclinations.

To find this quantity, consider generally what a defect could look like in a nematic:

there will be some point around which the director angle φ changes as a function

of θ, where θ is the polar angle treating the defect point as the origin. There is an

additional constraint, which is that φ must be continuous, i.e. φ(0) = φ(2π). Coupled

with the nematic property that φ+ π = φ, we can arrive at some hypothetical defect

of the form φ(θ) = n
2
θ where n is an integer. We will see shortly that this is indeed

the form a defect takes in the isotropically-elastic case.

11
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Figure 3: Illustrations of topological defects of charges -1,-1/2,1/2, and 1, reading
respectively from top left to bottom right.
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Now, a sensible way to describe such a defect with a scalar quantity would be the

total rotation of the director around a loop enclosing the defect. Such a loop is called

a Burgers Circuit, and the resulting quantity is called the topological charge, defined

as follows [4]:

qenclosed =
1

2 ∗ π

∮
dφ (5)

This definition is reminiscent of Gauss’ Law for electrostatics, highlighting a helpful

qualitative picture of topological defects as being similar to charged particles, albeit

with important differences when examined in detail.

For our above example, the topological charge given by Eq. 5 is n
2
. In theory, a defect

could exist with n equal to any integer, positive or negative, however such defects

would in practice generally not be stable. This is because only the total topological

charge in a system is conserved, so defect cores with a large charge will generally split

into multiple defect cores with smaller charges. In another parallel with electrostatics,

like-charge defects will repel each other while opposite-charge defects will attract each

other and annihilate. The splitting of defect cores can be viewed as a manifestation of

this like-charge repelling property and results in only the lowest-charge defects being

of much relevance.

1.3.1 Isotropically-Elastic Case

Let us now see how the specific geometry of a disclination arises from its topological

properties coupled with the minimization of the Frank free energy.

In the isotropically-elastic case, the terms in Eq. 4 combine, reducing dramatically

13
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to

G =
k

2

∫∫
|∇φ|2d2x (6)

where we have also switched to using the director angle directly.

Finding the minimum configuration then can be converted into a differential equation,

i.e. the Euler-Lagrange equation, which yields the following relation:

∇2φ = 0 (7)

We then see that the earlier presumed form of a topological defect satisfies this

equation and is thus the minimum-energy form of a defect in an isotropically-elastic

medium.

1.3.2 Anisotropically-Elastic Case

When the medium is no longer taken to be isotropically-elastic, the calculation be-

comes significantly more involved, though it is still possible to find analytically the

field of a single defect.

We begin from Eq. 4, but now expand the operators and the director explicitly in

polar coordinates. In doing so, we note that the director field should be independent

of the radial coordinate, only depending on θ. This yields

G =
k

2r2

∫∫ (
∂φ

∂θ

)2

(1 + ε cos(2(φ− θ)))d2x. (8)

Then, finding the Euler-Lagrange equation as we did previously for the isotropically-

14
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elastic case gives us

0 =
∂2φ

∂θ2
(1 + ε cos 2(φ− θ)) +

(
2
∂φ

∂θ
−
(
∂φ

∂θ

)2
)
ε sin 2(φ− θ). (9)

Equation 9 is still not so straightforward to solve, being second-order and nonlinear.

Fortunately, a solution was found by Dzyaloshinskii [2], given by

θ = p

∫ φ−θ

0

[
1 + ε cos 2x

1 + p2ε cos 2x

]1/2
dx (10)

where p is itself given by solving

π = (q − 1)p

∫ π

0

[
1 + ε cos 2x

1 + p2ε cos 2x

]1/2
dx. (11)

This solution is clearly not particularly easy to work with, as it involves first solving

for p via an integration that must be done numerically, then solving for φ once the θ

associated with a certain difference φ− θ is found by integrating again.

(a) ε = −0.5 (b) ε = 0.5

Figure 4: Illustrations of a 1/2 defect in anisotropically elastic media.

