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Abstract

For the purpose of improving patient survival rates and facilitating efficient
treatment planning, brain tumors need to be identified early and accurately
classified. This research investigates the application of transfer learning
and Convolutional Neural Networks (CNN) to create an automated, high-
precision brain tumor segmentation and classification framework. Utiliz-
ing large-scale datasets, which comprise MRI images from open-accessible
archives, the model exhibits the effectiveness of the method in various kinds
of tumors and imaging scenarios. Our approach utilizes transfer learning
techniques along with CNN architectures strengths to tackle the intrinsic
difficulties of brain tumor diagnosis, namely significant tumor appearance
variability and difficult segmentation tasks. The segmentation model, based
on the U-Net architecture, excels in delineating tumor boundaries with re-
markable precision, while the classification model, employing EfficientNet
B3, achieves high accuracy in identifying tumor types. Our findings indi-
cate a significant improvement in the speed and accuracy of brain tumor
diagnosis, offering potential benefits for clinical practice and patient care.
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Chapter 1

Introduction

In the changing field of medical science and technology, information tech-
nology and e-healthcare systems have revolutionized the way clinical pro-
fessionals diagnose and treat diseases [25]. Among the challenges encoun-
tered in the medical industry, the segmentation and classification of brain
tumors from magnetic resonance imaging (MRI) images stand out because
of their complexity and the importance of fast and precise diagnosis.

MRI is a medical imaging method used in radiology to study the struc-
ture and function of the human body [11]. It can offer detailed images of
the body in three dimensions. It is particularly beneficial in neurological,
musculoskeletal, and cancer imaging because it provides better contrast
between the body’s soft tissues than computer tomography (CT). Several
contemporary challenges in image-guided surgery, therapy evaluation, and
diagnostic tools benefit from accurate 3D representations of anatomical
structures [11].

Most research in developed countries has shown that the death rate of
people affected by brain tumors has increased over the last 30 years. Brain
tumors are currently one of the leading causes of death in children and
adults. Brain tumors, which are defined by the uncontrolled growth of
cells in the brain, can be malignant (cancerous) or benign (non-cancerous),
as shown in Table 1.1, and their detection and classification are critical in
establishing the best course of therapy. The World Health Organization
and the American Brain Tumor Association classify brain tumors into four
classes: low-grade (benign) tumors (grades I and II) and high-grade (ma-
lignant) tumors (grades III and IV) [6]. Grade I brain tumor cells resemble
normal cells, which grow slowly and are less prone to spreading. Grade II
tumor cells are prone to spreading into surrounding brain tissue. Grade III
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and IV cells are abnormal, can migrate to other sections of the brain, and
are often the fastest-growing tumors that recur after therapy, indicating that
they are cancerous or malignant. The difference between these grades is
important because it influences treatment decisions and patient outcomes.

Characteristic Benign Malignant

Nature Not cancerous Cancerous
Tissue Invasion Not invade Invade
Spread Not spread Spread
Growth Rate Slow Fast
Recurrence Not likely to recur More likely to re-

cur
Shape Smooth, regular

shape
Irregular shape

Mobility Move around Not move around

Table 1.1 Comparison of Benign and Malignant Tumors

Identification in the context of brain tumors with magnetic resonance
images (MRI) includes recognizing the presence of tumors discerning their
characteristics and grading their severity. This level of detail is critical
for medical diagnosis because it provides the anatomical structures and
any potential tissues. Such comprehensive information is important for
formulating treatment plans and monitoring the patient’s progress.

Segmentation is the process of dividing an image into sections based on
pixels with comparable features. Manual segmentation of diseased brain
tissues from normal tissues takes a long time and can yield false results [11].
The precise segmentation of brain tumors serves a critical function beyond
diagnosis. It is vital for creating detailed models of pathological brains 1

and enhancing the accuracy of brain atlases 2 [22]. Despite major advances
in medical imaging technology, segmenting and classifying brain tumors
remains difficult. The variability of tumor concerns, combined with their
potential to arise anywhere in the brain and resemble normal tissues, com-
plicates the diagnostic process. Traditional methods in medical imaging
largely rely on the manual segmentation performed by radiologists, a pro-
cess that is highly susceptible to human error and subjective interpretation.

1The study of diseases and disorders related to the brain
2Serial sections along different anatomical planes of the healthy or diseased developing

or adult animal or human brain
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This manual technique involves the radiologist outlining areas of interest
in medical images, such as MRI scans or CT images, by hand. Due to the
complex nature of these images and the variability in human perception,
this segmentation is often inconsistent with different potentially producing
varying results from the same image. These inconsistencies can lead to
mistakes in how images are interpreted, which in turn may affect the ac-
curacy of the diagnoses derived from them. Furthermore, such errors can
propagate through the medical workflow, impacting treatment decisions
and ultimately patient outcomes.

This paper addresses these issues and provides insights into the limita-
tions of present approaches, as well as the potential for convolutional neural
networks (CNN) and transfer learning to automate the segmentation pro-
cess and improve the accuracy of existing methods. The importance of early
and accurate identification of brain cancers cannot be overemphasized. The
risks for patients are extremely high, as the tumor has the potential to de-
velop from low to high grade if not treated promptly. This study highlights
the limitations of current manual and semi-automated segmentation ap-
proaches, emphasizing the need for a more dependable and more efficient
alternative.

The primary aim of this research is to demonstrate the effectiveness
of a CNN and transfer learning-based approach for the segmentation and
classification of brain tumors. This exploratory and interpretative study
sets forth four specific objectives:

• To automate the segmentation and classification process

• To improve upon existing methods in terms of accuracy and efficiency

• To prove the method’s effectiveness across large datasets and complex
structures

• To enhance the diagnostic process for brain tumors.

In this study, we developed and validated an automated framework
for the segmentation and classification of brain tumors using MRI images
with CNN and enhanced with Transfer Learning (TL) techniques. Utilizing
comprehensive datasets from publicly accessible Kaggle repositories, our
approach employs the 3D U-Net architecture for precise tumor boundary
segmentation and EfficientNet B3 for robust tumor type classification, cate-
gorizing tumors into glioma, meningioma, no tumor, and pituitary classes.
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The performance of our models demonstrates the effectiveness of the seg-
mentation model achieving an accuracy of over 99%, and the classification
model surpassing expectations with an accuracy of over 99%.

