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Abstract
The restriction conjecture asks for a meaningful restriction of the Fourier
transform of a function to a sufficiently curved lower dimensional manifold.
It then conjectures certain size estimates for this restriction in terms of the
size of the original function. It has been proven in 2 dimensions, but it
is open in dimensions 3 and larger, and is an area of much recent active
effort. In our study, instead of aiming to prove the restriction conjecture,
we target understanding its worst-case scenarios within known estimates.
Specifically, we investigate the extension operator applied to antipodally
concentrating profiles, examining the ratio of the norms of these extensions.
This involves understanding how the mass near the north pole compares to
the mass near the south pole in terms of magnitude. Initial computational
studies confirmed the established dichotomy between p > 2 and 1 ≤ p ≤ 2.
Based on these findings, we propose two conjectures: the first one is that
there are 3 cases of the behavior of this constant, and the second one is that
there exists a cutoff. We will also present some facts and conjectures related
to special values such as the endpoint of t=1.





Contents

Abstract iii

Preliminary Concepts and Sharp Inequalities vii
0.1 Key Concepts in Analysis . . . . . . . . . . . . . . . . . . . . vii
0.2 Introduction to Fourier Analysis . . . . . . . . . . . . . . . . ix
0.3 Sharp Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . x

Introduction to Fourier Restriction Theory xv
0.4 Introduction to Restriction Theory . . . . . . . . . . . . . . . xv
0.5 Sharp Restriction/Extension Inequalities . . . . . . . . . . . xix

Studies on the Ratio Parameter xxiii
0.6 Evolving Conjectures on αp,q . . . . . . . . . . . . . . . . . . xxiii
0.7 Special values of αp,q . . . . . . . . . . . . . . . . . . . . . . . xxviii
0.8 Effort for Differentiation and Estimation of I(t, p, q) . . . . . xxxiii

Future Work xxxix

Acknowledgments xli

Bibliography xliii





Preliminary Concepts and Sharp
Inequalities

0.1 Key Concepts in Analysis

Harmonic analysis, a branch of mathematics that studies the representation
of functions or signals as the superposition of basic waves, has been a fertile
ground for research due to its profound implications across various do-
mains such as quantum mechanics, number theory, and signal processing.
At the heart of harmonic analysis lies the Fourier transform, a mathematical
tool that decomposes a function into its constituent frequency.

Let us begin the discussion of optimal constants in Fourier restriction
hypothesis through explanation of some key ideas and context. As Fourier
Transform and Restriction are essentially integrals, we first introduce the
concept of Lebesgue integration. The Lebesgue measure, denoted as λ, is
a mathematical construct used to define the measurement of a set within
Euclidean space, which is simply R⋉ on our case, in a way that inherits
the property of traditional notions of length, area, or volume, and extends
beyond it. For a given set A, the Lebesgue measure λ(A) can be intuitively
thought of as follows:

1. For intervals in real numbers, the Lebesgue measure corresponds to
the length of the interval. For an interval [a, b], the Lebesgue measure
is λ([a, b]) = b− a.

2. For higher dimensions, such as areas in 2D or volumes in 3D, the
Lebesgue measure extends this idea. For a rectangle in 2D with sides
of length l and w, the area (Lebesgue measure) is λ = l×w. Similarly,
for a box in 3D, the volume (Lebesgue measure) is the product of its
length, width, and height.

3. For more complicated sets, the Lebesgue measure can be approxi-
mated by covering the set with countable collections of intervals (or
rectangles, boxes in higher dimensions) and summing their measures
(lengths, areas, volumes). The measure of a set A is essentially the
smallest total measure of such coverings.



viii Preliminary Concepts and Sharp Inequalities

The Lebesgue integral is closely related to the Lebesgue measure in
that it allows for the integration of functions with respect to this measure.
We will be primarily working on integrals over Rd+1 and its subset, the
d−dimensional sphere Sd.

Functional Analysis is a branch of mathematics that extends the meth-
ods of classical analysis, including calculus and differential equations, to
more abstract spaces. Recall that in real analysis, we studied real numbers,
the space they inhabit, and functions that take in real numbers as input.
Similarly, the primary objects of study in functional analysis are functions
the spaces they inhabit, known as function spaces, and functionals which
takes in a function as input. These spaces can be thought of as collections of
functions that share a common property, such as continuity, differentiabil-
ity, or integrability, along with a structure that allows for the measurement
of distance or convergence.

A metric space is a set of functionsX together with a metric d : X×X →
R, which defines the distance between any two elements of X , and satisfies
the following properties: non-negativity, d(x, y) ≥ 0 with d(x, y) = 0 if
and only if x = y; symmetry, d(x, y) = d(y, x); and the triangle inequality,
d(x, z) ≤ d(x, y) + d(y, z). A metric space is said to be complete if the
limit of any convergent sequence in the space is also in the space. An
Lp space is a special type of metric space that can be defined as a space
of measurable functions for which the p-th power of the absolute value is
Lebesgue integrable.

The Lp spaces are important in various fields of mathematics and re-
lated domains, including analysis, probability, and statistics, because they
provide a flexible way to quantify and compare functions’ sizes or effects
across different contexts. For a given function f : S → Cn, a measure µ(x)

(which is often the conventional Lebesgue Measure if not specified), and a
real number p ≥ 1, the Lp norm of f is defined by the following expression:

||f ||p =
(∫

S
|f(x)|pdµ(x)

) 1
p

This formula essentially says that we:

1. Take the absolute value of f , raise it to the power of p,

2. Integrate this value over the entire set X with respect to the measure
µ,

3. And finally, take the pth root of the integral.
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The result is a single number, ||f ||p, which is the Lp norm of f . For
our study, we will be looking at integrals on spheres, with S = S, the d-
dimensional unit sphere inRd+1, which is not very different from (Riemann)
sphere integral in a familiar setting.

Here are some special values of p that is of particular interest:

• For p = 1, functions in L1 space are often used in computational
geometry and statistics. Consider the function f(x) = e−x2 , which is
an example of a Gaussian function.∫ ∞

−∞
|e−x2 | dx =

∫ ∞

−∞
e−x2

dx.

