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ABSTRACT 
Glancing angle deposition (GLAD) is a process in which thin films are deposited onto a substrate                
with obliquely incident vapor together with precisely controlled azimuthal substrate rotation.           
Ballistic shadowing effects due to the oblique incidence produce nanoscale structures, and a             
variety of feature shapes, including tilted columns, helices, and vertical columns can be achieved              
by varying the azimuthal rotation during the deposition process. Due to this control of              
morphology and the compatibility of the process with a wide variety of materials, GLAD films               
have found applications in a variety of fields including sensing, photonics, photovoltaics, and             
catalysis, where they are predominantly used as coatings with tunable optical, mechanical, and             
chemical properties. However, there has been little work regarding its use for the fabrication of               
electronic devices. GLAD films are interesting in this respect because it would enable nanoscale              
devices to be made without lithography. We propose a method for fabricating vertically-aligned,             
columnar Schottky diodes by GLAD. We then fabricate these devices using electron beam             
evaporation of chromium onto a silicon substrate, with chromium and aluminum contacts, and             
characterize these devices by SEM and I-V curve measurements.  
 
I. INTRODUCTION 
For many applications, it is desirable to create thin films of regular nanoscale structures with               
tunable morphology. One fabrication technique for fabricating such films is called Glancing            
angle deposition (GLAD), whereby obliquely incident vapor condenses onto a substrate with            
precisely controlled azimuthal orientation. GLAD films have been used for many applications,            
including humidity[1] and pressure sensors[2], waveguides[3], and antireflection coatings on          
solar cells[4]. For the first time, we attempt to create electronic semiconductor devices using              

1 



GLAD. We believe that GLAD might be an interesting fabrication technique in this area because               
it would allow the simultaneous fabrication of nanoscale structures with high areal density in a               
single fabrication step. This might be advantageous over traditional lithography due to its             
simplicity and lower equipment costs. 
 
One requirement for GLAD is that the incident vapor has a mean free path length comparable to                 
the separation of the target and substrate, which may be achieved by a number of deposition                
techniques under high vacuum, including electron beam evaporation (ebeam) deposition [5],           
thermal evaporation deposition [6], and magnetron sputtering [2]. Due to the facilities available             
for the present study, we concern ourselves exclusively with ebeam deposition. 

 
If the mean free path of particles of the target          
material in the deposition chamber is comparable       
to or larger than the target-substrate separation,       
then a significant fraction of the incident particles        
will not scatter before condensing onto the       
substrate, and will follow a “line of sight” path         
instead. These particles tend to deposit onto the        
substrate near where they first strike it, and so any          
features on the surface of the substrate will occlude         
areas behind them, so these areas of the substrate         
will not receive new material. Due to the very         
oblique angle of incidence—typically more than      
75º from the substrate normal—the areas occluded       
by surface features are much larger than the        
features themselves. This effect is called ballistic       

shadowing [7]. If the substrate is rotated during the deposition, the areas that are shadowed will                
change. As a result, manipulating the azimuthal rotation of the substrate controls the shape of the                
resulting nanostructures. It is worth noting that ballistic shadowing also requires that the             
temperature of the substrate is small compared to the melting point of the target material; if it is                  
not, then deposited atoms will quickly diffuse on the surface away from their initial point of                
impact, allowing material to accumulate in shadowed regions. This is not an issue for GLAD               
films of many materials; for example, the homologous temperature of chromium at room             
temperature is 0.14 [8]. 
 
There are several variables of interest in controlling the properties of the films during fabrication.               
These include: the incidence angle of the vapor, α, measured between the vapor flux vector and                
substrate normal; the azimuthal angle, θ; and the vapor flux density (Fig. 2). In general, all of                 
these quantities may be changed over time during the deposition. For our purposes, it is more                
useful to use the azimuthal angular velocity, ω. It has been found that larger values of α,                 
corresponding to more oblique incidence angles, produces more oblique columns [5]. The            
relationship between α and column tilt angle is non-linear, and a variety of geometric and               
physical models[9] for this behavior have been proposed with varying levels of agreement in              
different ranges of incidence angles [10]. It is also known that larger values of α at the same flux                   
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density also produce thinner films due to reduced vapor flux per substrate area, greater              
separation between columns, and narrower columns, all else being equal [5]. 
 