The paper is organized as follows: the subsequent sections focus on a
detailed analysis of the proposed approach, simulation results, and perfor-
mance evaluation; the comparative analysis highlights the advantages and
limitations of the study; and the paper concludes with insights on the future
scope of this research.



Chapter 2

Background and Related Works

2.1 Medical Backgrounds

2.1.1 Magnetic Resonance Imaging Overview

Magnetic Resonance Imaging (MRI) represents an important advancement
in medical diagnostics using strong magnetic fields and radio waves to
visualize the complex structure within the human body [21]. The non-
invasive imaging technique uses a series of electromagnetic fields [21]:

• A strong static field to polarize hydrogen nuclei

• A spatially variable field for encoding spatial information

• A weak radio frequency field to manipulate hydrogen nuclei

These electromagnetic fields can produce signals that are captured to gen-
erate detailed images of bodily tissue. This sophisticated approach allows
for the differentiation of tissue characteristics, which is crucial for various
medical diagnoses and research applications.

MRI employs a variety of techniques [12] to illuminate the intricate struc-
tures within the body, each with its unique approach to imaging. Among
these, T1-weighted, T2-weighted, DWI (Diffusion Weighted Imaging), and
FLAIR (Fluid Attenuated Inversion Recovery) sequences are particularly
notable. The contrast and detail in the images produced by these sequences
are significantly influenced by two key parameters: the Time to Echo (TE)
and the Repetition Time (TR) [12].

As shown in Table 2.1, T1-weighted images, which excel in showcasing
anatomical details, use a short TE (typically less than 20 milliseconds) and a
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Characteristic T1-weighted T2-weighted DWI FLAIR

Brightness of Fluid Dark Bright Variable Suppressed
Anatomical Detail Excellent Good Fair Good
Edema Sensitivity Low High High Very High
Lesion Detection Good Very Good Excellent in acute phase Excellent near CSF
Preferred Use Anatomy visualization Fluid detection Ischemia detection Lesion detection near CSF
Time to Echo (TE) Short (<20 ms) Long (>80 ms) Variable Long (90-150 ms)
Repetition Time (TR) Short (400-600 ms) Long (2000-6000 ms) Variable Very Long (>5000 ms)

Table 2.1 MRI Techniques: Key Parameters and Use Cases

shorter TR (ranging from 400 to 600 milliseconds). This combination helps
make fat and other substances brighter to easier visualize the brain’s struc-
ture, muscles, and fat. T2-weighted images, in contrast, utilize a longer TE
(often greater than 80 milliseconds) and a longer TR (usually 2000 to 6000
milliseconds) to accentuate fluids and tissues to detect fluid accumulations,
edema, and various pathologies. DWI focuses on the movement of water
molecules within tissues and uses TE and TR values that can vary widely
depending on the specific clinical application. The sensitivity of DWI to
water diffusion makes it particularly useful for identifying acute ischemic
strokes, the sudden blockages of blood vessels in the brain that lead to
restricted blood flow, and tissue damage. This imaging technique is also
adept at differentiating between cystic and solid lesions. FLAIR imaging, an
advanced form of T2-weighted imaging, employs a long TE (90-150 millisec-
onds) and a very long TR (often greater than 5000 milliseconds) to suppress
the signal from free fluids1. Each MRI sequence has the variable relaxation
times of tissues under a magnetic field, guided by carefully chosen TE and
TR values. In this way, clinicians have the detailed information they need
for diagnosis and treatment planning.

2.1.2 Brain tumors Overview

Brain tumors, defined by the uncontrolled proliferation of cells within the
brain, present a significant health challenge because of the critical functions
of the location. The tumors can originate from various types of brain cells
or be spread from cancers in other body parts, resulting in a mass that will
compress or invade surrounding brain tissues.

1Free fluids refers to any bodily fluids that are not bound within cells or contained
within a closed circulatory system, such as blood vessels or lymphatic channels. In medical
imaging, this term is often associated with fluids that accumulate or are present in spaces
where they are not typically abundant under normal physiological conditions
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Figure2.1 FLAIR, T1, T2, TICE Illustrations[20] For the same scan on the same
brain

In MRI imaging of brain tumors, two significant components are often
discussed: the tumor core and the enhancing part of the tumor:

• Tumor Core refers to the solid, central part of the tumor where the
cell density is highest. The core is often hypoxic (low in oxygen)
and necrotic (containing dead cells) due to rapid growth that out-
paces blood supply. Its characteristics are crucial in determining the
aggressiveness of the tumor and guiding the surgical approach, as
removing the core can be important for treatment success.
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• Enhancing part is the bright region surrounding the tumor core on
T1-weighted MRIs following contrast agent injection. The enhance-
ment is due to the leaky blood vessels typical of malignant growth,
which allow the contrast agent to permeate. This part of the tumor
is active, with cells proliferating at a high rate, and its extent helps in
assessing the tumor’s spread and the effectiveness of treatments like
chemotherapy and radiation.

Brain tumors can be categorized based on the origin, location, and
whether they are benign (non-cancerous) or malignant (cancerous), with
common types including gliomas, medulloblastomas, meningiomas, cran-
iopharyngiomas, and pituitary adenomas. The classification is important
in determining the treatment strategy and prognosis:

• Gliomas originate from glial cells within the brain and include a range
of subtypes, from low-grade to high-grade malignancies, requiring
treatments that may involve surgery, radiation, and chemotherapy.

• Medulloblastomas are extremely malignant tumors in the cerebellum
that primarily affect children and require serious treatment.

• Meningiomas are benign tumors that develop from the meninges
which surround the brain. They do not require treatment, but if
they are symptomatic, surgery or radiation may be necessary.

• Craniopharyngiomas are benign tumors near the pituitary gland that
affect hormone levels. They are treated with surgery and radiation to
reduce hormonal and neurological consequences.

• Pituitary adenomas are normally benign tumors of the pituitary gland.
They can cause a variety of symptoms depending on their hormonal
activity and should be seriously treated.