While this full solution is important in the numerical work, in order to have a point

15
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of comparison for our analytic approximations for small ε, we want to similarly find

the first-order in epsilon component of the Dzyaloshinskii solution.

To do so, we simply assume that φ is of the form

φ = qθ + εC sin(2(1− q)θ) + . . .

and plug into Eq. 9, neglecting higher powers of ε and solving to fix the constant and

obtain the solution

φDZ ≈ qθ − ε

4

q(2− q)
(1− q)2

sin(2(1− q)θ). (12)

1.4 Interacting Defects

Thus far we have discussed only systems with a single defect, but of much more

interest are systems containing two defects interacting with each other. As we show

later on, studying this interaction is not straightforward in the anisotropically-elastic

case since the Euler-Lagrange equation is nonlinear. In the isotropically-elastic case,

though, we can simply take the director field to be a superposition of the individual

director fields of two defects. This then allows us to calculate the interaction energy

and thus the inter-defect force in one of two ways.

The first and most obvious way is to directly integrate the free-energy. In [1] this

is done via a surface integral around each defect after introducing cuts along the

discontinuity where φ jumps from −π to π. The result, also obtained in [4] via a

16
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different integration approach is:

Eint = 2πkq1q2ln(
a

d
) (13)

where a is the radius of the defect cores and d is the separation between the defects.

Thus, oppositely-charged defects indeed attract similarly to electrostatic charges, with

a similar ln(d) potential as in 2D electrostatics (although different to the 1
d

potentials

of 3D electrostatics). This in turn tells us that the force scales as 1
d
.

The other, more elegant way to find the interaction is via the Peach-Koehler force.

Originally developed for dislocations in ordinary crystals, this approach relies on the

linearity of the medium. It treats the interaction as the response of one defect to the

”effective stress” induced at its location by the other defect [3].

Formally,

fPK = (σ · b)× ẑ

where in 2D the important components of σ are given by

σzi = ∂iφ

and b is the effective Burgers vector, given by b = 2πqẑ. Computing the Peach-

Koehler force using the isotropic defect solutions reproduces the above result of a

force which scales as 1
d

and is attractive for oppositely-charged defects. Further, the

force found is equal and opposite when exchanging which defect we view as the one

being acted upon by the stress of the other, which we should expect from Newton’s

third law, and is a good check of the validity of this approach.

17
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2 Methods

While the isotropically-elastic case could be analyzed exactly for two defects and

the anisotropically-elastic case yielded the semi-analytic Dzyaloshinskii solution for a

single defect, it is not possible to find an exact analytic solution for the two defect

anisotropically-elastic case.

In order to probe the structure and behavior of the director field under these circum-

stances, numerical and approximate analytic methods were used in conjunction to

understand the nearly-isotropic regime (|ε| / 0.15). The numerical methods can also

be readily applied to the regime of high elastic anisotropy.

This section will first describe the derivation of the differential equation which the

minimum-energy director field must satisfy, then will address specifically the numeric

and analytic techniques used in finding solutions.

2.1 Director Field Equation

Starting from Eq. 4, we want to derive the differential equation describing the

minimum-energy director field for a general configuration of defects. Unlike when

deriving the equation that yielded the Dzyaloshinskii solution, we can no longer make

the assumption that the director angle is independent of r. Indeed, brief consider-

ation reveals that it is no longer convenient to use polar coordinates when multiple

defects are present, so we first write the free energy density explicitly in cartesian

coordinates, using also the fact that n̂ = cosφx̂+ sinφŷ:

g =
k

2

[
(1 + ε)(φy cosφ− φx sinφ)2 + (1− ε)(φx cosφ+ φy sinφ)2

]
(14)
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Where φx and φy refer to the derivatives of φ with respect to the subscripted coordi-

nate.