The integral converges to a finite value, which is known to be
√
π,

demonstrating that f(x) = e−x2 is indeed an L1 function.

• For p = 2, the L2 space is of particular interest because it relates to the
concept of Euclidean distance in an infinite-dimensional space, and
||f ||2 corresponds to the "energy" or "power" of the function f . It is
also the only Lp space associated with an inner product.

• While p can be any positive real number, we focus on p ≥ 1 because
for these values of p, the space becomes a complete metric space.

0.2 Introduction to Fourier Analysis

Fourier Analysis is a branch of mathematical analysis that deals with ex-
pressing a function as a sum of periodic components and recovering the
function from those components. It is a powerful tool for analyzing func-
tions and signals in various domains, such as time or space, by decomposing
them into frequencies. Grounded in the study of Fourier series and Fourier
transforms, Fourier Analysis helps us to understand functions using sines
and cosines.

For a function f : Rn → C, the Fourier Transform and its inverse are
defined as follows:

• The Fourier Transform of f(x), where x = (x1, x2, . . . , xn) ∈ Rn, into
the frequency domain is given by:

f̂(ξ) =

∫
Rn

f(x)e−2πiξ·xdx
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where ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn represents the frequency variables,
and ξ · x is the dot product of ξ and x.

• The function f(x) can be recovered from its Fourier Transform f̂(ξ)

using the inverse Fourier Transform, which is:

f(x) =

∫
Rn

f̂(ξ)e2πiξ·xdξ

After reviewing several important concepts related to our work, we will
now discuss the concept of sharp inequality.

0.3 Sharp Inequalities

An inequality is said to be sharp if it cannot be relaxed and still be valid
in general. Defined formally the inequality A ≤ B is called sharp if B is
the least upper bound for all values of A under consideration.This criterion
guarantees that sharp inequalities are the most stringent conditions under
which a mathematical statement remains true. This motivates the question
of "When does an inequality become an equality?"

The equality conditions in sharp inequalities are crucial as they reveals
the extremal configurations or scenarios where the mathematical bounds
are exactly met, offering deeper insights into the structure and behavior of
mathematical entities under study. In our case, the entities are transfor-
mations of functions, which we will elaborate in the coming sections. To
illustrate the special properties in structure of the conditions where equality
holds, we discuss the following well-known inequalities.

0.3.1 Example: Hölder’s Inequality

Hölder’s Inequality, a fundamental theorem in functional analysis, gener-
alizes the concept of the Cauchy-Schwarz Inequality to a broader range of
spaces, including Lp spaces. Hölder’s Inequality states that∣∣∣∣∫

Rn

f(x)g(x) dx

∣∣∣∣ ≤ (∫
Rn

|f(x)|p dx
) 1

p
(∫

Rn

|g(x)|q dx
) 1

q

,

where 1
p + 1

q = 1 and 1 ≤ p, q ≤ ∞. This inequality studies the mag-
nitudes of functions and their integrals, asserting that the integral of the
product of two functions is bounded by the product of their Lp and Lq
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norms. Equality holds if and only if fp and gq are linearly dependent al-
most everywhere, meaning that there exist real numbers α, β ≥ 0, not both
of them zero, such that α|f |p = β|g|q -almost everywhere.

0.3.2 Example: The Isoperimetric Inequality

In the realm of geometry, the Isoparametric Inequality links the volume of a
domain to the surface area of its boundary, with spheres giving the equality
condition. The inequality states that for a bounded set S ⊂ Rn with surface
area per(S) and volume vol(S), the inequality is given by

per(S) ≥ n vol(S)
n−1
n vol(B1)

1
n ,

where B1 ⊂ Rn is a unit ball. Equality holds when S is a ball in Rn.
Also a well-studied functional inequality, the Isoparametric Inequality in
R2 has an elegant proof which involves harmonic analysis. We will give a
proof due to Hurwitz in 1901, mentioned in Stein and Shakarchi[1] of the
problem in 2 dimension:

Lemma 1 (Isoparametric Inequality in 2D). Suppose that Γ is a simple closed
curve in R2 of length ℓ, and let A denote the area of the region enclosed by this
curve. Then

A ≤ ℓ2

4π
,

with equality if and only if Γ is a circle.

Proof. For this proof, we will use the bilinear form of Parseval’s Identity,
which states that

∞∑
n=−∞

anbn =
1

2π

∫ 2π

0
f(s)g(s) ds

where {an} is the Fourier coefficient of f and {bn} is the Fourier co-
efficient of g. We can always map any simple closed curve(a curve with
no break points that does not intersect anywhere with itself) to one with
arbitrary length. It suffices to prove that if ℓ = 2π then A ≤ π, with equality
only if Γ is a circle.

Let γ : [0, 2π] → R2 with γ(s) = (x(s), y(s)) be a parametrization by
arc-length of the curve Γ, that is, x′(s)2 + y′(s)2 = 1 for all s ∈ [0, 2π]. This
implies that

1

2π

∫ 2π

0
(x′(s)2 + y′(s)2) ds = 1.
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Since the curve is closed (it can be drawn with no break points), the functions
x(s) and y(s) are 2π-periodic, so we may consider their Fourier series

x(s) =

∞∑
n=−∞

ane
ins and y(s) =

∞∑
n=−∞

bne
ins.

When we differentiate x(s) with respect to s, we obtain

x′(s) =
d

ds

( ∞∑
n=−∞

ane
ins

)
=

∞∑
n=−∞

d

ds

(
ane

ins
)
.

Therefore,

x′(s) ∼
∞∑

n=−∞
inane

ins.

Similarly, for y(s) we have

y′(s) ∼
∞∑

n=−∞
inbne

ins.

For the squared derivatives, Parseval’s identity can be written as∫ 2π

0
|x′(s)|2 ds =

∞∑
n=−∞

|inan|2,

and for y(s), ∫ 2π

0
|y′(s)|2 ds =

∞∑
n=−∞

|inbn|2.

