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Lie Algebras and the Poincare Group

Jack Hempel Costello
Macalester College, St. Paul – Minnesota e-mail: jhempelc@macalester.edu

Abstract – This paper will discuss my research with
Professor Tonnis ter Veldhuis on the Poincare Group
and other similar algebraic approaches based on the
Minkowski Metric. This paper will begin with an
introduction discussing group theory and expand on its
specific applications in theoretical physics.

I. Group Theory

Group theory is the analysis of groups, sets of abstract
elements along with an operation where the elements must
be associative, have an inverse element, and have an identity
element e where ∀x ∈ A : ex = x. Basic examples of groups
include the integers under addition, where 0 acts as the
identity element, any integer has its negative value as an
inverse, and where addition is associative. As there is no
way to gain an element that is not an integer by adding or
subtracting integers, the set of integers is a group. One
important property of groups is the concept of a symmetry
group, and an invariance. Symmetry describe sets of actions
taken on an object that leave specific properties invariant, or
unchanged. There are often several properties that can be
invariant under the same symmetry group, and proving that
a certain property remains invariant under the elements, or
actions, of a symmetry group is important in demonstrating
properties of what the group is describing. In fact, Noether’s
Theorem states that differentiable symmetries indicate the
presence of a conservation law for a particular system. The
final aspect of group theory important in this discussion is the
concept of a generator. A generator is an object which can
be exponentiated to produce all elements of the group. For
instance, all elements in Z under addition can be found by
iterating either 1 or its additive inverse. Generator elements are
useful because proving something about the generator allows
that proof to be induced onto the whole group.

II. Lie Group

A Lie group is a specific subclass of groups distinguished
as also being differentiable manifolds. A manifold is a space
with geometry that resembles Euclidian geometry near each
point. For instance, a circle can be approximated with a line at
every point. For this manifold to be differentiable, there must
be a derivative value for each point. A group that meets these
definitions is a Lie group, allowing for the use of differential
equations when dealing with the group.

III. Minkowski Spacetime

Minkowski Spacetime is a space on which Lie group
actions are preformed where the Euclidian spacial coordinates,
often indicated as x, y, and z, are combined with the time
coordinate to create a manifold. Thus a position is recorded

as

xµ =


ct
x
y
z


The Minkowski Spacetime has the distinction of keeping a
measurement of the spacetime interval, or distance, between
two points is the same for every inertial frame of reference.
This spacetime interval is defined as

c2(t2 − t1)2 − (x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2

or alternatively
xµ

ηµν xν = 0

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This form uses the Einstein summation convention, where
Aµ,ν xν = ∑ν .Aµν xν

Minkowski space is important because it is commonly
used as the mathematical structure for special relativity,
and because transformations on Minkowski Spacetime are
themselves important groups.

IV. Lorentz Group

The Lorentz group can be formally defined as the
group of Lorentz transformations on Minkowski Spacetime.
The generators for these transformations are the boost
transformation,

x′µ =


γ −γβ 0 0

−βγc γ 0 0
0 0 1 0
0 0 0 1

xµ

where
β = v/c

and
γ =

1√
1−β 2

which describe shifts in velocity, and the rotation
transformation

x′µ,ν =


1 0 0 0
0 cos(θ) −sinθ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

xµ,ν

These transformations are all of the form X ′ = ΛX and
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maintain the relationship Λ
µ

ν Λν
κ ηµ,λ = ηλ ,κ

V. Poincare Group

The Poincare group is the set of all Minkowski Isometries,
which is to say the group of actions that preserve the
Minkowski spacetime interval. The Poincare group is an
expansion on the Lorentz group incorporating the translation
action generator on top of the boost and rotation actions. These
translation transformations can be codified in the form

x′µ = xµ +aµ

for any vector aµ and represents a shift from one inertial
reference frame to another. A common representation of the
Poincare group establishes M as the generators of the Lorentz
group and P as translations giving the following identities as a
complete expression of the entire group.

[Pµ ,Pν ] = 0

1
i
[Mµν ,Pρ ] = ηµρ Pν −ηνρ Pµ

1
i
[Mµ,ν ,Mρσ ] = ηµρ Mνσ −ηµσ Mνρ −ηνρ Mµσ +ηνσ Mµρ

These generators and identities then can form elements of the
form

Λ
µ

ν = eωµν Mµν

where ω is the Maurer-Cartan form, a way of representing
differentials. It may be noted here that matrix exponentiation
is done as

eA = ∑
k

Ak

k!

as with any other form of ex. Some of these calculations are
made easier with the Baker-Campbell-Hausdorf formulae.

VI. Equations of Motion

With the space well defined, some analysis of a particle
situated in the space can finally be done. In this space, particles
are represented as scaler fields φ(xm) and a Lagrangian density
can be constructed as

L =−1
2

∂
m

φηmn∂
n
φ −V (φ)

which is remarkably similar to the classical Lagrangian L =
T −U . Then the Euler-Lagrange equation

∂a(
∂L

∂∂aφ
)− ∂L

∂φ
= 0

provides a partial differential equation which provides
equations of motion. For example, a Lagrangian density of
the form

L =−1
2

∂
m

φηmn∂
n
φ − mφ 2

2
−λφ

4

will provide the result

−□φ +m2
φ +4λφ

3 = 0

where the D’Alembertain symbol

□=− 1
c2

∂ 2

∂ t2 +
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

. This result is recognizable as the relativistic wave equation.
Similar equations of motion can be derived by constructing
different potentials in the Lagrangian density.
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