From this, we must find the Euler-Lagrange equation according to the following:

∂g

∂φ
− ∂

∂x

∂g

∂φx
− ∂

∂y

∂g

∂φy
= 0 (15)

We calculate each of these terms separately:

∂g

∂φ
= −2 cos(2φ)φxφy + ε sin(2φ)(φ2

x + φ2
y),

∂

∂x

∂g

∂φx
=

∂

∂x
[2φx(1− ε cos 2φ)− 2ε sin(2φ)φy]

= 2(φxx(1− ε cos 2φ)− ε sin(2φ)φxy + 2ε sin(2φ)φ2
x − 2ε cos(2φ)φxφy),

∂

∂y

∂g

∂φy
=

∂

∂y
[2φy(1 + ε cos 2φ)− 2ε sin(2φ)φx]

= 2(φyy(1 + ε cos 2φ)− ε sin(2φ)φxy − 2ε sin(2φ)φ2
y − 2ε cos(2φ)φxφy).

Combining these components together yields the differential equation:

∇2φ+ ε
[
sin 2φ(φ2

x − φ2
y − 2φxy) + cos 2φ(φyy − φxx − 2φxφy)

]
= 0 (16)
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Computing the minimum-energy defect configuration has now been reduced to solv-

ing this differential equation. This is progress, though it quickly becomes clear that

there is little hope of solving the problem analytically. Thus, we turn to a combina-

tion of numerical and approximate analytical methods in order to find solutions and

understand the important behavior.

2.2 Numerical Approach

The director field equation derived above is a nonlinear, second-order partial differen-

tial equation. In order to solve this equation, we deemed a finite-difference relaxation

method with Neumann boundary conditions to be suitable. This choice of Neumann

boundary conditions is physically reasonable so long as no defects are particularly

close to the boundary and the total topological charge inside the system is 0. Since

we are interested in probing the interaction between +1
2

and −1
2

defects, this assump-

tion is satisfied so long as the system size is chosen to be large compared to the defect

separation. Generally, we took the system size to be 1000 by 1000, restricting the

range of separations we studied to not put defects too close to the boundary

To solve, we begin by defining a square grid of director angles indexed by i, j which

will after the computation contain the numerical approximation to the minimum-

energy director angle field. Proper initialization of the angles is required both to

allow convergence of the algorithm and to allow us to enforce that the two defects

are present where desired.

Fortunately, we have the exact Dzyaloshinskii solution for a single anisotropically-

elastic defect, so we take the initial configuration to be the sum of two Dzyaloshinskii

solutions, one centered at each of the defect positions. To ensure that the defects are

fixed in place, we define a region of some small radius around each defect to be the
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defect core in which the director field is simply initialized to the correct Dzyaloshinskii

solution for that defect and left unchanged by the solution algorithm. We know this

to be an approximately correct approach so long as the core radius is small compared

to the defect separation, as shown via the analytic approach we take in section 2.3.

Next, we substitute all derivatives in Eq. 16 with their respective finite-difference ap-

proximations, derived from taylor series expansions around a point. Centered differ-

ences were used predominantly due to their improved accuracy compared to one-sided

differences, though along the boundaries such one-sided differences had to be used for

first derivatives. This is due to our choice of Neumann boundary conditions requiring

first derivatives to be calculated at the boundary where the centered difference is of

course undefined.

Now, having discretized both our system and the differential equation, we are ready

to begin the process of solving. We repeatedly iterate through the array of director

angles, at each point updating the angle φij by locally solving the discretized differen-

tial equation using the surrounding eight angles as inputs. Provided we have chosen

an initial configuration sufficiently close to the minimum-energy configuration, this

scheme should hopefully converge after some number of iterations according to an

appropriate stopping criterion.

For our stopping criterion, we define a way to determine how far a given configura-

tion is from the minimum energy configuration. We know that the minimum-energy

configuration satisfies the differential equation everywhere, so after each iteration we

compute the LHS of the differential equation at each lattice point and keep track of

the maximum absolute value we encounter. This quantity will be zero (up to some

discretization error) for the minimum-energy configuration, so we choose a tolerance

and stop the algorithm when the maximum absolute deviation is less than the cho-
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Figure 5: Illustration of a sample calculation neighborhood for the relaxation method.
The middle angle is updated according to the 8 surrounding angles.

sen tolerance. This way, when the stopping criterion is satisfied we can be confident

that the resulting director field is an accurate representation of the minimum-energy

configuration at each point.