Combining these two and considering the original condition from equa-
tion (2) that x′(s)2 + y′(s)2 = 1, we get

1

2π

∫ 2π

0
(x′(s)2 + y′(s)2) ds

=
∞∑

n=−∞
(|inan|2 + |inbn|2)

=

∞∑
n=−∞

|n|2(|an|2 + |bn|2).
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Applying the given condition yields

∞∑
n=−∞

|n|2(|an|2 + |bn|2) = 1,

which is the equation given by applying Parseval’s identity to the squared
derivatives of the functions x(s) and y(s).

We now apply the bilinear form of Parseval’s identity to the integral
defining A due to Green’s Theorem. Since x(s) and y(s) are real-valued, we
have a−n = an and b−n = bn, so we find that

A =
1

2

∣∣∣∣∫ 2π

0
x(s)y′(s)− y(s)x′(s) ds

∣∣∣∣ = π
∞∑

n=−∞

∣∣n(anbn − bnan).
∣∣

Note that

|anbn − bnan| ≤ |anbn|+ |bnan| ≤ 2|an||bn| ≤ |an|2 + |bn|2

where the first inequality comes from the triangle inequality for complex
numbers, and the second inequality is an application of the arithmetic-
geometric mean inequality.

Thus,

A = π

∞∑
n=−∞

|n(anbn − bnan)|

≤ π
∞∑

n=−∞
|n|(|an|2 + |bn|2)

≤ π
∞∑

n=−∞
|n|2(|an|2 + |bn|2)

≤ π

Now, we will demonstrate that the inequality is sharp by studying the
special case of conditioned equality. While the study of the Isoperimetric
Inequality dated back significantly longer than the invention of Fourier
Analysis, and the curve that should achieve inequality was hypothesized to
be a circle, the hypothesis relied on heuristics, not proofs.
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For the inequality to become an equality, we must reach the identity

∞∑
n=−∞

|n|2(|an|2 + |bn|2) =
∞∑

n=−∞
n(anbn − bnan)

which is possible if and only if all {an}, {bn} to vanish apart from
{a−1, a0, a1} and {b−1, b0, b1} because |n| < |n2| as soon as |n| ≥ 2.

When A = π, the area enclosed by the curve, we deduce from the
previous argument that

x(s) = a−1e
−is + a0 + a1e

is and y(s) = b−1e
−is + b0 + b1e

is,

We know that x(s) and y(s) are real-valued, so a−1 = a1 and b−1 = b1. Since
we have equality, we must have |a1| = |b1| = 1/2. We write

a1 =
1

2
eiα and b1 =

1

2
eiβ.

The fact that 1 = 2|a1b−1 − a−1b1| implies that | sin(α − β)| = 1, hence
α− β = kπ/2 where k is an odd integer. From this we find that

x(s) = a0 + cos(α+ s) and y(s) = b0 ± sin(α+ s),

where the sign in y(s) depends on the parity of (k − 1)/2.

While this proof only studies the curves inR2 that can be parameterized,
it offers valuable insight on our ability to analyze a problem with periodic
functions.
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0.4 Introduction to Restriction Theory

With the definition of Sharp Inequalities in mind, we now come to explore
which sharp inequality we are expected to observe in particular. Despite its
classical origins and widespread application, the Fourier transform’s behav-
ior, particularly its interaction with lower-dimensional manifolds, remains
an area of active investigation. This inquiry is epitomized by the Restriction
Conjecture, which has spurred much of the research in harmonic analysis
over the last fifty years.

The Restriction Conjecture is concerned with understanding the condi-
tions under which the Fourier transform of a function can be restricted to
a sufficiently curved lower-dimensional manifold and conjectures certain
size estimates for this restriction in terms of the size of the original function.

As a key problem in harmonic analysis for over five decades, he con-
jecture inquires about the conditions under which the Fourier transform
of a function can be meaningfully restricted to a sufficiently curved lower-
dimensional manifold, proposing size estimates for this restriction. Proven
in two dimensions but open in higher, it has implications beyond harmonic
analysis, such as in differential equations[?] and number theory. We explore
the restriction operator R associated with the unit sphere Sd, defined for a
function g : Rd+1 → C as

Rg(ω) =

∫
Rd+1

e−ixωg(x) dx

for ω ∈ Sd.
This transform takes it in g : Rd+1 → C computes it’s Fourier trans-

form, which is a new function ĝ : Rd+1 → C. The fact that g ∈ L1 → ĝ

implies that the restriction operator is well-defined. Finally we have the
function Rg(ω) : Sd → C. This transform is denoted as “restriction" be-
cause the new function has a more reduced domain of definition. For
g ∈ L1(Rd+1), ĝ is continuous and bounded, yielding the restriction in-
equality ∥Rg∥L∞(Sd+1) ≤ ∥g∥L1(Rd+1). ĝ is bounnded by ∥g∥L1 , and such
inequalities are called “restriction inequalities"
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In this context, the surface measure σ on Sd, used in defining the norm
of Rg, is derived from Lebesgue measure adapted to the sphere’s geometry,
facilitating integration over Sd that reflects its curvature. The measure σ is
essential for applying Lebesgue integration theory to spherical domains.

Lemma 2.
max

ω∈Sd+1
|Rg(ω)| ≤ ∥g∥L1(Rd+1)

.

Proof. Let g ∈ L1(Rd+1) and consider ω ∈ Sd+1. By definition, we have

Rg(ω) =

∫
Rd+1

e−ix·ωg(x) dx.

Taking the absolute value,

|Rg(ω)| =
∣∣∣∣∫

Rd+1

e−ix·ωg(x) dx

∣∣∣∣ .
Using the triangle inequality for integrals, we obtain

|Rg(ω)| ≤
∫
Rd+1

|e−ix·ω||g(x)| dx.

Since |e−ix·ω| = 1 for all x, ω,

|Rg(ω)| ≤
∫
Rd+1

|g(x)| dx = ∥g∥L1(Rd+1).

Thus, for any ω ∈ Sd+1,

|Rg(ω)| ≤ ∥g∥L1(Rd+1).

