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Abstract: There are geographic differences in the rate of adoption of residential photovoltaic (PV) solar.               
Are adoption rates in small scale localities (counties and zip codes) influenced by previous, nearby               
adoptions? This paper adds to the literature on Peer Effects with an analysis of Minnesota and Wisconsin                 
zip codes. I use residential adoption data from the OpenPV Project in an empirical analysis of social                 
interactions. My findings indicate that there is a small but significant effect of nearby adoptions at the zip                  
code level. These peer effects are shown to be nuanced by policy incentives such as the XCEL Solar                  
Rewards Program.  I additionally engage in a case study analysis of the relationship of some localities. 
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I. Introduction 

Renewable Energy development has increased dramatically within the past decade. The           

total added capacity for renewables has more than tripled since 2008 (Figure A, EIA). Wind and                

solar energies increased by 500% from 2008 to 2016, attaining more than 120 GW of added                

capacity (Schiermeier). As of March 2017, solar and wind encompassed more than 10% of total               

U.S. monthly electricity generation (EIA, 2017 ). Notably, advancements in renewable energy           1

vary wildly across states and beg the question why. There are significant differences in the               

factors that affect the adoption of renewable       

energy across the United States (Maguire et.       

al. 2016, Schmalensee 2013, Sarzynski et. al.       

2011). Ideally, renewables should be     

installed where they can create the most       

energy, which would explain why certain      

locales are most hospitable to wind energy       

and others to solar. The geographical      

explanation is not fully convincing, however,      

as some states with the highest potential for producing wind/solar energy do not necessarily              

produce the most. Texas is the largest state installer of wind capacity, but North Dakota is                

currently the state with the most potential for wind energy development (Gass 2013, SEIA).  

1 Referring to copyright permission: Figure A is not made by the author. Instead, the image depicted by Figure A is 
an accurate depiction of that from the EIA, which is in the public domain and does not require copyright permission. 
This is discussed on the Energy Information Agency website.  
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The incentives available to homeowners installing photovoltaic (PV) solar are also           

important. Despite the lower per-MW cost of wind, solar is more favorable for residential              

installations than wind for several reasons , including the variability of peak load times.             2 3

Homeowners are also in a position to respond to policy based incentives in their decisions to                

install renewable energy. Installations are more likely to take place in an area where installers               

can access income tax credits, solar subsidy programs, and other policy actions that ease the               

pressure of hefty upfront costs. Additionally, the political leanings of a state may foster an               

environment that better supports energy development. There are common preconceptions that           

left-leaning policies favor renewable energy progress, nevertheless, a significant number of “red”            

states are among the top states for renewable development (Balaraman 2017, Grommet et. al.              

2012). Over 36% of Iowa’s electricity comes from wind power, even while the state has typically                

been regarded as “perennially politically purple,” and seen larger red influence in the 2016              

election (Murphy). The policies enacted in each state are significant in their potential to explain               

the discrepancy between the potential to install and actual installations.  

Policy and energy potential alone inadequately predict how PV installations are           

distributed. Solar installations are more frequent in densely populated areas, which is expected.             

However, regions with many residential installations also see a greater growth in installations             

(Walton 2014). Sometimes referred to as “peer effects,”the amount of nearby installations can             

affect the social inclinations of homeowners to install solar. Unlike most incentives, these are              

observable at the county and street level (Bollinger 2012). Do policy changes affect the baseline               

2 These reasons include appearance and maintenance preferences, as wind turbines have been found to be disruptive 
in select neighborhoods (Jones 2007). 
3 Solar Energy was found to be 32% more valuable based on wholesale prices. This may be because Solar is 
produced mostly during the day, where energy from the grid is more highly demanded, and wind in generally more 
productive at night(Schmalensee 2013).  
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level of solar and in turn affect the way consumers are affected by neighboring installations? The                

Midwest is an interesting study of this phenomenon, as Minnesota and Wisconsin share a similar               

geographic potential to install solar, but vastly different solar energy portfolios. In 2017,             

Minnesota was ranked 16th in total added solar capacity, while Wisconsin was 38th. The              

difference in installed capacity was greater than 500 MW even while the two states have similar                4

solar potential (SEIA).  

The difference in solar energy     

production is less dramatic in an      

analysis of small scale    

photovoltaics (Figure B, EIA).    