Manipulating the azimuthal rotation over the course of the deposition will sculpt the             
nanostructures into one of many different shapes. With a constant azimuthal angle, a film of               
tilted columns is deposited, oriented toward the incident vapor (Fig. 1). If the azimuthal angle is                
abruptly changed, new columns will grow on top of the old ones, oriented in the new direction of                  
incident vapor, producing a chevron shape. Continuously varying the azimuthal angle produces a             
continuum of growth directions, and thus grows curved structures (Fig 7). Rotation with a              
constant angular velocity will produce helical nanostructures, with slow rotations producing wide            
helices and fast rotations producing narrow helices. Very fast rotations will produce vertical             
columns, since the radius of the helix is small compared to the width of the structure [8]. 
 
In the present study, we fabricate vertical columnar diodes using GLAD. Schottky diodes are a               
semiconductor device which consists of a single junction between a metal and a semiconductor.              
In an ideal Schottky diode, the mismatch in work functions of the metal and semiconductor cause                
the bands of available states to bend such that the majority carriers in the semiconductor face a                 
potential barrier at the interface. Changing the electrical bias of the interface changes the size of                
this barrier, such that in “forward bias” the majority carrier readily flows from the semiconductor               
to the metal, and in “reverse bias” the flow is inhibited by the barrier. In the ideal case, the                   
current varies exponentially with the junction voltage. An overview of the semiconductor            
physics of Schottky diodes can be found in [11]. 
 
II. METHODS 
For simplicity, we fabricate Schottky diodes with chromium, but the technique presented here             
could be adapted to produce P-N diodes by depositing a semiconductor instead of a metal. By                
depositing a metal GLAD film onto a semiconducting substrate, a Schottky junction is formed              
where the deposited structures meet the substrate. We chose to use chromium metal and p-type               
silicon for these diodes because of chromium’s ease of use with our ebeam deposition system,               
and because of the ease of making ohmic contact to p-type silicon compared to n-type with the                 
facilities available. 
 
First, in order to select good deposition parameters for later steps, we deposited several films               
with deposition angles ranging from 78º to 84º and azimuthal rotation rates ranging from 0 to 0.2                 
RPM, while holding constant the deposition duration at 40 minutes and deposition rate at              
roughly 5 nm/s for normal incidence, as measured by a quartz crystal sensor in the deposition                
chamber. Similarly to [5], we found that more oblique deposition angles resulted in wider              
column spacing and thinner films. We observed tilted columns for the depositions with ω = 0                
RPM, relatively large radius helices with ω = 0.1 RPM, and relatively small radius helices with                
ω = 0.2 RPM. We also found that faster azimuthal rotation rates produced thinner films. Simple                
2-probe electrical continuity measurements revealed that the α=78º film was continuous, so that a              
current may easily flow between two points on its surface, while the α=84º film was               
discontinuous. In order to produce many distinct diodes on the surface and maximize the              
thickness of the film, we chose to use a very oblique angle and moderate rotation speed. 
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We then prepared two kinds of diodes (Fig 3): our GLAD Schottky diodes, and a sputtered                
planar diode using the same materials as a reference device. We prepared p-type Si (100) wafers                
by immersing them in a buffered HF solution for 2 minutes, followed by three immersion cycles                
in deionized water and spun dry in order to remove any oxide layer that had formed on the                  
surface. For the GLAD diodes, we then loaded the wafer into the ebeam system and deposited a                 
film of Cr metal using α=84º and ω = 0.1 RPM for 50 minutes with a deposition rate                  
corresponding to of 5±1 nm/s growth normally incident on the film thickness sensor. This film               
was deposited on the polished side of the wafer. We then immediately sputtered the reverse side                

of the wafer with an alloy of Al (98.5%), Si          
(1%), Cu (0.5%) using Ar gas at a pressure of          
5.0 ✕ 10-3 torr and 500 W for 25 minutes in           
order to form an ohmic back contact. Based on         
previous characterization of this process in our       
lab, we estimate that this film is 300 nm thick.          
For the reference diode, we followed an       
identical process for cleaning and sputtering the       
back contact, but instead sputtered a chromium       
film onto the polished side of the wafer. This         
was done using Ar gas at a pressure of 5.0 ✕           
10-3 torr and 300 W for 25 minutes. 
 
The GLAD diode and sputtered planar diode       
wafers were cleaved into square 4 cm2 pieces        
in preparation for current-voltage (I-V) curve      
measurements. These measurements were    
made with 100 μm tungsten probe tips at a         
probe station. The devices were placed on a        

large stainless steel vacuum chuck and held in place with suction, with one probe placed directly                
onto the chuck close to the sample to make electrical contact to the AlSiCu back contact, and the                  
other probe was gently placed directly onto the top film approximately in the center (Fig 4). 
 