In practice, we found that the convergence of the algorithm was not always stable. It

would often converge quickly to some relatively small minimum then diverge rather

slowly away from it. Thus we often had to choose the stopping criterion to be whatever

minimum could be reached with the method rather than setting it arbitrarily small.

The algorithm as described so far is nearly complete, however there remains a major

flaw that caused significant issues in our earliest numerical results. This flaw, as we

discovered, has to do with a failure to take into account the key property of nematics:

their symmetry under 180 degree rotations of any local director.

Looking back at the differential equation explicit derivatives of the director angle

appear, so we can begin to understand the problem by considering what occurs at

the edges of the angular domain. The π radian rotation induced by each defect

unavoidably guarantees that there is a line of lattice points where, for example, an

angle slightly above 0 radians is directly adjacent to an angle slightly below π ra-
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dians. Physically we understand that the derivative of φ across this line should be

fairly small. Numerically, however, we will obtain a large derivative because 0 is not

mathematically equal to π, effectively creating a discontinuity where there should be

none.

This may seem to be a very fundamental issue with our approach, but fortunately

there is a reasonably simple albeit somewhat inelegant workaround. There is always

guaranteed to be a discontinuity at the boundaries of the angular domain, but we are

not forced to use the same angular domain for each calculation. Instead, we devise a

way to dynamically adjust the domain depending on the local average director angle.

In any neighborhood of adjacent lattice points, φ varies relatively little, so we can al-

ways find a domain that shifts the discontinuity away from the angles we are currently

calculating with. By doing so, we resolve the issue and complete the algorithm.

2.3 Approximate Analytic Approach

Starting again from Eq. 16, we want to identify a regime in which we can make some

analytical progress. An obvious choice, and the one we decided to investigate, is the

regime in which ε is small. As we have the exact solution for ε = 0, we can hope to

make progress via a perturbative method.

Specifically, we suppose that the solution φ can be expanded in terms which are

proportional to powers of ε:

φ = φiso + εφc + ε2φc2 + . . . (17)

In principle we can include as many terms as we wish, however for simplicity we
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restrict ourselves to only the first-order correction, which should capture most of the

important behavior in the small ε limit.

We now substitute the expanded expression for φ into Eq. 16, working through a great

deal of algebra and neglecting higher-than-linear powers of ε to obtain the following:

∇2φc =
q1(2− q1)ε

r21
sin (2(1− q1)θ1 − 2q2θ2) (18)

+
q2(2− q2)ε

r22
sin (2(1− q2)θ2 − 2q1θ1)

− 2εq1q2
r1r2

sin ((1− 2q1)θ1 + (1− 2q2)θ2)

This expression is as expected somewhat simpler than our starting point. However, it

still resists analytic solution, so we need to make further approximations in order to

understand its behavior. We now will take limits of the defect separation in order to

determine the structure of the director field in various regions. The three regions we

can investigate this way are: far from both defects compared to the defect separation

d, close to one defect compared to d, and midway between the defects in a region

which is small compared to d.

Each of the expressions we find will have some radial dependence which follows from

the order of terms we choose to keep, as well as an angular dependence which is the

more qualitatively important part of the solution. We will later compare the angular

components against the numerical results.

2.3.1 Far From Both Defects

The first limit we take is that the distance from the origin to the test point, r, is much

larger than the defect separation d. Neither of these parameters appears explicitly in
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Eq. 18, so the first order of business is in transforming to a polar coordinate system

with the origin at the midpoint between the two defects. This will allow us to write

r1, r2, θ1, θ2 in terms of r and θ, expressions which we can then expand in orders of

the small quantity d
r
.