This would include residential    

PV installations. Minnesota and    

Wisconsin are comparable in this sense, although in recent years Minnesota has generated             

slightly larger amounts of energy in recent years, but nowhere near the difference in the total                

amounts of PV energy. Within both states, however, there are differences in PV adoption, as               

some zip codes install larger amounts of solar continuously, and others never do (Appendix A).               

This paper examines the potential explanations of this difference. I examine the role of policies               

and potential of peer effects on the adoption rates in Minnesota and Wisconsin. 

 

II. Literature Review and Theory 

To understand the factors that may cause the cross-sectional differences in past and              

current rates of residential solar energy adoption, I follow first the framework set in place by                

4 These figures are not solely residential solar installations.  
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Griliches 1957. Firstly, photovoltaic solar is a technological change with irregular distributions,            

similar to that of hybrid corn. The likelihood of an agent to adopt a new technology can be                  

expressed by an adoption curve, where the probability is zero for an initial (low) bundle of                

benefits, and as time increases more people decide to adopt. Griliches finds the adoption curve               

follows a logistic function, that begins at an origin where someone would conceivably adopt the               

technological change. The function then follows the probability of adoption (or percent adopted)             

over time. The model employed is described by the function 

P = K
1 + e−(a+bt)  

The growth of solar adoption probability, P, tapers off at a certain point, K, where the                

adoption curve approaches the “ceiling” value. At the ceiling, everyone who could possibly             

install solar does. For solar energy, this maximum is constantly changing in the wake of               

technological advancements and financial incentives. The slope of the adoption curve           

importantly represents the rate of adoption and the growth of solar. Like Griliches I examine b,                

the growth rate coefficient, and its dependence on t, or the time. The growth rate coefficient can                 

also be read as a measure of acceptance, which is dependant in part on whether the technology is                  

profitable in its adoption. Notably, solar adoption patterns do not have the same “s” shaped               

adoption curve seen in hybrid corn and other technological innovations. Up to the present period               

this growth appears almost exponential, and instead looks like the front half of the adoption               

curve  (SEIA 2016).  5

Griliches found that the primary difference in adoption rates across states was the lags, or               

differences in origins across states. These lags were the result of the technology (hybrid corn) not                

5 This may be the result of solar not yet achieving grid-parity, or an efficiency greater than that of conventional 
electricity (Ritchie 2017). 

5 



being equally profitable in all locations, and being adopted first in the more profitable areas. This                

geographic discrepancy also provides a metric by which to examine the relative availability of              

new technology across states. The potential profitability is an important factor in a solar energy               

context, as the nature of peer effects lends itself to the analysis of the slopes, or the increasing                  

likelihood of adoption. For the purposes of this analysis, it is assumed that states have very                

similar access to technological improvements in solar, due to extensive manufacturing of panels             

from China (Pillai 2015). Thus, the main factor affecting profitability of installing solar panel              

lies on the solar potential, and cost of the unit. I would expect similar results to Girliches in that                   

areas with high solar potential should yield a equilibrium rate of adoption. 

The model set in place by Girliches is one that diagrams the long-term aspects of               

technological change. The main factors included in the understanding of the growth rate             

coefficient are the profitability (effectiveness) of the change and time. This is not unusual, as               

much of the literature following solar energy adoption examines the decision to generate energy              

independently, as opposed to purchasing energy from the grid. The discussion centers around the              

inherent cost-benefit analysis of installations- i.e does the money saved from not purchasing             

energy from the grid (or purchasing less of it) justify the large initial investment?  

Bauner 2014 and Brock and Durlauf 2009 attempt to answer this question with the              

present value model. In this model, the individual homeowner switches from grid energy to solar               

when their valuations for solar benefits exceed the perceived costs. The valuations of the              

profitability of the technology reach beyond that of Griliches’ profitability, and include            

preferences for green energy usage, utility from conspicuous consumption, and financial returns            

(Rai et. al. 2012). Financial returns include the opportunity costs from choosing alternative             
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energy over grid energy and any potential energy savings from doing so. Through this              

framework, social interactions are considered. If social interactions make it more likely that a              

consumer evaluates solar energy adoption at a higher rate, then peer effects would be manifested               

in a steeper, more inelastic demand curve for that consumer’s demand for solar energy. I assume                

that consumers will behave rationally, and that they will choose to adopt when the following is                

maximized 

(t, ) (− xp(− t)C xp(sαπ(x, q(s))ds) J x =  e σ + ∫
∞

t
e   

A consumer can adopt at any date s, but will adopt only at t , when the weighted benefit                   

of installing solar, J, is maximized. The total costs of the system are included in the term where                  