2.2 Convolutional Neural Network (CNN) Background

2.2.1 CNN Overview

Neural networks are a necessary part of artificial intelligence that has in-
fluenced how we solve complicated problems across a variety of fields. To
imitate the human brain’s complex network of neurons, neural networks are
made up of layers of interconnected nodes. Each of the nodes is designed
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to conduct a certain task. These networks transfer data by these nodes to
allow them to learn and make decisions depending on the information they
receive. A neural network includes three main layers: the input layer, hid-
den layers, and the output layer. The architecture enables the network to
detect subtle patterns and correlations between datasets.

Convolutional Neural Networks (CNNs) are the neural networks that
are very effective at analyzing visual input such as images. CNNs work
by applying a set of filters to input images. These filters detect spatial
hierarchies in data by learning from the input’s small spatial areas while
preserving spatial relationships between pixels[16]. This makes CNNs ideal
for tasks involving massive images, where detecting local characteristics like
edges and textures is critical for classification and analysis.

Each layer in a CNN converts one volume of activations to another
using a differentiable function, allowing complex feature extraction from
input data. Consider an input volume of size 32 * 32 * 3, which represents a
32 * 32 pixel image with three color channels. A convolutional layer might
apply 10 filters of size 5 * 5 * 3 to this input. Each filter scans the input by
sliding over it spatially, computing the dot product between the filter and
input patches, resulting in a new 2D activation map for each. If no padding
is utilized and the stride is one, each 5 * 5 * 3 filter converts the 32 * 32 *
3 input volume to a 28 * 28 activation map. Stacking the activation maps
from all 10 filters results in an output volume of 28 * 28 * 10.

Convolutional layers in a CNN use many filters to capture various pat-
terns within the input image, such as edges, textures, and contrasts—crucial
features for medical imaging tasks like brain tumor segmentation. For ex-
ample, early layers may detect simple edges or blobs, while deeper layers
might identify more complex structures, such as the irregular shapes and
boundaries typical of tumors.

Following the convolutional layers, pooling layers reduce the dimension
of the data. This reduction not only decreases the computational load but
also enhances the network’s ability to detect features invariant to scale and
orientation changes. In my study, max pooling layers could help the network
maintain the detection of critical features like tumor boundaries, regardless
of their scale or orientation in different MRI scans.

Finally, the fully connected layers synthesize the features extracted by
the convolutional and pooling layers to make segmentation for the brain
scan. In the context of brain tumor segmentation, these layers may detect
whether an area of the image has a tumor and identify it as glioma or menin-
gioma based on the patterns learned during training. This method involves
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combining the localized and abstracted properties into a single prediction,
allowing the network to accurately segregate and identify various tumor
areas within the brain.

2.2.2 Functions and Optimizer in Neural Network Training

Rectified Linear Unit Activation Function

The Rectified Linear Unit (ReLU) activation function is fundamental in the
setup of modern neural networks, especially those applied to deep learning.
To address the vanishing gradient problem that plagued earlier activation
functions such as sigmoid or tanh, ReLU provides a non-linear function
that is zero for all negative inputs and linear for all positive inputs, given in
Equation 2.1.

f(x) = max(0, x) (2.1)

Its simplicity enables faster training by successfully propagating gradi-
ents without significant loss as layers rise. Furthermore, ReLU contributes
to the conservation of a sparse network, lowering the risk of over-fitting.
The function’s ability to accelerate the convergence of the stochastic gradi-
ent descent method is a key reason for its widespread adoption in network
designs.

Adam Optimizer

The Adam optimizer is a method that computes individual adaptive learn-
ing rates for different parameters from estimates of the first and second
moments of the gradients. Its name derives from "adaptive moment estima-
tion," and it combines the advantages of two other extensions of stochastic
gradient descent: AdaGrad, which works well with sparse gradients, and
RMSProp, which handles non-stationary objectives effectively. Adam stores
the decaying average of past squared gradients (v) and the decaying average
of past gradients (m). Unlike standard stochastic gradient descent, which
maintains a single learning rate for all weight updates, Adam adjusts the
rate for each weight based on the computations of these averages, thus aid-
ing in a more efficient optimization of the learning process. The method is
well-regarded for its performance across a wide range of deep learning con-
texts and is known for requiring less memory and being computationally
efficient.



Transfer Learning 11

Categorical Cross entropy Loss Function

Categorical cross-entropy, often utilized in multi-class classification prob-
lems, measures the difference between two probability distributions - pre-
dicted probability and actual distribution in the target variable. The func-
tion is especially suited for models predicting the probability of member-
ship to multiple classes, where each target class label is one-hot encoded
such as converting into a binary vector. It calculates the loss by taking the
negative log of the probability assigned to the true class and summing this
across all samples, effectively pushing the model to increase the probability
assigned to the correct class labels while minimizing those assigned to in-
correct labels. This loss function is fundamental in tasks where the outputs
are probabilities that sum to one, as is typical in classification problems
involving three or more class labels, such as in natural language processing
or image categorization tasks.

2.3 Transfer Learning

In machine learning, traditional methods have used patterns from train-
ing data to predict future outcomes across various applications. These
conventional approaches assume that the training and testing data share
similar input feature space and distribution. However, differences in data
distribution between training and test datasets can significantly affect the
performance of predictive models. This disparity underscores the need for
a methodology that can bridge the gap between differing domains, which
sets the stage for the application of transfer learning.

Transfer learning addresses these challenges by enhancing the perfor-
mance of a learner in a target domain through the transfer of knowledge
from a related source domain. For instance, models trained on large, com-
prehensive datasets possess generalizable features that can be adapted to
a new, but similar task with minimal adjustments. This is commonly seen
in areas such as computer vision and natural language processing. In com-
puter vision, a model trained to recognize objects in photographs can be
fine-tuned to recognize specific items in satellite images. In NLP, models
such as Bidirectional Encoder Representations from Transformers (BERT),
originally trained on vast text corpora, are fine-tuned to perform specific
linguistic tasks like sentiment analysis or language translation with more
accuracy and less training time than training a model from scratch.

Transfer learning can significantly reduce the computational resources
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and time required for training models, making sophisticated machine-
learning applications more accessible and sustainable. Additionally, by
starting with a model pre-trained on a large dataset, the performance on
the new task is often better when the available training data is sparse. The
approach can not only speed up the development process but also enhance
the model’s accuracy and reliability.