Taking the maximum over all ω ∈ Sd+1,

max
ω∈Sd+1

|Rg(ω)| ≤ ∥g∥L1(Rd+1).

For g inL2(Rd+1), a direct application of the formula forRg is ill-defined
due to the potential divergence of the integral defining ĝ(ξ) for some ξ.
Instead, ĝ is constructed via approximation, where for each g ∈ L2(Rd+1),
a sequence {gn} ⊂ L1 ∩ L2 converges to g in L2. The Fourier transform ĝ is
then the limit in L2 of {ĝn}, extending the operator from L1 ∩L2 to all of L2

by continuity.
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Lemma 3. Given any function g ∈ L2(Rd+1), the Fourier transform ĝ exists in
L2(Rd+1). [2],[3]

Proof. For g ∈ L2(Rd+1), there exists a sequence {gn} ⊂ L1 ∩ L2 such that
∥gn − g∥L2 → 0 as n → ∞. In other words, gn approximates g in the L2

sense. This is because in both L1 and L2, continuous functions are dense,
meaning that you can approximate a given function in the space within any
given margin of error.

Due to congvergence in L2, we claim that {gn} is a Cauchy sequence in
L2, or for any ϵ > 0, there exists N ∈ N such that for all m,n > N , we have
∥gn − gm∥L2 < ϵ.

Plancherel’s theorem guarantees that∥f̂∥L2 = ∥f∥L2 for all f ∈ L2(Rd+1).
Therefore, {ĝn} is also a Cauchy sequence in L2 since

∥ĝn − ĝm∥L2 = ∥gn − gm∥L2 < ϵ

for m,n > N . Given that L2(Rd+1) is a complete metric space, the Cauchy
sequence {ĝn} converges to some limit in L2. Let this limit be ĝ. By
definition, ĝ is the Fourier transform of g in L2(Rd+1).

Because “functions" in L2 are really equivalent classes of functions al-
most everywhere, the restriction of the Fourier transform ĝ to the sphere
for functions in L2(Rd+1) is ill-defined. However, Stein revealed that the
sphere’s curvature allows for the possibility of meaningful restriction for
certain function spaces beyond L1, specifically for some p > 1. This justifies
the restriction conjecture as follows:

Conjecture 4. For 1 ≤ p ≤ 2(d+1)
d+2 and q ≤ d

d+2p
′

∥Rg∥Lq(Sd;dσ) ≤ C∥g∥Lp(Rd+1), (1)

where p′ denotes the Holder conjugate of p.
The conjecture is known for 1 ≤ p ≤ 2. [reference needed] The adjoint

of the restriction operator, denoted R∗ or E for extension operator, relates
to the restriction operator R via an operation similar to the inner product :

⟨Rg, f⟩ = ⟨g,R∗f⟩
For functions g ∈ Lp(Rd+1) and f ∈ Lp′(Sd), this relationship is ex-

pressed through integrals over Rd+1 and Sd, leading to the definition of

R∗f(x) =

∫
Sd

eixωf(ω) dσ
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Because R∗ starts from a function on the manifold and extends it to a
function on Rd+1, it is often called the extension operator and denoted by
E .

Because of the close relationship between restriction and extension, the
restriction conjecture has an equivalent form in terms of extension.

Conjecture 5. For q ≥ d+2
d p′ and q > 2(d+1)

d

∥Ef∥Lq(Rd+1) ≤ C∥f∥Lp(Sd;dσ), (2)

where p′ denotes the Holder conjugate of p.
Lemma 6. The restriction conjecture for R : Lp(Rd+1) → Lq(Sd) is equivalent
to the extension conjecture for the adjoint operator R∗ : Lq′(Sd) → Lp′(Rd+1).

The proof of such equivalence requires the following lemma shown in
[3]
Lemma 7. Suppose 1 ≤ p, q ≤ ∞ are conjugate exponents. If g ∈ Lq, then

∥g∥Lq = sup

{∣∣∣∣∫ fg

∣∣∣∣ : ∥f∥Lp ≤ 1

}
Proof. (Proof of 3.5) Suppose R is bounded from Lp to Lq, there exists a
constant C such that for all g ∈ Lp(Rd+1),

∥Rg∥Lq(Sd) ≤ C∥g∥Lp(Rd+1).

By Hölder’s inequality, it follows that for all f ∈ Lq′(Sd),∣∣∣∣∫
Sd
(Rg)f dσ

∣∣∣∣ ≤ ∥Rg∥Lq(Sd)∥f∥Lq′ (Sd) ≤ C∥g∥Lp(Rd+1)∥f∥Lq′ (Sd).

The inner product of Rg with f is equal to the inner product of g with
R∗f , which means∣∣∣∣∫

Rd+1

g(R∗f) dx

∣∣∣∣ ≤ C∥g∥Lp(Rd+1)∥f∥Lq′ (Sd).

This implies that R∗f ∈ Lp′(Rd+1) and

∥R∗f∥Lp′ (Rd+1) ≤ C∥f∥Lq′ (Sd),

showing that R∗ is bounded from Lq′(Sd) to Lp′(Rd+1).
The reverse implication follows by the same argument, starting with the

boundedness of R∗ and showing the boundedness of R by considering the
duality pairing in the opposite order.
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0.5 Sharp Restriction/Extension Inequalities

With the two forms of Restriction Conjecture in mind, we ask the immediate
follow-up question of the function which potentially satisfies the equality
(which originates from an extreme case from the original inequality). The
equivalence of the two forms of the supremum in the extension conjecture
simplifies our analytical approach. By transitioning to a discussion on the
supremum, we aim to explore the upper bounds of the operator’s amplifi-
cation effect more comprehensively. This exploration is vital for identifying
sharp constants and understanding the conditions that lead to the existence
of extremizers, which are functions that achieve or closely approach these
upper bounds.