C is the cost of the installation, and σ is the discount rate. This is subtracted from the perceived                   

benefits, described over the entire duration of the installation. The symbol � denotes the              

(discounted) rate of technological progress and is the profit function that is dependant      (x, q(s))  π         

on the type of technology (in this analysis, only photovoltaics are considered). Importantly, the              

profit is in part from monetary savings based on the energy type, x, but on q(s), which denotes, in                   

part, the base level of installations. If q(s) increases, it affects the weighted benefit of installing                

solar, and it may affect the likelihood of adoption.  

Brock and Durlauf 2009 model some of the social determinants, factors of q(s), that              

Girliches does not address in his study. Although I model these social determinants             

econometrically, my theoretical framework is based on the proof used by Brock and Durlauf.              

They examine the units by which the adoption curve is made up of (i.e. individual homeowners)                

before approaching the effect on the aggregate. Brock and Durlauf focus on discontinuities as              

evidence of peer effects changing the adoption curve. These discontinuities, described as “jumps             
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in the fraction adopting at some particular date,” are exceedingly valuable because they indicate              

a peer effect operating alongside the other determinants of adoption.  

What causes these disconsintunites in the adoption curve? Brock and Durlauf point to             

bunchings in adoption time. Notably, peer effects show a significant lowering of the decision              

time for installing solar. They implement a hazards model, where the dependant variable is the               

difference in time between consecutive installations and the clustering of installations occurs            

throughout time, instead of geographic location (Bollinger et. al. 2012). This would imply that              

the decision-making process of the potential installer is hastened by the revaluation of the              

perceived benefits, and that the forward movement to the ceiling is hastened. Discontinuities in              

the adoption curve are the result of the curve being “steeper” in the presence of social                

interactions . This analysis does not focus on the distance in time between installations in a                6

neighborhood as utilized by Bollinger et. al. 2010, which demonstrates the decrease in reaction              

time and only implies a general increase in the number of installations. Instead, I focus on the                 

magnitude of total increases in installations directly. This would indicate a higher ceiling in the               

adoption curve in the long run, but also may present discontinuities in the current period. I also                 

consider the added capacity, as this both addresses the likelihood that consumers may install, and               

that their decisions for how much to install are affected.  

Social interactions may affect the magnitude of increases in installations in the following             

way. When social interactions occur, the homeowner may observe these positive externalities            

toward adopting solar in two ways. First, the homeowner may experience an increase in the               

value they hold for the “conspicuous consumption” of solar (Bollinger et. al. 2012, Balaraman              

6 Social interactions are defined by Brock and Durlauf as positive spillovers on adoption that result from the 
feedback of some fraction having already adopted.  
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2017). This is sometimes referred to as “social utility.” While social utility feedbacks are              7

difficult to account for, evidence of higher valuations of houses with installed PV systems points               

towards either a general preference towards environmental actions, the perception of being so             

and producing green energy, or some combination both (Dastrup et. al. 2011).  

Peer effects are not limited to manifestations of social utility. They are also present              

during “social learning,” where social interactions serve as a method of education by which              

potential installers are called to reevaluate their circumstances based on new information            

available (Walton 2014, Bursztyn et. al. 2012). The information arises through organizations            8

advocating and providing educational materials on PV solar adoption (Noll 2012). Information            

on the benefits of installing solar also arrives in less direct, more passive forms that nonetheless                

could alter the weights homeowners place on factors in their cost-benefit analysis. At present,              

this analysis is unable to distinguish between social utility and social learning in peer effects. The                

principles of both social utility and social learning point towards a positive effect on solar               

adoption, and there is no mechanism by which to separate the effect of awareness from that of                 

conspicuous consumption on the positive decision making of adopting consumers (Brock and            

Durlauf 2009). 