2.3.1 Evaluation Metrics Overview

• Accuracy, shown as Equation 2.2, measures the proportion of true re-
sults (both true positives and true negatives) among the total number
of cases examined. It provides a simple indicator of the overall cor-
rectness of the model. For Equation 2.2, 2.3, 2.4, 2.6, TP denotes true
positive, FP denotes false positive, FN denotes false negative, and TN
denotes true negative.

Accuracy =
TP + TN

Total Number of Cases (2.2)

• Precision, shown as Equation 2.3, assesses the model’s ability to iden-
tify only relevant instances among those instances it classified posi-
tively. High precision implies a low false positive rate.

Precision =
TP

TP + FP (2.3)

• Recall, shown as Equation 2.4, measures the model’s ability to identify
all relevant instances, providing insight into what proportion of actual
positives was correctly identified.

Recall = TP
TP + FN (2.4)

• F1-Score, shown as Equation 2.5, is the harmonic mean of precision
and recall, offering a balance between the two by considering both the
false positives and false negatives. It is particularly useful when the
class distribution is uneven.

F1-Score = 2× Precision × Recall
Precision + Recall (2.5)
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• The Dice Coefficient, shown as Equation 2.6, often used for spatial
overlap metrics, is similar to the F1-Score but is typically used for
comparing the pixel-wise agreement between a predicted segmenta-
tion and its corresponding ground truth.

Dice =
2× TP

2× TP + FP + FN (2.6)

• HD95 measures the maximum distance between the predicted and
true boundaries of segmentation. It is robust against outliers by
considering only the 95th percentile, thus providing a more stable
measure of the spatial discrepancy in segmentation tasks.

• IoU, also known as the Jaccard index, measures the overlap between
two boundaries. As indicated in Equation 2.7, it divides the area of
overlap between the predicted segmentation and the ground truth by
the area of their union, offering a clear measure of how well the two
agree, irrespective of the size of the areas involved. In Figure 2.2, the
red box shows the ground truth area and the blue box shows the the
predicted segmentation area. The area of overlap is the blue-shaded
area over these two boxes as shown in the middle one in Figure 2.2,
and the area of union is the blue-shaded area in the right one in Figure
2.2.

IoU =
Area of Overlap
Area of Union (2.7)

Figure 2.2 Illustration of Intersection Over Union for Brain Tumor Segmenta-
tion Task
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2.4 Related Works

The recent progress in brain tumor segmentation using MR images has
been significant, positioning the technology toward the forefront of medi-
cal imaging innovation. At the heart of this progress is the integration of
deep learning techniques, especially the combined application of Convo-
lutional Neural Networks (CNNs) and advanced preprocessing techniques
such as Stationary Wavelet Transforms (SWT). The integration is driving
a significant shift in diagnostics, resulting in tools that are not only more
precise but also considerably more efficient. However, while these im-
provements are fascinating, their use in clinical settings is still limited. The
process of transitioning from research to clinical practice is time-consuming
due to rigorous validation and regulatory approvals. As a result, while the
transition to these new diagnostic techniques is progressing, widespread
clinical adoption remains on the horizon.

Mittal et al. [19] introduced a novel Growing Convolutional Neural Net-
work (GCNN) model that, when combined with SWT, showed significant
improvements over traditional methods such as Support Vector Machines
(SVM) and conventional CNNs across various metrics, including accuracy,
MSE shown as Equation 2.8, and PSNR shown as Equation 2.9. Our ap-
proach differs from this as we integrate Transfer Learning (TL) with con-
ventional CNNs, optimizing pre-existing architectures for enhanced per-
formance without the need for developing a new architecture from scratch.
Our method utilizes established deep learning efficiencies with a focus on
rapid deployment and scalability in clinical settings.

MSE =
1

mn

m∑
i=1

n∑
j=1

(I(i, j)−K(i, j))2 (2.8)

where I is the original image, K is the reconstructed image, and m, n are
the dimensions of the images.

PSNR = 10× log10(
MAX2

I

MSE ) (2.9)

where MAXI is the maximum possible pixel value of the image. For exam-
ple, in an 8-bit image, this would be 255.

Further exemplifying the advancements in this area, the application of
the nnU-Net framework for brain tumor segmentation, as investigated by
Fabian Isensee and colleagues [13], marks a significant milestone. Their
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work not only highlights the framework’s adaptability to specific segmen-
tation tasks but also underscores its potential to enhance performance sig-
nificantly, achieving commendable Dice scores and HD95 values across
different tumor segmentation categories. In our study, we build directly on
these findings by applying U-Net as a baseline from which we explore en-
hancements through preprocessing techniques and architectural tweaks for
optimizing computational efficiency and model robustness in processing
our specific open datasets[20][17][9][4][5].

In a similar vein, Nagwa M. Aboelenein and collaborators introduced the
Hybrid Two-Track U-Net (HTTU-Net) architecture, designed to surmount
the challenges of precision in automated medical diagnosis. This dual-track
architecture, featuring varied layer depths and kernel sizes that merge to
produce the final segmentation output, and the integration of Leaky ReLU
activation and batch normalization, showcases an improved capability to
efficiently process complex image datasets. The architecture contrasts with
our single-path approach to Transfer Learning, where we prioritize simplic-
ity and efficiency. However, we will analyze the potential of incorporating
elements of HTTU-Net’s structure to enhance segmentation detail in future
iterations of our models.

Dinthisrang Daimary and his team’s exploration [10] into enhancing
brain tumor segmentation through hybrid Convolutional Neural Networks
(CNNs) addresses the limitations of manual segmentation. They propose
two innovative architectures, U-SegNet and Seg-Unet, which combine el-
ements from the renowned U-Net and Segment models, and a third, Res-
SegNet, which integrates SegNet with ResNet18 features for increased accu-
racy. These models utilize depth variation and skip connections inspired by
U-Net to bolster feature integration, with Res-SegNet employing ResNet18’s
element-wise additional layer for a skip connection, showcasing the poten-
tial for accuracy improvement. This approach is similar to ours because it
seeks to use the strengths of multiple architectures for improved segmen-
tation accuracy. However, our work uses a broader dataset and specifically
integrates transfer learning, allowing us to expedite training and increase
data efficiency, which is crucial for our target application in real-time med-
ical diagnostics.