Figure 6: Geometric picture of the regime d� r

According to the geometry in Fig. 6, we can write the quantities as follows:

1

r1
=

1√
r2 + (d

2
)2 + rd cos θ

sin θ1 =
r sin θ√

r2 + (d
2
)2 + rd cos θ

cos θ1 =
d
2

+ r cos θ√
r2 + (d

2
)2 + rd cos θ

The similar quantities associated with defect 2 are not explicitly written here because

they are nearly identical to the above, with just a few differences of sign.

Now we factor out powers of r in order to obtain expressions that are written in terms

of d
r
, then we replace the resulting expressions with taylor series approximations which
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are first order in d
r
, yielding the following:

1

r1
≈ 1

r

(
1− 1

2

d

r
cos θ

)
sin θ1 ≈ sin θ

(
1− 1

2

d

r
cos θ

)
cos θ1 ≈ cos θ +

1

2

d

r
sin2 θ

As mentioned above, we obtain roughly similar results for the quantities associated

with the defect 2 coordinates. In order to plug in the angular expressions, we first

need to rewrite the sines which appear in Eq. 18. Without much loss of generality, we

choose defect 1 to be the negative defect so that we can properly expand the sines.

The opposite choice would also be appropriate and would yield a result with very

similar behavior.

Examining the first term, we obtain

sin(3θ1 − θ2) = cos θ2(3 sin θ1 − 4 sin3 θ1) + sin θ2(3 cos θ1 − 4 cos3 θ1)

≈ sin 2θ +
d

r
(sin θ − sin 3θ) (19)

For the second term we get

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

≈ sin 2θ (20)
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And for the third term we find

sin 2θ1 = 2 sin θ1 cos θ1

≈ sin(2θ)− 1

2

d

r
(sin θ − sin 3θ) (21)

Now we simply combine these angular terms with the rest of the equation and neglect

higher powers of d
r

where they appear to arrive at the final differential equation

∇2φc = − ε
2

d

r3
[sin θ − 5 sin 3θ] (22)

This equation is quite simple, and we can guess the form of the solution with knowl-

edge of how the Laplacian operator acts in polar coordinates:

φc =
d

r
ε(Aθ cos θ +B sin 3θ) (23)

Plugging this ansatz into the equation, we obtain the coefficients A and B, and can

then write the solution as:

φc =
dε

2r

[
1

2
θ cos θ − 5

9
sin 3θ

]
(24)

An important caveat to the solution we have just derived is that it only captures the

anisotropically-elastic behavior of the defects. There is also of course an influence

from the isotropically-elastic components of the defect fields, and we need to obtain

a description of these components to finish our treatment of this region.

We do so by expanding the isotropic component w.r.t the same small parameter as
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throughout this section:

φ1,iso = q1θ1 = q1 arctan

(
sin θ1
cos θ1

)
≈ q1 arctan

(
2
d

r
sin θ

)
≈ 2q1

d

r
sin θ (25)

For defect 2, we similarly obtain

φ2,iso ≈ −2q2
d

r
sin θ (26)

2.3.2 Midway Between Defects

Now we want to consider the director field in a small region around the midpoint

between the two defects. The setup for this case is identical to that of the previous

section, we simply take the opposite limit, that is r
d
� 1.

Figure 7: Geometric picture of the regime r � d expanded near the origin

After changing coordinates and applying our approximation we get for the quantities

associated with defect 1:

1

r1
≈ 2

d

(
1− 2

r

d
cos θ

)
sin θ1 ≈ 2

r

d
sin θ

cos θ1 ≈ 1
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and as before the similar quantities for defect 2 are nearly identical, but with some

signs flipped. We now examine the three sines appearing in Eq. 18 separately, finding:

sin(3θ1 − θ2) ≈ −6
r

d
sin θ + 6

r

d
sin θ = 0

sin(θ1 + θ2) ≈ −2
r

d
sin θ + 2

r

d
sin θ = 0

sin(2θ1) ≈ 4
r

d
sin θ

We see that already by approximating the sines we have reduced the equation down

to a single term. Writing the new equation out, we find

∇2φc = 8ε
r

d3
sin θ (27)

which we can easily solve to find

φc = ε
r3

d3
sin θ (28)

As in the previous case, we add the two isotropic corrections as well, which in this

case are proportional to r
d

but otherwise exactly match those from before.