A complete framework of solar adoption involves a critical understanding of how            

homeowners weigh all the perceived benefits of solar against perceived adoption costs. Much of              9

7 A good that can be conspicuously consumed makes clear to other economic agents that the good is being 
consumed. In this case, because PV is very visible, either through installer advertising on the property or the 
inherent visibility of the panels on the home, neighbors and peers are aware of that homeowners consumption.  
8 These effects can take the form of word-of-mouth endorsements of solar, and sequential decisions, wherein the 
actions of an outside agent are taken into account when the potential installer makes a decision (Bothner 2008).  
9 The perceived hardships associated with installing solar energy are not limited to the upfront costs. Additionally, 
the forgone goods and savings required to make the purchase are relevant, as well as the uncertainty of significant 
returns and loss of leisure due to research and evaluation.  
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the literature focuses on the rate of return as a major determinant of PV profitability, and thus its                  

adoption. Most policies and technological advancements dampen the effect of large upfront costs             

(Rai et.al. 2012). The predominant present value decision making model indicates that a             

consumer will adopt when the present value of the savings from the installation is greater than                

the upfront cost. However, this model does not address social effects on adoption, the inherent               

uncertainty homeowners face when deciding to install solar (i.e. will they be able to produce               

enough given their home to cover the expense?) and the hesitance associated with the large               

capital investment (Ulu and Smith 2009,Bauner 2014)). 

These costs include but are not limited to the actual cost of installation, foregone costs of                

other energy services, research and labor costs, and uncertainty. They also may be tied to social                

interactions as well (Bollinger et al 2012, Bauner 2014). While all homeowners in a given area                10

may face the same installation and grid energy costs, their decision making processes vary. The               

sources of variation include differences in environmental preferences and ability to afford solar             11

installations (Ellsworth 1995). A few homeowners would install solar no matter what cost they              

face, while others are much more dependent on the rate of return they may receive. The                

likelihood of a homeowner to install owner is dependant on the weights they give certain               

preferences. Weights placed on the rate of return relative to other factors depend somewhat on               

the decision maker’s ability to afford solar, and their preferences for alternative energy (Dastrup              

et. al. 2011).  

The literature surrounding solar adoption has indirectly focused on the issue of            

weighting. Kwan (2012) shows that installers place have higher incomes, and are less affected by               

10 See Caveats Section 
11 For the extent of this paper, environmental preferences are the weights placed on ecological concern and/or 
reducing the impact on the environment by using a renewable energy source (Rai et. al.  2012, Claudy et.al. 2013). 
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the initial costs than lower-income homeowners. PV solar is thus a luxury good. Higher income               

households weigh environmental benefits higher, for example, as their basic needs are being met.              

Thus, factors exist such that the cost benefit analysis associated with the decision to install is not                 

solely based on the wholesale costs of grid/renewable energy. Homeowners additionally consider            

their own personal preferences for installing solar, and the uncertainty in solar as an investment.               

Bauner (2014) departs from the basic perception that to install solar, homeowners must “break              

even,” or save more money from installing solar than the cost of implementation. Using the               

option value model, Bauner determined that the present value of savings must exceed the cost of                

installation by a factor of 1.6 to result in an current period adoption. However, this model                12

indicates that the preferences of potential installers generate a weight in the decision making              

process, but offer little insight as to what motivates those preferences.  

These weights play an important role in understanding peer effects, and determining            

where these social interactions would generate the largest effect on adoption. Like Bass 1969,              

my analysis on policies’ relation to peer effects is based on the probability of installation as                

dependent of the base level of solar. However, I reach beyond the inclination of previous               

installations affecting the decision making process of current installers, and question what affects             

the relationship between the number of previous installers and probability of adoption. Complete             

dependence on Bass’ model would imply that the relationship is strictly linear (for which there is                

little concrete evidence in photovoltaics), and that the size of the market (i.e. the ceiling, or total                 

number of people in an area who could possibly install solar) is quantifiable. The Bass method                

alone is a principle that results in estimation of the market size, which empirically finds a value                 

12 The option value model examines how consumers respond to uncertainty, in that they have the “option” to hold 
off their investment. In the case of solar, this model would be used to show how much larger the present value of 
savings must be of offset the uncertainty and result in a consumer to adopt (and not postpone the decision). 
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more than double the number of households that could adopt solar energy- a problematic              

finding(Bollinger et. al. 2012).  

This paper addresses the effect of previous installations on inducing current installations.            