Initial measurements showed very strange I-V curves with many inflection points. The devices             
were then treated with an AC voltage of 75 V RMS at 60 Hz until the I-V curve stabilized. A                    
new I-V curve was measured and saved. This process was carried out without moving the probe                
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tips, so that the final I-V curve was measured         
on the same GLAD structures that were       
electrically stressed. 
 
III. RESULTS 
Inspection of the Cr GLAD film under SEM        
revealed apparently isolated metal columns     
approximately 600 nm tall, 100 nm wide at        
their widest, and helical in shape with 5 turns.         
By counting the columns in an SEM image,        
we estimate the areal density of diodes to be         
on the order of 1011 diodes per square meter         
(Fig 6). 
 
We found by 2-probe continuity measurements      
that the sputtered Cr film was electrically       
continuous, while Cr GLAD diode films were       
not. Thus, we conclude that the GLAD       
structures do not electrically short with each       

other on length scales larger than 1 mm. We expect          
that they also do not short on shorter length scales,          
since there is negligible conducting material between       
them. Based on our cross-section SEM images, there        
is only a thin layer of metal film a few nanometers           
thick which likely nucleated early in the deposition        
which may electrically short between columns. 
 
 
We modeled the I-V curves of our devices as an ideal           
diode in series with an effective resistance, (Fig       Rs   
5). We use the Shockley diode equation for the ideal          
diode, introducing a reverse saturation current, ,      Is  
and ideality factor, η. The ideality factor is typically         
used to account for geometric non-ideality in diodes;        
however, here we use it as an empirical fitting         
parameter to capture non-ideal behavior of our       
devices. Taking this together with Ohm’s law for the         
series resistance and Kirchhoff’s law, we have three        
equations which must be satisfied: 

 V V∆ R + ∆ d = V  
V R∆ R = I s  
(e )I = Is

∆V /ηVd T − 1  
where V is the voltage across the device, I is the           
current through the device, is the voltage across    V∆ R     
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the resistor, is the voltage across the diode, and is the thermal voltage which is 25.9  V∆ d        V T        
mV at room temperature. Rearranging, we find that 

R V ln(1 )V = I s 
+ η T + I

Is
 

Which cannot be solved algebraically for the current. Instead, we solve this equation numerically              
using the bisection method. We then fit this model to our measured I-V curves using a nonlinear                 
least squares algorithm provided by SciPy [13]. The fitting parameters are shown in Table 1. In                
an ideal diode, η would be 1, Rs would be 0, and the reverse saturation current would be tunable                   
for the specific application. The reverse saturation currents are not directly comparable between             
the GLAD diodes and the sputtered diode due to the different shapes of the diodes. In fact,                 
converting the current in the GLAD diodes into a current density which could be compared is                
nontrivial due to the geometry of the columns—this would require knowing the contact area              
between the GLAD columns and the substrate, which is complicated by the abundance of small,               
shadowed columns revealed in SEM that are close to the substrate. 
 

 Is (A) η (dimensionless) (Ω)Rs  

Cr GLAD Diode 1.75 ± 0.07 × 10-6 16.3 ± 0.2 8260 ± 80 

Sputtered Cr Diode 6.07 ± 0.04 × 10-5 2.527 ± 0.005 205.52 ± 0.05 

Table 1. The nonlinear least-squares fit parameters for the GLAD and sputtered Cr/p-Si Schottky              
diodes. Note the high ideality factor and series resistance of the GLAD diodes. 
 
IV. CONCLUSIONS 

 
We have successfully fabricated Schottky diodes using GLAD. These devices are interesting            
because of the simplicity of their fabrication and high areal density. As far as we know, these are                  
the first semiconductor devices to be made with this process. Characterization by I-V curve              
measurements indicate that they are relatively non-ideal, with ideality factors roughly 6 times             
larger than our reference device, perhaps due to porosity of the deposited material, low-quality              
material interfaces at the metal-semiconductor junction, or the non-ideal geometry of the devices.             
They also suffer from unacceptably high series resistance, which was roughly 40 times larger              
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than in our reference device. Engineering these devices to reduce series resistance and produce              
more ideal junctions are opportunities for further work, and are essential to producing             
high-quality diodes with this technique. 
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