These three corrections together give us the complete picture of the director field

close to the midpoint of the two defects.
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2.3.3 Close to One Defect

The final region that we are interested in finding the approximate director field in

is the region close to one defect or the other with respect to the defect separation.

Formally, this corresponds to the limit r
d
� 1, just as in the previous section. The

key difference here is that instead of working in coordinates centered at the midpoint

between the defects, we work with the coordinates of defect 1, rewriting r2 and θ2 in

terms of r1, θ1, and d before expanding in the small parameter.

Figure 8: Geometric picture of the regime r � d expanded near defect 1

The way we rewrite these coordinates is not too dissimilar from the previous two

sections, and as before comes directly from the geometry of the configuration.

1

r2
=

1√
r2 + d2 − 2rd cos θ

sin θ2 =
r sin θ√

r2 + d2 − 2rd cos θ

cos θ2 =
r cos θ − d√

r2 + d2 − rd cos θ

Applying our approximation yields:
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1

r2
≈ 1

d

(
1 +

r

d
cos θ

)
sin θ2 ≈

r

d
sin θ

cos θ2 ≈ −1

Unlike in the previous two sections the two defects are no longer on equal footing in

this treatment, so our choice of defect signs does matter to the result that we obtain.

We do want to understand the director field close to a defect regardless of its sign, so

we treat the two cases separately, starting with the case q1 = −1
2
.

In this case, the sines initially expand into the same form as the previous two sections,

at which point we can substitute in the appropriate approximations.

The angular terms we get are:

sin(3θ1 − θ2) ≈ − sin 3θ − r

d
cos 3θ sin θ

sin(θ1 + θ2) ≈ − sin θ +
r

d
sin2 θ

sin(2θ1) = sin(2θ)

Now substituting these terms into the full equation yields:

∇2φc =
5ε

4

1

r2
sin 3θ +

ε

8

1

rd
(5 sin 4θ − sin 2θ) (29)

We recognize the first term above as corresponding to the component of the Dzyaloshin-

skii solution which is linear in ε. This is fully expected and gives us some confidence
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that we have obtained the correct equation. The second term contains the influence

of the second defect and it is what we will now focus on.

We can as before simply guess the form of the solution to the second term:

φc,−1 =
εr

8d
(A sin 4θ −B sin 2θ) (30)

Plugging in and solving for the coefficients, we obtain

φc,−1 =
ε

24

r

d
(sin 2θ − sin 4θ) (31)

Now we can examine the case where q1 = 1
2
.

Expanding the sines similarly to previous sections we get the terms

sin(θ1 + θ2) ≈ − sin θ +
r

d
cos θ sin θ

sin(3θ2 − θ1) ≈ sin θ + 3
r

d
cos θ sin θ

sin(2θ2) ≈ −2
r

d
sin θ

which we then plug into the equation to yield:

∇2φc = −ε3
4

1

r2
sin θ + ε

3

8

1

rd
sin 2θ (32)

Again, the first term is the first-order Dzyaloshinskii correction, and the second term

is what we examine further, finding the solution:
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φc,−1 = − ε
8

r

d
sin 2θ (33)

As in the previous section, we now need to take into account the isotropic contribution

to the corrections we have just found.

This is simple enough to accomplish. Consider the isotropic component for defect 2:

φc,iso = q2θ2 = q2 arctan

(
r sin θ

r cos θ − d

)
≈ −r

d
q2 sin θ

Thus, we now have a complete description for the director field close to one defect.