I consider nuances in this relationship, as peer effects are found to be minimized in areas where                 

evidence of widespread environmental preferences is evident (Bollinger et. al. 2012). This            

analysis expands from the peer effects work by Bollinger by replacing the small scale              

descriptions of incentive removals within administrative regions with zip code and county level             

analyses, and policy inclusions. I also use data at the zip code-day level, and conduct the fixed                 

effects models used by Bollinger, but do not focus on a realignment of incentives, as the policies                 

I examine affect all relevant households at the same time, with the same degree.  

Somewhat unexamined in the literature, effects in policy prove to be an intricate             

inclusion to this analysis, although the initial passing of policies that provide incentives to              

potential solar adopters would result in a straightforward impact. Policy adoptions would            

decrease the perceived costs of installation, and thus more members of the community would              

find solar profitable to install. I question the possibility that policy changes can result in an initial                 

“shock” to the base level of solar, but that shock will also result in greater peer effects. The effect                   

of the base level on the probability of adoption may thus be affected by policy changes.                

Essentially, if causal peer effects are present, and a shock to the base level number of adoptions                 

occurs, larger discontinuities will result. I also employ a case-study approach used in the              

determination of a causal relationship between peer effects and additional installations in select             

localities.  
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IV. Empirical Methodology 

Modeling the combined effect of social interactions and policy changes requires the            

adoption of several models. First, I model impact of the base-level of solar on the probability of                 

installation, as described by Bass. The base level is given by the sum of all previous installations                 

in an area m up to a time T, or; 

            [1.1]                                               bzt= (∑Tt=1∑zz=1azT)  

Further analysis of would require knowledge of the differentiation between those whose            

valuation of solar energy is affected by neighboring adoptions. The Bass Model Equation (1.2)              

attempts to create a linear model for the probability of the installation depends on the magnitude                

of innovators (p), or those not affected by the conspicuous consumption of others. Installation is               

also affected by the magnitude of the pressure on imitators on changes to the base level (q/m): 

[1.2]                                           P(T)= p+(q/m)bzt 

While Bass’ model does determine the probability of adoption, it is difficult to estimate.              

The values of parameters p (the magnitude of installations from those not influenced by the               

install base), q (the total installations affected by the base level) and m (a magnitude of the                 

market size) are difficult to predict empirically and often inaccurate (Bollinger et. al. 2010). The               

q/m parameter is the q/m function, which indicates the pressure homeowners face to install from               

the installation base. Another model is then considered that captures the likelihood of adoption              

being nonlinear, and a function of the baseline (b), incentives available (X) and an error term                

(ɛzt). The value for 𝛂 is the average number of installations that would occur without               13

knowledge of the base-level of solar or the financial incentives available. 

13 Y(zt) is equivalent to the fraction of owner occupied households adopting at time t in location z. Calculated by 
Yzt= Number of Installations / (Number of Owner-occupied Households- Cumulative Installations) 
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         [2.1]                                      Y(zt)= 𝜶 + B0b+ ʎXzt+ nz+uzt+ɛzt 

I follow Bollinger et al. 2012 in the usage of equation 2.1, and the inclusion of                

demographic variables to model the variable uit, the county-year fixed effects. Bollinger’s            

analysis is even more granular, with the inclusion of zipcode-quarter fixed effects. These             

demographics (which include GSP, population density, household income, price of natural gas,            

etc.) are later interacted with the variable for the base level of solar. Interacting the two provides                 

a window by which to observe whether peer effects are constant across all potential installers or                

if they are influenced by other aspects of the decision making process. The final stage of the                 

analysis addresses whether policy changes affect the variable β, or the effect of base level               

installations on the decision to adopt. This is determined by an interaction term (B3)  

        [2.3]                          Yzt= Bo+B1Sz+ B2Bt+ B3(Si*Bi)+ʗz+ʗz*t + ɛi  

Additionally, the metric by which Bollinger assessed the effect of temporary shifts in             

available incentives is given by [2.3], where the adoptions are a function of the base level, the                 

change in incentive indicator for time (Si) and location (Bi), and a metric for realignment (ʗ).                

The realignment term was necessary in Bollinger’s analysis because it focused on small             

subsections of utility administrative regions that saw the same decrease in incentives, but at              

different times. None of the policies included in this analysis are appropriate for metric, and thus,                

the realignment term is not considered. Instead, I look for increases in the effect of the base level                  

on the probability of adoption as a result of incentive inclusions. 