Define
Sp→q := sup

∥f∥
Lp(Sd;dσ)

<∞

∥Ef∥LqRd+1

∥f∥Lp(Sd;dσ)

The supremum encapsulates the core challenge of the extension conjecture:
to quantify the maximal effect of the extension operator on the Lp norm of
functions from Sd to Rd+1. By considering the supremum, we can directly
measure the maximal amplification effect the operator has on the Lp norm
of functions when transferred from the sphere to Euclidean space. In fact,
Flock and Stovall[4] approached this question by considering sequences
of functions for which the ratio of the extension norm to the norm of the
function converge to Sp→q. Such sequences are called extremizing sequences
or extremal sequences.

Flock and Stovall[4] proved a dichotomy of extremizing sequences gn,
where either

1. gn → g. Here, an extremizer g exists.

2. gn can be written as Fn+ tF̃n, where Fn and F̃n are functions converg-
ing on the North and South pole.

Our studies focus on the latter case. Suppose we had the isoperimetric
inequality restricted to the set of regular polygons. Then as the number
of edges increase, the shape approximates a circle, hence we would get
something very close to the original isoperimetric inequality, but it can
never be sharp. However, the best constant will not change just because no
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equality can be reached. Consider

Sp→q := sup
∥f∥

Lp(Sd;dσ)
<∞

∥Ef∥LqRd+1

∥f∥Lp(Sd;dσ)
= sup

∥f∥
Lp(Sd;dσ)

=1
∥Ef∥Lq(Rd+1).

To show the equivalence of the two forms, let’s start with any func-
tion f such that ∥f∥Lp(Sd;dσ) < ∞. Define g = f

∥f∥
Lp(Sd;dσ)

, ensuring that
∥g∥Lp(Sd;dσ) = 1. The extension operator applied to g gives:

∥Eg∥Lq(Rd+1) =
∥Ef∥Lq(Rd+1)

∥f∥Lp(Sd;dσ)
.

Hence, the supremum over all f with finite Lp norm is equivalent to the
supremum over all normalized f , proving that the two formulations ofSp→q

are indeed equal.
The reformulation sets the stage for the conjecture to propose specific

bounds and conditions under which the supremum is finite or achieves a
particular value. For the case where gn → g, we hypothesize that

Conjecture 8 (Conjecture for the sphere). For q ≥ d+2
d p′ and q > 2(d+1)

d

Sp→q < ∞

and further when q = d+2
d p′, for f := 1

Sp→q =
∥Ef∥LqRd+1

∥f∥Lp(Sd;dσ)
.

The discussion of how the condition of antipodally concentrating profile
is derived with rigorous mathematics discussion, intriguing and expansive
as it could be, is beyond the scope of this paper. A brief summary is
that for a family of symmetrically concentrating profiles known to be likely
candidates when the inequality becomes an equality,

lim
n→∞

∥Egn∥Lq(Rd+1)

∥gn∥Lp(Sd;dσ)
∝ αp,q.

.
For 1 ≤ p < q = d+2

d p′, we define

αp,q := max
t∈[0,1]

∥1 + teiθ∥Lq([0,2π],dθ/2π)

(1 + tp)1/p
. (3)
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The parameter t serves as the ratio between the norms of the extensions
of two antipodally concentrating profiles.

We are interested in the value of t at which extremum can be obtained
by the function of the right hand side, as well as the actual magnitude of
the extremum itself, although perhaps to a lesser extent. Specifically, given
numerical evidence that max{αp,q} occurs at either 0 or 1. we consider the
following questions:

1. Can we provide a mathematically sound proof of αp,q being maxi-
mized at either 0 or 1?

2. Can we give a cutoff in (p, q) for when the maximum values moves
from t = 0 to t = 1?

Before the discussion of the endpoint conjectures, we must discuss sev-
eral preliminary facts about the quantity.

We define

I(t, p, q) :=
∥1 + teiθ∥Lq([0,2π],dθ/2π)

(1 + tp)1/p

=
1

(1 + tp)1/p

(
1

2π

∫ 2π

0
|1 + t cos(θ) + ti sin(θ)|q dθ

)1/q

=
1

(1 + tp)1/p

(
1

2π

∫ 2π

0

(
t2 cos2(θ) + 2t cos(θ) + sin2(θ)

)q/2
dθ

)1/q

=
1

(1 + tp)1/p

(
1

2π

∫ 2π

0

(
t2 + 2t cos(θ) + 1

)q/2
dθ

)1/q

.

The range of t ∈ [0, 1] has led us to speculate in a variety of forms. For
instance, let ϕ ∈ [0, π2 ], we attempted the parameterization of t = sin(ϕ),
where

I(ϕ, p, q) :=
1

(1 + sinp(ϕ))1/p

(
1

2π

∫ 2π

0

(
sin2(ϕ) + 2 sin(ϕ) cos(θ) + sin2(θ)

)q/2
dθ

)1/q

.

However, this form of parameterization did not simplify the already
complicated function, and impeded the attempt of finding the derivative of
the already complicated function.
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0.6 Evolving Conjectures on αp,q

Figure 1 Overall Trend for I(t, p, q)

The function I(t, p, q), as depicted in Figure 2 with a multitude of choices
for p, presents a complex behavior where the location of its maximum shifts
based on the parameter p. For certain values of p, the maximum of I(t, p, q)
is achieved when t = 0, while for other values, the maximum is at t = 1.
This suggests the existence of threshold values of p at which the behavior
of the function transitions. Initial studies on visualizations like Figure 1 on
the quantity has enabled us to propose the following conjectures:

Conjecture 1. There exists a critical value pc such that for all p < pc, the
maximum of I(t, p, q) is achieved at t = 0, and for all p > pc, the maximum is
achieved at t = 1.

Conjecture 2. For p1 > p2, the function I(t, p1, q1) and is always bigger
than the function I(t, p2, q2) at any given t ∈ (0, 1), where the pairs (p1, q1) and
(p2, q2) are defined by qi =

d+2
d p′i.

While this was verified by several of our visualizations, this encountered
what we would call "anomalies for small p", where we see on Figure 2
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where p is around 1.2 and t around 0.25. This shows both the strength
and limitation of numerical observations: while it can rule out incorrect
hypothesis with relative efficiency, it does not provide information as much
as a concrete proof.