The quest for efficient and accurate automatic segmentation of brain
tumors from MRI images has propelled the exploration into Deep Neural
Networks (DNN) due to their superior performance in image segmentation
tasks. DNNs, with their multi-layered architecture, are adept at extracting
features from complex datasets. Each layer in a DNN transforms one vol-
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ume of activations to another from simple patterns in the initial layers to
more abstract features in deep layers. It allows DNNs to capture complex
details for differentiating between healthy tissue and tumor regions in brain
scans.

Furthermore, DNNs often integrate convolutional layers, which are par-
ticularly effective for imaging data due to their ability to preserve spatial
hierarchies and reduce the number of trainable parameters through local-
ized receptive fields and shared weights. This architectural characteristic
makes DNNs not only powerful but also efficient for processing the large
datasets typically involved in medical imaging.

However, the field faced significant challenges, including issues such as
gradient diffusion and the high computational demands of training deeper
neural networks. Gradient diffusion, formerly known as the vanishing gra-
dient problem, occurs during the training of deep neural networks when the
gradient employed in backpropagation to update network weight decreases
in magnitude as it propagates back through layers. This loss in gradient
strength can result in slower convergence rates and poor network training,
particularly in the deeper layers, making it more difficult to effectively cap-
ture and learn more complex patterns. Furthermore, the immense compu-
tational demands associated with training these deeper networks demand
not only extensive processor capacity but also increased memory and en-
ergy usage. These problems emphasize the need for innovative approaches
that enhance training efficiency and more efficiently manage computing
power, allowing for the design of more powerful neural architectures.

In response, Lamia H. Shehab et al. [24] introduced an innovative ap-
proach using a Deep Residual Learning Network (ResNet) to mitigate the
gradient vanishing problem typical of traditional DNNs, demonstrating
notable improvements in segmentation accuracy for complete, core, and
enhancing tumor regions. Our models, also incorporate residual learning
principles, which are fundamental to our adopted EfficientNetB3 structure,
enhancing learning depth without the risk of vanishing gradients. Sim-
ilarly, Hao Chen and his team [8] proposed a novel approach for brain
tumor segmentation utilizing the Deep Convolutional Symmetric Neural
Network (DCSNN), incorporating symmetric masks into the deep convolu-
tional neural network framework to address the voluminous data of MRIs
and the variability in tumor appearance, highlighting the ongoing efforts to
address common asymmetries in tumor regions. Our work complements
their work by focusing on a balanced approach using Transfer Learning
to adapt pre-trained models, which could integrate symmetric processing
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techniques in subsequent refinements for enhanced accuracy.
This evolution in brain tumor segmentation technologies reflects a broader

trend towards adopting more sophisticated computational models, aiming
to address the multifaceted challenges in medical imaging. The cumulative
efforts in this domain not only promise enhanced diagnostic capabilities
but also pave the way for future innovations in medical technology.

2.5 Research Gap

The evolution of computational methods for the detection and segmenta-
tion of brain tumors from MRI scans has made significant progress, as high-
lighted in the existing literature. Advanced techniques in machine learning
and deep learning have elevated the precision of tumor isolation and identi-
fication, improving diagnostic capabilities. However, several unaddressed
challenges still limit the efficacy and applicability of current models.

First, current methods mainly focus on identifying tumor presence, lo-
cation, and size. However, they fall short in differentiating complex tumor
characteristics, such as distinguishing tumor cores from surrounding tissue.
This limitation affects the depth of analysis required for precise medical in-
terventions. My research aims to bridge this gap by developing a model
capable of recognizing the complex tumor features and providing a more
clear understanding of tumor anatomy within MRI scans.

Also, the effectiveness of computational models is inherently tied to
the diversity and volume of data they are trained on. Prior studies have
been constrained by limited datasets lacking variation, which impedes the
model’s ability to generalize across different tumor types and imaging con-
ditions. To address the limitation, my study introduces a dataset with sub-
stantial variation, enabling the development of more robust and versatile
models.

Previous approaches in tumor segmentation and classification have pre-
dominantly operated in isolation, focusing either on segmentation or classi-
fication but not both in conjunction. This separation limits the comprehen-
sive analysis potential of these models. My research proposes an approach
by integrating segmentation and classification processes, thereby enhancing
the efficiency and accuracy of tumor analysis in MRI scans.

Overall, my study addresses critical gaps in knowledge, data, and
methodology within the field of MRI brain tumor detection and segmenta-
tion. While recent advancements in the field have seen models achieving
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an accuracy of around 98%, these often struggle with consistently differen-
tiating tumor cores from surrounding tissues across diverse datasets. By
introducing a model that excels in differentiating tumor cores from sur-
rounding tissues with varying datasets, and integrating segmentation with
classification, the research represents a significant innovation. It aims to
overcome the limitations of existing models, offering a more detailed and
accurate tool for medical diagnostics and treatment planning.



Chapter 3

Materials and Methods

3.1 Data Overview

3.1.1 Data Collection

This research employs several comprehensive datasets to develop and vali-
date a Convolutional Neural Network (CNN) model enhanced by Transfer
Learning (TL) techniques for the segmentation and classification of brain
tumors. The datasets are sourced from publicly available repositories on
Kaggle and are crucial for training our models to accurately identify and
categorize brain tumors into glioma, meningioma, no tumor, and pituitary
classes.

In the study, two main datasets are utilized in brain tumor MRI studies:

• Brain Tumor MRI Dataset [20]: The primary dataset includes 7023
images of 2D human brain MRI scans, classified into four categories:
glioma, meningioma, no tumor, and pituitary. The original images
vary in size and have been processed to remove extra margins to
improve the model’s accuracy by standardizing the input size. The
dataset is sourced from a Kaggle repository created by Masoud Nick-
parvar and is important for the classification phase of the study.