[2.4] Yzt=𝜶+B0b+B1Sz+B2Bt+B3(Si*Bi)+ʗz+ʗz*t +B4Ɣ+B5𝜋+B6𝜔+B7𝜚+B8𝜏+B9𝜂+B10𝛿+B11𝛾 nz+uzt 

I regress using equation [2.4], where 𝜶 is the intercept, b is the base level of solar, B1 and                   

S1 are indicators for location and time respectively, Ɣ represents the cost of the system, 𝜋 is the                  

14 



cost of alternative energy, 𝜔 is the income of the homeowner, 𝜏 is the proximity of other                 

neighbors (housing density), 𝛿 represents the demographics of the homeowner, and 𝛾 is the              

energy output of the system. In some parts of the equation, the variables are approximated- for                

example, solar insolation data is used as a proxy for 𝛾, and 𝜔 is the average income of a                   

homeowner in that locality that year. I estimate this equation both with and without policy               

interactions. 

By focusing two states with different policy structures in the past decade, Minnesota and               

Wisconsin, and relatively similar natural endowments, observations of peer effects across           

counties should be similar within the states, but different across them. A border effect similar to                

that seen by Bollinger on a large scale is evaluated through state fixed effects. 

 

V. Data 

I follow Kwan (2012) in that the primary data is from the National Renewable Energy               

Lab’s OpenPV Project. These data are at the county/zip code level and offers information on the                

date installed, location, and rebate amount of each installation registered with the program. I use               

only residential installations less than 20 MW in Minnesota and Wisconsin. There are over 600               

zip codes in the data set, which are notably much less than the total number of zip codes in                   

Minnesota and Wisconsin combined. Unlike Kwan, I include installations from 2000-2015, in            

order to include changes that would result in 2005 from the passage of the Energy Policy Act.                 

Cost of energy data come from the EIA. Additional control variables such as GSP and               

demographic information at the country level will come from a combination of FRED, the U.S.               

Census, and Equality of Opportunity Large data. I obtain policy incentives from the DSIRE              
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database, and these include each state’s inclusion of RPS structures and solar provisions, loan              

program initiatives, and statewide rebate programs, as well as a national tax credit policy that is                

available to potential adopters across both states. 

Both Minnesota and Wisconsin were affected by the inclusion of the 2006 Renewable             

Energy Tax Credit and Xcel’s 2013 Solar Rewards Program. Both states experienced general             

RPS policies from 2000-2015, so an analysis on the inclusion of RPS is not possible. However,                

Minnesota has included a solar carve-out program in 2013, which can be analyzed. Additional              

Minnesota-specific policies include the Made in Minnesota Program, SolarSense Rebate          

Program, and changes to the Net Metering policy. Wisconsin-specific incentives include the            14

2011 statewide Sales Tax Incentive and the 2011 Net Metering Policy change, further detailed in               

Table 2. I expect that these policies provide a positive incentive to install solar, and would expect                 

that following their implementation, there would be an increase in the number of installations. 

The solar potential variable is the average zipcode solar insolation, at the zip code level,               

courtesy of the National Laboratory for Renewable Energy. It details the amount of sunlight              

energy (kWh) a square meter receives in a day, and is thus measured in kWh/m2/day. While there                 

are many measures of solar potential available, solar insolation is ideal. In their decision making               

process, homeowners would most likely use a measure that would tie in directly to their ability to                 

produce solar- i.e. can they produce enough in the lifetime of the system to warrant the upfront                 

cost of installation and potential maintenance? The greater the value of the solar insolation value,               

the more likely the consumer is to be able to break even or save money from the installation. 

14 A solar carve-out mandates that a certain amount of renewable energy produced must come from solar. 
Carve-outs are built into Renewable Portfolio Standards (RPS), which require a certain amount of energy produced 
by utilities to come from renewable sources. 
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My data is limited in its ability to fully depict the information homeowners take into               

account when considering solar installation. Bollinger conducts an analysis using both           

commuting zone data and street level data in California. To my knowledge, no such records exist                

for Minnesota, and instead, the most granular data I use is zip code level data. Ideally, I would                  

have data on the information each household considered prior to their decision. For example, in               

my current analysis, I am unable to distinguish social learning from an individual's likelihood to               

conduct their own research. I also am unable to measure an individual’s environmental             

preferences, which would weigh against peer effects. Lastly, I include time fixed effects, but              

have no measure of the increasing efficiency of solar panels in the U.S., which also may play a                  

role in the decision.  