3 Results and Discussion

Having implemented a numerical method and having worked through the analytic ap-

proach to the extent possible, we are now prepared to apply these tools to understand

some key behavior of the anisotropically-elastic system.

The two key things we study with these methods are the structure of the director

field and how the strength of the interaction depends on epsilon. We will tackle each

of these separately.

3.1 Structure of Director Field

The most straightforward of the three effects to examine is the structure of the director

field. By this, we mean the subtle deviations from the isotropic solution, which
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happen to be exactly the deviations we calculated analytically in the previous section.

The analytic approximations constitute predictions which we wish to check against

numerical results. While not a substitute for experiment, agreement between the

two parallel approaches we have taken should lend some amount of credibility to our

results since the two approaches have been independent since the derivation of Eq.

16.

Through the approximate analytical methods, we have picked out the most dominant

deviations in the small-epsilon limit for four regions: far from both defects, near the

midpoint of the two defects, and close to either defect. Each of these results has some

dependence on r, as well as some angular dependence. The r-dependence for the most

part defines the range of distances over which each approximation is valid, as higher-

order terms will become significant at some point. We are thus most interested in the

angular dependence, which in each approximation’s region of validity will give us a

sort of ’fingerprint’ we can easily identify in the numerical results. We accomplish this

by taking fourier transforms of φ− φiso along specific circular loops in the computed

director fields to pick out the angular components that give rise to the deviations.

Let us first examine the field far from both defects. In this regime, we expect strong

peaks at frequencies of 1 and 3, with additional smoothly decreasing amplitudes at

other frequencies, arising from the θ cos θ term. In figure 9 the angular components

from the numerical result are shown. We see that these components appear to match

qualitatively what we expect from the analytic result.

Now, close to the midpoint of the defects we expect just one strong peak at a frequency

of 1. Repeating a similar procedure as above, figure 10 shows the angular components

in this region of the numerical result. This result again appears to agree with the

analytical approximation.
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Figure 9: Angular components of φ far from the defect pair.

Figure 10: Angular components of φ close to the midpoint of the defect pair.
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Finally, we move onto the results near each defect. Near the negative defect we see

in figure 12 that there are significant amplitudes at frequencies 1,2,3, and 4 as we

expect from the analytic prediction, but we also see some contributions from higher

frequencies. There are a couple of possible explanations for these. First, as they

are fairly small they could be higher-order effects in either epsilon or r
d

not taken

into account in our analysis. The other possibility is that these components arise

effectively as noise from our method, as selecting points on a circle from a square

lattice necessitates taking points at slightly different radii, an effect more prominent

for smaller circles like the kind we must take for the analysis close to a defect. Either

explanation would be consistent with the analytic prediction agreeing with our result.

Near the positive defect, we expect contributions at frequencies of 1 and 2, and in

figure 11 this is what we see. Though the contribution at frequency 2 is relatively

small, it is clearly present and somewhat larger than any higher frequency contribu-

tion. We again see a little bit of activity at some higher frequencies, which may be

explained in the same way as for the negative defect.

Figure 11: Angular components of φ near the positive defect.
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Figure 12: Angular components of φ near the negative defect.

3.2 Dependence of Interaction on ε

Finally, we want to explore how the elastic anisotropy influences the strength of the

interaction between the defects. Through our numerical work, we have at hand the

capability to compute director fields across a range of anisotropies and defect sepa-

rations. We can easily calculate the free energy of each of these director fields via

numerical integration, (taking care as in the solution process to avoid the disconti-

nuity inherent in φ) then use the computed energies to approximate the derivative

of the energy with respect to separation for a specific separation across a range of

anisotropies. This derivative is of course the negative force between the defects, thus

giving us a measure of the strength of the interaction.

Before diving in, let us briefly consider qualitatively what we might expect. We know

that high anisotropies effectively allow one mode of distortion to store some of the

total distortion required by the topological charge with little free energy penalty.