• BraTS 2019, 2020, 2021 Datasets [17][4][5][9]: The BraTS datasets
offer multimodal scans available in Neuroimaging Informatics Tech-
nolgy Initiative format files. The NIFTI image format is an essential
standard in medical imaging, particularly for MRI data. It enables
efficient storage and exchange of neuroimaging data by combining
image and header information into a single file. The header includes
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Figure 3.1 MRI Preview for Classification Model Dataset

detailed metadata crucial for data handling, such as image dimen-
sions, orientation, and scaling. NIFTI supports both 3D spatial and
4D time-variant data arrays to facilitate precise alignment and anal-
ysis across various platforms. The scans in these datasets include
native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and
T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes. These
images come from various institutions and have been manually seg-
mented by expert raters, following a consistent annotation protocol.
The segmentation labels include the GD-enhancing tumor (ET), the
peritumoral edema (ED), and the necrotic and non-enhancing tumor
core (NCR/NET), providing a comprehensive dataset for training seg-
mentation tasks and testing the classification model.

In the dataset[20] for classification model training, the 2D image consists
of single or multi-channel pixels. However, the 3D images from BraTS
dataset[17][4][5][9] are comprised of 3D cubes or voxels. In the dataset, all
the 3D MRI images are stored and encoded in a NIFTI file, where each detail
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Figure 3.2 MRI Raw Image Slice
from BraTS Datasets[17][4][5][9]

Figure 3.3 Mask Slice for
MRI Image (left) from BraTS
Datasets[17][4][5][9]

is known as an attribute. When visualizing a 3D image, a list is initialized
in which, whenever a volume is read, it iterates over all 155 slices of the 3D
volume to append each slice sequentially in the list. The number of voxels
in a 3D image is calculated with the following equation.

Vt = St ×Hs ×Ws (3.1)

where Vt is the total voxel number of the image, St is the number of 2D
slices of a 3D image, Hs is the height of each slice and Ws is the width of
each slice.

3.1.2 Data Preprocessing

All datasets underwent a standard preprocessing pipeline to ensure the uni-
formity and training efficiency of our CNN models. The process included
resizing the images to a standard dimension, normalizing the pixel values,
and augmenting the data to enhance model robustness against overfitting.
Also, the creators of the BraTS dataset provided pre-processed data, includ-
ing skull-stripped and co-registered images, to ensure consistency across
training and testing sets. Given the varying dimensions of MRI images in
the datasets, it is essential to standardize the size of all images to ensure
uniformity in input shape for the CNN model. This process involves resiz-
ing the images to a predetermined standard size, which is 128 * 128 pixels in
this study. The image processing library, OpenCV, is employed to resize the
images. The interpolation method is used for the resize method considering
its ability to preserve the quality of the images during resizing. In addition,
the aspect ratio is maintained by padding the image with black pixels, which
ensures that the images are resized to the desired dimensions without dis-
tortion. Pixel Value Normalization is also introduced in our study to scale
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Figure 3.4 Slice graph for MRI Image [17][4][5][9]

the pixel intensity values to a common range. The pixels are normalized
to the range [0, 1] by dividing each pixel value by the maximum possible
intensity value, which is 255 for our images. Rotation, flipping, scaling, and
translations are employed in our study to provide augmentations for the
medical images. Finally, these preprocessing steps are integrated into the
comprehensive data preprocessing pipeline. Thus the pipeline will auto-
mate the process of resizing, normalizing, and augmenting the images as
they are loaded into the model for training, validation, or testing.
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Figure 3.5 MRI Image Before Preprocessing (top row) And After ROI Enhance-
ment (second row)[17][4][5][9]

3.2 Methodology

3.2.1 Methods Overview

Figure 3.6 illustrates the comprehensive pipeline used for the segmentation
and classification of brain tumors from 3D MRI images. The first step in
this pipeline involves processing the MRI images through a sophisticated
3D U-Net convolutional neural network (CNN) model. This model has been
designed to detect and specify the boundaries of brain tumors by extracting
essential characteristics from volumetric data. The segmented tumor areas
are clearly shown in the upper right image of the figure, which highlights
the precision of the tumor delineation technique.

After segmentation, the extracted tumor features are analyzed by an ad-
vanced classification model. This model employs segmented data to classify
each tumor to one of multiple categories based on specified parameters. The
potential categories include glioma, meningioma, pituitary, or the absence
of any tumor-like signs. This classification is critical for selecting the best
therapy pathway and has a substantial impact on patient prognosis.
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Figure 3.6 Methodology Pipeline

3.2.2 Brain Tumor Segmentation Model

The development of a CNN model based on the U-Net architecture marks
a significant advancement in the segmentation of brain tumors from MRI
scans. This model is designed to precisely detect tumor boundaries to
improve diagnostic accuracy. It features a symmetrical structure with ex-
panding and contracting paths to capture detailed context and localization
information. This shape is crucial for identifying various tumor regions
with high accuracy.

To prepare MRI images for segmentation, we perform preprocessing
operations such as scaling, normalization, and data augmentation. These
procedures improve the model’s ability to generalize across diverse datasets
and improve its performance.

Model Input Description

The input to the network consists of a grayscale image with dimensions
of 128 * 128 pixels. Each pixel represents an intensity value normalized
between 0 and 1, transitioning from black to white. Accompanying the
input image is a mask image delineating various regions of interest within
the brain. These regions include:
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• GD-enhancing tumor(ET) is represented as a gray area and labeled as
1.

• Peritumoral edema(ED) is indicated by a pink color and labeled as 2.

• Non-enhancing tumor core(NET) is depicted in blue and labeled as 3.

• Areas not covered by any specific label are marked as 0, corresponding
to a white background in the mask.

Model Output Description

The output from the segmentation model is a feature map that assigns
a probability to each pixel. The probability indicates its likelihood of
belonging to one of the following categories: GD-enhancing tumor (ET),
peritumoral edema (ED), non-enhancing tumor core (NCR/NET), or a non-
interest area. This probabilistic output map assists the segmentation process
by highlighting the most likely category for each pixel based on the highest
probability score. Consequently, each pixel is classified into the category
with the maximal probability, thus defining the segmentation of the image
according to the distinct pathological features.