Figure 2 While the endpoints seem to be monotonous with respect to
p, this cannot be generalized to the entirety of the function.

To further investigate small values of p, we make a third visualization on
p ∈ [1.05, 1.15]. The result shows that the monotonous increase of I(1, p, q)
with respect to p no longer holds here.
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Figure 3 Comparisons of p ∈ [1.05, 1.15] reveal further complications
on I(t, p, q)

The continuous attempt (and failure) to find a symbolic, mathemati-
cally rigorous way to indicate the property of I(t, p, q) serve as a recurrent
theme in our paper. And when such efforts fail, we resort to numerical
observations.

Initially, this works well for cases where p is large. We considered
generalizing the statement of monotonicity to any t ∈ (0, 1). However, as
the value of p decreases, we discovered that the case is not necessarily true
for small p.

Our first conjecture posits that such threshold values exist, and under-
standing their nature is crucial for the full characterization of the function.

Consider the function I(t, p, q) for d = 3. We observe that as p varies,
the function’s maximum shifts from t = 0 to t = 1. The general behavior
of the functions depicted in the graph can be described in several distinct
phases based on the value of the parameter p.

We observe 3 cases for the behavior of the function I(t, p, q):

1. Case: For p that is closer to 2, the function increases monotonously on
(0, 1).

2. Case: For smaller p that is larger than some cutoff, which will be
discussed later, the function decreases first, and then increases to a
value above 1.
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3. Case: For p even smaller than the cutoff, the function decreases first,
but then increases to a value that is below 1.

For lower values of p, the functions appear to be decreasing rapldiy near
t = 0 and then increase in a flat manner as t approaches 1, but never growing
back to 1 again. This indicates that the function’s sensitivity to changes in t is
minimal at the lower end of the t range. As p increases, a point of inflection
emerges, beyond which the function’s growth rate increases significantly.
This point of inflection moves closer to t = 0 as p further increases.

At intermediate values of p, the function’s curvature changes, suggesting
a complicated relationship between t and the function’s value. We have
managed to evaluate the values of the function symbolically at 1, but failed
to generalize it to any arbitrary value in t ∈ (0, 1)

As p approaches and exceeds a certain threshold value, the functions
demonstrate a marked increase at lower values of t, signifying a shift in the
behavior of the function. This shift is indicative of a phase transition-like
phenomenon where the function’s sensitivity to t is now greatest at the
lower end of the t range, which is a stark contrast to the behavior observed
for lower values of p.

The evaluation of I(1, p, q) enables us to look into the cutoff of p where
its behavior change. While we have observed anomalies for small p, we
believe that there exist for any d, there exists a critical value pc such that for
the pair (pc, qc) defined by d, I(t, pc, qc) either strictly increases or decreases
before bouncing back to 1. (and we would expect to observe the maximum
at t = 1) and for any p < pc the monotonicity no longer exists, but we still
could see a maximum at either t = 0 (when p is near 1) or t = 1 (when p

gets larger). In other words, this pc separates case 1,2 from case 3.
We looked into this by defining a hypothesized critical point pϵ(d)where

given a certain integer d that represents dimension and a small real number
ϵ > 0, we have I(t, pϵ(d), qϵ(d)) attains its maximum value at 0, whereas
I(t, pϵ(d)+ϵ, q2ϵ(d)) attains its maximum value at 0. We use the binary search
algorithm enabled by the conjecture that the value I(1, p, q) is monotonous
with respect to p. Previously, we have tried symbolic means to solveβp,q = 1,
but complications in computation have prevented us from obtaining any
meaningful results. Here, the pair (pϵ(d), qϵ(d)) and (pϵ(d) + ϵ, q2ϵ(d)) are
both (p, q) pairs defined by d. Importantly, this definition of cutoff asserts
that if p is bigger than pϵ(d), the function has to attain its maximum at 1, a
hypothesis substantiated by visualization and numerical analysis but lacks
actual proof.
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Here is the visualization of the cutoff between where the maximum
would be attained with respect to dimensionality. The threshold starts at
around 1.6 and slowly approaches 2. We draw this figure with log(d) for a
compact view.

Figure 4 The cutoff of p, which separates case 1,2 from case 3.

In addition, here is a list of cutoff values for different values of d. This
table indicates how rapidly the cutoff pϵ(d) approaches 2 from below:
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d pϵ(d)

16 1.82498918
40 1.92460603
99 1.96858460
245 1.98714373
602 1.99474074
1480 1.99785666
3641 1.99912813
8955 1.99964564

Table 1 Selected Values of pϵ(d)

0.7 Special values of αp,q

This sections deals with I(t, p, q) when the variable t and parameters (p, q)
are special. Recall that

I(t, p, q) :=
∥1 + teiθ∥Lq([0,2π],dθ/2π)

(1 + tp)1/p
=

1

(1 + tp)1/p

(
1

2π

∫ 2π

0
|1 + t cos(θ) + ti sin(θ)|q dθ

)1/q

and thus when t = 0, I(t, p, q) = 1.
The case t = 1 is relatively complicated to t = 0, as we consider the

fraction part, 1
21/p

, and the integral part,

1

2π

∫ 2π

0
(2 + 2 cos(θ))q/2 dθ

Note that

1 + cos(θ) = 1 + cos(2 · θ/2) = (1 + 2 cos2(θ/2)− 1) = 2 cos2(θ/2)

Thus
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1

2π

∫ 2π

0
(2 + 2 cos(θ))q/2 dθ

=
2q/2

2π

∫ 2π

0
(1 + cos(θ))q/2 dθ

=
2q/2

2π

∫ 2π

0

(
2 cos2(θ/2)

)q/2
dθ

=
2q

2π

∫ 2π

0
cosq(θ/2) dθ

=
2q

π

∫ 2π

0
cosq(θ/2) dθ/2

=
2q

π
·

[
2

∫ π/2

0
cosq(φ) dφ

]
where the last line holds due to periodicity.
Now recall the general trigonometric form of the Beta Function B(a, b)

B
(
a+ 1

2
,
b+ 1

2

)
= 2

∫ π/2

0
sina x cosb x dx

Recall that Γ(12) =
√
π. Substitute a = 0 and b = q, we have

1

2π

∫ 2π

0
(2 + 2 cos(θ))q/2 dθ =

2q

π

Γ(12)Γ(
q+1
2 )

Γ( q+2
2 )

= 2q
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

And consequently,

I(1, p, q) =
1

21/p
·

(
2q

Γ( q+1
2 )

Γ(12)Γ(
q+2
2 )

) 1
q

=
1

21/p
· 2

(
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

) 1
q

= 21−1/p ·

(
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

) 1
q

= 2
1
p′

(
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

) 1
q



xxx Studies on the Ratio Parameter

We denote this value as βp,q.
Recall the Beta function’s definition in terms of the Gamma function:

B(x, y) = Γ(x)Γ(y)

Γ(x+ y)
.