Thus we expect that at either extreme in ε the strength of the interaction should

be significantly lower than at more moderate values. Consequently, we also expect a
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maximum in the interaction strength somewhere in these moderate values although

we can’t say a priori whether it should appear at ε = 0 or at some other value.

The location of the maximum should likely depend on the specific configuration of

the defects including their orientations, as well as on some concept of how easily

distortions of one mode can be rearranged into distortions of the other mode.

Now that we have a qualitative expectation, let’s compute the numerical result. We

choose our defect configurations to be as in figure 13 and compute configurations

at separations of 380, 400, and 420 to obtain an approximation of the derivative at

d = 400. As with all previous results, we take the system size to be of side length

1000 with 2000 lattice divisions in each dimension and set the defect core radius to

be 3.

Figure 13: Illustration of the defect configuration used for the results in this section.

Figure 14 shows this numerical result, and we see immediately that it behaves in

line with our qualitative expectation. The interaction strength is low at extreme

anisotropies and has a maximum at a moderate anisotropy near ε = −0.2. The

location of the maximum is the most interesting part of the result, as it shows that
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this specific defect configuration would be more favorable in a medium that has a

slight positive anisotropy rather than a slight negative anisotropy.

Figure 14: The (approximate) derivative of the interaction energy with respect to the
defect separation, taken at a separation of 400.

For the defect configuration which has the opposite sides of the defects facing inwards,

some early computational results of ours suggested that the interaction strength curve

would be a reflection over ε = 0 of the curve in figure 14, though time constraints

disallowed us from running this case at full resolution to verify. If that result were

to hold, these findings suggest that there is a different energetically-favorable defect

configuration depending on the anisotropy of the medium. Therefore, in a real system

where defects are free to rotate and move we would predict that the defects should

rotate towards achieving this favorable configuration as they move towards each other

to annihilate.

As a final note on the anisotropy-dependent interaction strength, we want to briefly

demonstrate how the Peach-Koehler force breaks down. We of course expect from

the nonlinearity of Eq. 16 that this description should not hold, but it warrants

demonstration that even for small anisotropies it fails to be accurate.
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For this we consider the corrections near a defect as found in section 2.3.3 to be

the influence of the other defect, and then compute the stress and force using these

correction fields. This stress is, if the PK approach were to be valid in this regime,

the effective stress due to one defect at the location of the other defect, to first order

in ε. Working through from the definition of the PK force we find that

fPK ∝
∂φc
∂y

(1 + ε) (34)

Computing this for each of the two defects and neglecting the ε2 term that arises, we

get:

f−+ ≈ −
1

2

(
1

2
+

3

4
ε

)
(35)

f+− ≈ −
1

2

(
1

2
+

5

12
ε

)
(36)

In the above expressions we have dropped some constants, but the key takeaway is

that the calculated force of the negative defect on the positive defect is not the same

as the other way around. The two expressions only match for ε = 0, where they

give the same Peach-Koehler result as we found before. This asymmetry in the two

forces now violates Newton’s Third Law, demonstrating that we unfortunately can’t

use this very nice approach even for small elastic anisotropies.

4 Conclusion

To briefly conclude, the goal of this work was to gain insight into the behavior of

interacting defects in anisotropically-elastic media. We accomplished this chiefly via

a numerical approach, using a finite-difference relaxation method to compute direc-

40

41

Swift: Topological Defects in Nematic Liquid Crystals

Published by DigitalCommons@Macalester College, 2022



tor fields for configurations of fixed defects. We supplemented this numerical work

with approximate analytic methods to provide context and corroborate some of the

numerical results. In the end we were able to find some details of the structure of

the director field in various domains, demonstrate the invalidity of the Peach-Koehler

force for anisotropically-elastic media, and find the dependence of the interaction

strength on the degree of elastic anisotropy. This last result notably leads to a qual-

itative prediction about the dynamical behavior of defects in anisotropically-elastic

media, i.e. that they should rotate to some preferred orientation with respect to

one-another as they move towards annihilation.
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