3.2.3 U-Net Architecture Introduction

The U-Net architecture, an extension of conventional CNNs, is particularly
suited for medical image segmentation due to its unique U-shaped struc-
ture. It consists of a downsampling path shown as a red arrow in Figure
3.7 to capture context and an upsampling path shown as a green arrow
in Figure 3.7 for localization. The downsampling path uses convolutional
and max pooling layers, the blue arrows in Figure 3.7 to reduce spatial
dimensions and increase feature channels, abstracting the image into fea-
ture representations. Conversely, the upsampling path increases the output
resolution, utilizing transposed convolutions, the blue arrows in Figure 3.7
and skip connections, the grey arrows in Figure 3.7 from the downsampling
path to preserve spatial details critical for accurate segmentation.

The model’s convolutional layers, which start with a moderate number
of filters and increase progressively, use 3 * 3 kernels and ReLU activation
functions to extract complex patterns indicative of tumors. This archi-
tecture is designed to maintain image dimensionality through the same
padding, reduce computational demands with max pooling, and mitigate
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Figure 3.7 3D U-Net Architecture

over-fitting using dropout layers at strategic points. The U-Net’s upsam-
pling and concatenation techniques ensure detailed feature preservation.
Upsampling reserves the resolution reduction from earlier pooling layers,
reconstructing the finer details necessary for precise segmentation. Concur-
rently, concatenation merges these detailed feature maps with higher-level
abstract features from the contracting path, reintroducing vital spatial infor-
mation. This combination enriches the feature set at each stage to improve
localization and reduce information loss.

The U-Net model’s final 1 * 1 convolutional layer includes a softmax
activation function. This function is essential in creating pixel-level proba-
bility maps for each class, converting the neural network’s raw output into
a form that can be easily evaluated as probabilities. Each pixel in the gen-
erated map denotes the probability that it belongs to a given category, such
as a different tumor tissue. The softmax function ensures that the total of
probabilities for each pixel across all classes is equal to one, allowing for
more clear and confident segmentation. This function is critical for medical



Methodology 27

diagnostics since it allows for the accurate distinction of specific tumor areas
from neighboring healthy tissue.

The methodology incorporates a complicated compilation strategy de-
signed expressly to solve the issues of medical imaging. One such difficulty
is class imbalance, which happens when the quantity of samples in distinct
classes differs dramatically. Class imbalance is common when segmenting
brain cancers from MRI images since the areas of interest (tumors) are sub-
stantially smaller and less frequent than normal brain tissue. This imbalance
can result in a model that is biased toward the majority class, decreasing
sensitivity to detect malignancies. To address the issue, the model employs
loss functions such as the Dice coefficient, which is intended to improve the
correct identification of the minority class.

3.2.4 Brain Tumor Classification Model

Transfer learning has emerged as a pivotal technique in machine learning
where annotated data are scarce and costly. This approach reuses a model
developed for one task as a starting point for another based on the extensive
knowledge acquired from training on large datasets. In the context of brain
tumor classification, transfer learning can significantly improve both accu-
racy and efficiency. By adopting a model pre-trained on a vast and diverse
dataset, it reduces the need for large amounts of training data, accelerating
the training process while maintaining or enhancing performance.

For this study, EfficientNet B3 was selected due to its proven success in
image classification tasks and architectural fit for our dataset sourced from
Brain Tumor MRI Dataset[20] from Kaggle. EfficientNet B3 is also known for
striking an optimal balance between computational efficiency and accuracy.
Part of the EfficientNet family, EfficientNet B3 aligns perfectly with the re-
quirements of high accuracy and manageable computational demands. This
model supports the primary objective of improving diagnostic precision in
classifying brain tumors, allowing for more effective treatment planning
and potential clinical outcomes

The preprocessing phase prepares the dataset to meet EfficientNet B3’s
input specifications, resizing images to 224 * 224 pixels, normalizing pixel
values, and applying data augmentation techniques to protect the model
from over-fitting. The dataset is divided into training, validation, and test-
ing sets using the train_test_split function, with 30% allocated for training
and 70% reserved for testing. This distribution facilitates a comprehensive
evaluation of the model’s generalizability across different subsets of data.
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Figure 3.8 EfficientNet B3 Architecture

In adapting EfficientNet B3 for brain tumor classification, the original
top layer is replaced with a fully connected layer tailored to the number of
tumor classes. This customization allows the pre-trained model to meet the
specific classification requirements.

Model Training and Evaluation

Both models go through meticulous training processes, with datasets sepa-
rated into training, validation, and testing portions. This separation enables
precise hyper-parameter adjustment and evaluation of each model’s capac-
ity to generalize to previously unseen data. The segmentation model is
typically trained for 40 epochs, with changes based on performance data
collected during the validation phase. During classification model training,
our team actively changed the learning rate based on validation perfor-
mance. To improve the model’s generalizability, we used dropout layers
and regularization approaches. This iterative method entailed carefully
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examining the training results, followed by manual parameter adjustment
before further training sessions to improve the model’s performance.

The segmentation model is compiled using a combination of loss func-
tions tailored for medical imaging, such as the Dice coefficient, which ad-
dresses issues like class imbalance. In contrast, the classification model is
compiled with the Adamax Optimizer and a categorical cross-entropy loss
function for its focus on multi-class classification tasks. Both models utilize
optimization strategies that are best suited to their respective tasks. The
Adam optimizer is chosen for segmentation for its adaptive learning rate
capabilities. And the Adamax optimizer is chosen for classification because
of its efficacy in handling sparse gradients.

A comprehensive set of performance metrics is employed to evaluate
both models thoroughly. For the segmentation model, accuracy, precision,
recall, F1-score, and the Dice coefficient are crucial for assessing effective-
ness in accurately segmenting brain tumors. A higher Dice score, in partic-
ular, indicates superior segmentation performance. These metrics provide
insights into each model’s strengths and potential areas for improvement,
highlighting the importance of precision in medical diagnostics.
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Result and Analysis

4.1 Results and Analysis

4.1.1 Brain Tumor Segmentation Results

Segmentation plays an important role in medical imaging for postoperative
planning and early detection with the ability to divide an image into parts
based on the attributes of the pixels in the image. In my work, the 3D
U-net architecture is proposed for brain tumor segmentation. Figure 4.1
displays the segmentation and tumor detection for the Core part of the
brain MRI image. Figure 4.2 displays the segmentation and tumor detection
performance for the Enhancing part of the brain MRI Image. Both figures
show the model’s ability to predict the enhancing areas of brain tumors.
The left side of the figure provides the ground truth, while the right side
displays the model’s predictions, again using a color-coded scheme for
different tumor segments.