By setting x = q
2 and y = q

2 + 1, we can align the denominator of the
expression with the Beta function’s form:

B
(q
2
,
q

2
+ 1
)
=

Γ( q2)Γ(
q
2 + 1)

Γ(q + 1)
.

And consequently,

I(1, p, q) = 2
1
p′

(
21−q

qπB( q2 ,
q
2 + 1)

) 1
q

Note that the Beta function can also be defined by the integral form:

B(x, y) =
∫ 1

0
zx−1(1− z)y−1 dz.

Substituting x = q
2 and y = q

2 + 1, we get:

B
(q
2
,
q

2
+ 1
)
=

∫ 1

0
z

q
2
−1(1− z)

q
2 dz.

We note that the integrand is always positive and is less than or equal
to 1 for t ∈ [0, 1] because t

q
2
−1 ≤ 1 for t ∈ [0, 1] and (1− t)

q
2 ≤ 1 for t ∈ [0, 1].

Therefore, the entire integrand is less than or equal to 1 for all t in the
domain of integration. Given this, a conservative bound in this context is:

B
(q
2
,
q

2
+ 1
)
≤ 1.

And thus

I(1, p, q) = 2
1
p′

(
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

) 1
q

≥ 2
1
p′

(
21−q

qπ

) 1
q

Here is the trend of βp,q with respect to p when d = 3.
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Figure 5 βp,q first decreases from p = 1 to p = 1.1, and monotonous
increases from p = 1.1 to p = 2

Note that due to the Legendre duplication formula, we have:

Γ

(
j +

1

2

)
=

21−2jΓ(2j)√
πΓ(j)

Thus

I(1, p, q) = 2
1
p′

(
1

Γ(12)Γ(
q+2
2 )

Γ

(
q + 1

2

)) 1
q

= 2
1
p′

(
1

Γ(12)Γ(
q+2
2 )

21−qΓ(q)√
πΓ(q/2)

) 1
q

= 2
1
p′

(
21−q

π

Γ(q)

Γ( q+2
2 )Γ(q/2)

) 1
q

= 2
1
p′

(
21−q

qπ

Γ(q + 1)

Γ( q+2
2 )Γ(q/2)

) 1
q

Where the last equality is due to Γ(q + 1) = qΓ(q).
With a similar process, we can work out I(t, p, q) when t and q are

special. One case we have looked at is when q ∈ N+. This is motivated by
numerical observations for such choices of q.
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Figure 6 For values of q > 2 and d, I(t, p, q) < 1 for t ∈ (0, 1). We
hypothesized that this is always true for large q but have not succeeded
in proving it.

We can see that the trend of functions characterized by q is similar from
previous discussions relevant to p. As q increases, I(t, p, q) decreases (when
we compare curves of the same color across different figures). Recall that

we characterize the lower bound of I(1, p, q) ≥ 2
1
p′
(
21−q

qπ

) 1
q . While this is a

lower bound, it also served as a close approximation of I(1, p, q).
We can take it one step further by making q even natural numbers,

or q = 2k, k ∈ N+, k ≥ 2. While this case has been often considered by
previous literature due to simplicity of computation, our interest is due to
the application of the binomial expansion, namely
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I(t, p, q) =
1

(1 + tp)1/p

(∫ 2π

0

(
t2 + 2t cos(θ) + 1

)k
d
θ

2π

) 1
2k

, where the numerator can be written as∫ 2π

0

(
t2 + 2t cos(θ) + 1

)k
d
θ

2π

=

∫ 2π

0

[
t2 − 2t+ 1 + 2t+ 2t cos(θ)

]k
d
θ

2π

=

∫ 2π

0

[
(t− 1)2 + 2t(1 + cos(θ))

]k
d
θ

2π

=

∫ 2π

0


k∑

j=0

(
k

j

)
(1− t)2k−2j [2t(1 + cos(θ)]j

 d
θ

2π

=
k∑

j=0

(
k

j

){
(1− t)2k−2j(t)j

∫ 2π

0

{
[(2 + 2 cos(θ)]j

}
d
θ

2π

}

We take the step of(
t2 + 2t cos(θ) + 1

)k
= [(t− 1)2 + 2t(1 + cos(θ))]k

because it enables us to integrate (1+cos(θ))j after binomial expansion,
which we can do thanks to the trigonometric form of Beta Function.

Note that when j = 0, the amount{
(1− t)2k−2j(t)j

∫ 2π

0

{
[(2 + 2 cos(θ)]j

}
d
θ

2π

}
is (1− t)2k−2j . We define this expansion on t ∈ (0, 1) and avoid the flaw

caused by 00.
Here is a table of special values of I(t, p, q) when q = 2 ∗ 2, where the

(p, q) pair is defined by d = 3.