The segmentation model’s core and enhancing results are depicted in
Figure 4.1, where the left image represents the ground truth in black and
white, and the right image illustrates the model’s prediction of the core
tumor area. The prediction is color-coded, with different shades—blue,
green, and red—indicating various segments of the tumor’s core.

Figure 4.3 illustrates the segmentation model’s training journey, plotting
training loss, accuracy, validation loss, and accuracy alongside metrics such
as the Dice coefficient and Intersection over Union (IoU) for both training
and validation datasets. The distinction between training (in blue) and
validation (in red) performances shows the model’s learning curve and its
strong generalization capability.
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Figure 4.1 Segmentation Model CORE Result

Figure 4.2 Segmentation Model Enhancing Result

As indicated in Table 4.1 and Figure 4.3, our 3D U-net segmentation
model reveals excellent performance over multiple metrics, with an accu-
racy of 99.65%, loss rate of 0.99%, precision of 99.61%, sensitivity of 99.54%,
and specificity of 99.87%, indicating that the model is effective at correctly
predicting and classifying both positive and negative outcomes. However,
the Dice coefficient standing at 74.86% suggests room for improvement in
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Proposed Method
Evaluation Metrics Performance

Accuracy 99.65%
Dice Coefficient 74.86%

Loss 0.99%
Precision 99.61%

Sensitivity 99.54%
Specificity 99.87%

Table 4.1 Quantitative assessment of the proposed 3D U-Net Segmentation
Model

the overlap between the model’s predictions and the ground truth segmen-
tation.

Figure 4.3 Segmentation Model Training Plot

4.1.2 Classification Results

The quantitative assessment of the proposed EfficientNet B3 Classification
Model presents strong performance metrics, suggesting a highly effective
model. It achieves an accuracy of 99.34%, indicating a high overall rate
of correct predictions. The precision is similarly high at 99.32%, meaning
that the model’s positive predictions are very reliable. Notably, the model
demonstrates excellent sensitivity and specificity, at 99.78% and 99.80% re-
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spectively, which indicates that it is exceptionally adept at correctly identify-
ing true positives and true negatives, crucial for minimizing false detection
in practical applications. The low loss rate of 0.86% further underscores the
model’s ability to closely approximate the true labels, confirming its robust
predictive capability. These results highlight the model’s effectiveness in
classification tasks, making it a strong candidate for applications requiring
high precision and reliability.

Proposed Method
Evaluation Metrics Performance

Accuracy 99.34%
Loss 0.86%

Precision 99.32%
Sensitivity 99.78%
Specificity 99.80%

Table 4.2 Quantitative assessment of the proposed EfficientB3 Classification
Model

In Figure 4.4, the graph illustrates the training and validation trajectory
of the classification model, showing how both accuracy and loss converge
over the epochs. The green line represents validation accuracy, while the red
line indicates training accuracy, demonstrating their progression as training
continues. Notably, the training loss reaches its optimal value at epoch 19,
and the training accuracy peaks at 99% by epoch 14. Importantly, there
is no evidence of over-fitting in this scenario. Over-fitting occurs when a
model learns the details and noise in the training data to the extent that
it negatively impacts the performance of the model on new data, typically
shown by a divergence between training and validation metrics. However,
in this case, the close alignment of the training and validation lines through-
out the process indicates that the model generalizes well to unseen data,
maintaining robust performance without over-fitting.
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Figure 4.4 Classification Model Training Plot

4.1.3 Limitations and Future Works

The major limitations of the study are as follows:

• Model Complexity and Computational Demand: The sophisticated
models require substantial computational resources, which limits de-
ployments in less-equipped medical facilities.

• Handling of Rare Tumor Types: The model may not perform well
when encountering rare or atypical brain tumors not well-represented
in the training datasets. The limitation might affect the utility in
diverse clinical scenarios, where rare tumors might present.

• Variability in Image Acquisition Parameters: MRI scans can vary
based on the machine’s manufacturer, model, or settings used dur-
ing the imaging process. These variations can affect image quality
and contrast, potentially leading to inconsistent model performance
in different healthcare settings.

In the future, we will manage to incorporate a wider variety of imaging
data from different demographics and machines to improve the model’s
generalizability. Also, we aim to develop real-time, automated diagnostic
systems that integrate with hospital MRI hardware which can significantly
speed up the diagnosis process.
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Conclusion

5.1 Conclusion

The integration of image-processing ability with diagnostic computer sys-
tems has revolutionized the field of medical radiology, significantly acceler-
ating the diagnosis process while enhancing patient outcomes concurrently.
Numerous methods for brain tumor segmentation and classification have
been developed to improve the accuracy and efficiency of medical image
analysis. Despite their potential, these techniques often encounter chal-
lenges such as poor image contrast, inaccuracies in tumor region segmen-
tation due to artifacts, the computational intensity of the methods which
prolongs the diagnosis time, and the requirement for extensive training
data in existing deep learning models.

The proposed brain tumor segmentation and classification algorithms
aim to address the concerns mentioned above. In our study, we use 3D U-
Net architecture for precise tumor boundary delineation and an EfficientNet
B3 model for robust tumor type classification, with a focus on glioma,
meningioma, no tumor, and pituitary tumor categories.

In both the segmentation model and the classification model, we achieve
an impressive accuracy of over 99%, underscoring the effectiveness of in-
tegrating CNN architectures and transfer learning techniques to address
the challenges in brain tumor diagnosis over tumor appearance. The use
of large-scale, diverse datasets, including MRI images from open-accessible
archives, enabled the training of models not only to perform well under
controlled conditions but also to demonstrate robustness across different
clinical imaging scenarios.
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Looking ahead, we plan to address the limitations identified in our
study, including the model complexity and computational demands, as well
as the handling of rare tumor types and the variability in image acquisition
parameters. Our future work will focus on incorporating a wider variety
of imaging data from different demographics and machines to enhance
the model’s generalizability. Additionally, we aim to develop a real-time,
automated diagnostic system that integrates directly with hospital MRI
hardware, which could further accelerate the diagnostic process.
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