0.8 Effort for Differentiation and Estimation of I(t, p, q)

We originally wanted to find the value of t such that the function I(t, p, q) is
maximized. A theoretical approach is to differentiate, which is the purpose
of polynomial expansion.
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t Direct Integration Binomial Expansion
0.1 0.95601455 0.95601455
0.2 0.92149780 0.92149780
0.3 0.89919695 0.89919695
0.4 0.88567976 0.88567976
0.5 0.87774286 0.87774286

Table 2 Comparison of Integration Methods

Recall that

1

2π

∫ 2π

0
(2 + 2 cos(θ))q/2 dθ =

2q

π

Γ(12)Γ(
q+1
2 )

Γ( q+2
2 )

,
Because Γ(12) =

√
π, this can be further simplified to

I(t, p, q) = 2q
Γ( q+1

2 )

Γ(12)Γ(
q+2
2 )

We can further simplify the expression of

I(t, p, q) =
1

(1 + tp)1/p

 k∑
j=0

(
k

j

){
(1− t)2k−2j(t)j

∫ 2π

0

{
[(2 + 2 cos(θ)]j

}
d
θ

2π

} 1
2k

when we consider q = 2k.
We attempted to separate the function by a product, denoting

f(t) =
1

(1 + tp)1/p

and g(t)being the expanded polynomial for the case q = 2k and k ∈ N+, k ≥
2. We impose this restraint because previous studies indicated that it could
lead to interesting results. To compute d

dtI(t, p, q), we apply the product
rule, which yields

d

dt
I(t, p, q) = f ′(t)g(t) + f(t)g′(t)

. The derivative of f(t),

f ′(t) = − ptp−1

(1 + tp)
1
p
+1
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, involves standard calculus. However, the derivative of g(t), g′(t), necessi-
tates differentiating under the integral sign and then taking the 2k-th root’s
derivative.

A second point of interest lies in the initial observation of the funtion.
Numerical evidence seems to suggest that the monotonicity of the funtion
near 0 is indicative of its overall behavior:while we hypothesized that if the
function is monotonous increasing at t = 0, it will be monotonous increasing
on t ∈ (0, 1) as well. To approach this, we attempted using Taylor Series
and Generalized Binomial Expansion Theorem, only to be inhibited again
by complications of differentiation.

We are interested in studying the Taylor Polynomials of αp,q near t = 0.
Recall that

I(t, p, q)q =
1

(1 + tp)q/p

(
1

2π

∫ 2π

0

(
t2 + 2t cos(θ) + 1

)q/2
dθ

)
For the denominator function g(t) = (1 + tp)q/p,

g(0) = (1 + 0p)1/p = 1

g′(t) =
d

dt
(1 + tp)1/p = tp−1(1 + tp)1/p−1

g′(0) = 0p−1(1 + 0p)1/p−1 = 0

g′′(t) =
d

dt

[
tp−1(1 + tp)1/p−1

]
= (p− 1)tp−2(1 + tp)1/p−1 + t2p−2(1 + tp)1/p−2

g′′(0) = NA(due to lim
t→0

(p− 1)tp−2 does not converge).

For the numerator this is more complicated. Using the Leibniz rule, we
have:
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f(0) = 1

f ′(t) =
d

dt

1

2π

∫ 2π

0

(
t2 + 2t cos(θ) + 1

)q/2
dθ

=
q

2π

∫ 2π

0

(
t2 + 2t cos(θ) + 1

)q/2−1 · (t+ cos(θ))dθ

f ′(0) =
q

2π

∫ 2π

0
cos(θ)dθ = 0

f ′′(t) is too complicated. Reducing the terms vanishing at t = 0 yields

f ′′(0) =
q

2π

∫ 2π

0

[
1 + (q/2− 1) · 2 cos2(θ)

]
dθ = q +

q/2− 1

2π

∫ 2π

0
2 cos2(θ) dθ =

3q − 2

2

The last equality uses the fact that 2 cos2(θ) = 1 + cos(2θ)

The generalized binomial theorem states for any real number α and
|x| < 1, the expansion is:

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 + . . .

Here, α = −q/p and x = tp. Let’s write out the first three terms of the
expansion:

0. Zeroth Term: - The constant term is always 1.
1. First Term: - The coefficient of the first term x (which in our case is

tp) is α, so the first term is − q
p t

p.
2. Second Term: - The coefficient of the second term x2 (which in our

case is (tp)2 = t2p) is α(α−1)
2! . Substituting α = −q/p gives us the second

term as (−q/p)(−q/p−1)
2 t2p.

3. Third Term:

(−q/p)(−q/p− 1)(−q/p− 2)

3!
t3p

This term arises from the α(α−1)(α−2)
3! x3 part of the expansion, representing

the third term involving t.
Combining these, the first three terms of the expansion of g(t) = (1 +

tp)−q/p are:

g(t) ≈ 1− q

p
tp +

(−q/p)(−q/p− 1)

2
t2p +

(−q/p)(−q/p− 1)(−q/p− 2)

3!
t3p
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We study the sign of f ′g − fg′, which yields:

1

(p3 ∗ t3)
(p ∗ q ∗ (t2 ∗ (3q − 2) + 4) ∗ (2 ∗ p2 ∗ tp+2 − 2 ∗ p ∗ t2p+2 ∗ (p+ q) + t3p+2 ∗ (p+ q) ∗ (2 ∗ p+ q))/8

+t4 ∗ (3q − 2) ∗ (6 ∗ p3 − 6 ∗ p2 ∗ q ∗ tp + 3 ∗ p ∗ q ∗ t2p ∗ (p+ q)− q ∗ t3p ∗ (p+ q) ∗ (2 ∗ p+ q))/12)

But the complications prevent us from obtaining any meaningful results.





Future Work
The studies on αp,q, with its functional form I(t, p, q) has enabled us to un-
derstand its derivation, and we can use it to derive some special values of
t. However, trend of the function part of αp,q still requires differentiation,
which is prohibited by the complicated form of the function. Our discus-
sions have reaffirmed the intricate nature of the restriction inequalities and
their dependency on the dimensional settings and the values of p and q. The
theoretical and numerical explorations have suggested that the conjectures
on the monotonicity for I(p, q) holds under certain conditions, but not for
every t. While the hypothesized value for the cutoff of t where the maxi-
mum is attained at 1 instead of 0 is when p is significantly larger than when
it would exhibit anomalies, there is no proof of monotonocity. This study
really highlights the strength and drawback of numerical studies: while it
provides us with immediate visualizations enabling interesting hypotheses,
we lack concrete methods to prove them.
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