 

VI. Summary Statistics 

The preliminary analysis of the installations shows rapid growth in both the added             

capacity and number of installations for both states. According to Table 1.1, Minnesota has much               

fewer additional installations during the 2000-2015 time period. This isn’t necessarily surprising,            

as the data relates to residential photovoltaic consumption only. Although Minnesota may lead in              

overall solar photovoltaic capacity, the difference seen here could be due to Minnesota’s             

prominence in community solar programs. Additionally, Wisconsin faces greater prices for           15

natural gas, a substitute for solar, that would increase the likelihood of solar adoption (Table               

1.2). Both states face a similar cost per watt for the actual installation of solar, but Minnesota                 

15 Community solar programs allow homeowners to purchase solar energy through an agreement with a solar farm. 
They provide a flexible alternative to the physical installation of solar, while still providing a demand for green 
energy(Clean Energy Resource). 
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installers see a greater rebate per watt level, which should favor solar development . The              16

average home value, median income of homeowners, and population per square mile is             

additionally larger in Minnesota, and would point to a greater propensity to adopt. 

  

Plot 1                                                                                              Plot 2 

Descriptive statistics for the data are detailed in Table 1.2. Notably, the average system size               

is somewhat close to is reasonable because the average system size is around 5 mW (EIA). For the                  

same reason, there is a large maximum associated with the rebates recorded. Plots 1 and 2 indicate                 

that the additional Installations per year differ wildly, and are not the same across states. Plots 1                 

and 2 indicates that Minnesota and Wisconsin experience some very large fluctuations in growth              

of solar, which could be explained by the large stimuluses put in place during this time. more                 

streamlined additions. The plot trends illustrated above are consistent with the “significant (or             

immediate) growth in investments,installations,and contribution to the energy supply from          

REsources,” that came from the large spending on Green Energy Economy (GEE) areas from the               

American Recovery and Reinvestment Act of 2009 (ARRA) (Mundaca and Richter 2014). The             17

16 Complete Summary Statistics available in Appendix A 
17 As a result of the ARRA, approximately $21 billion was allocated towards renewable energy (RE) development. 
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majority of this growth occurs during the 2009-2010 period, and aligns with the Great Recession               

period and shortly following, with a drop shortly afterwards.  

However, these plots would not necessarily lead to a determination that peer-effects are             

present. If peer effects where present and affecting consumer adoption, then the added number of               

installations should increase over time. This is not the case, and there are fairly large fluctuations                

in additional adoption. Later analysis deals with how growth is different at a smaller scale- in                

other words, my paper detracts from the aggregated view of solar installations. 

Table 1.1 MN WI 

Total Number of Installations 1,179 3,046 

Total Added Capacity(kW) 11214.5 20433.7 

Solar Generation  
Potential(TW)  

15.8 19.0 

 

Table 1.3 Summary Statistics at the Zip Code Level    

  MN   WI  

Variable Mean Min Max Mean Min  Max 

Base Level  5.8 0 54 9.47 0 91 

PV Pricing (cost/watt) 7.2 1.83 24.3 7.2 .91 27.0 

Population per sq mile 1140 3.6 3342 536.47 9.1 3926 

Nat Gas Pricing 10.61 7.12 18.76 11.27 6.85 19.93 

SolaruPotential 
(kWh/m2/day) 

4.49 4.26 4.66 4.44 4.33 4.5 

 

Additionally, I examine presence of peer effects through clustering. If peer effects are             

present in Minnesota and Wisconsin zip codes, then there should be clusters of solar installations               
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that grow denser with the passage of time. Using GIS mapping, I detailed the solar installations                

base level through time. Between the 2002, 2007 and 2012 maps, there is a clear increase in the                  

gross number of installations (Appendix B). Additionally, there is some evidence of clustering,             

as much of the growth is centered around the bottom zip codes of Wisconsin and the Twin Cities                  

area in Minnesota. Northern Minnesotan zip codes, generally less populous, also have less             

clustering . The growth in the number of installations is non constant, because although a large               18

amount of growth exists between the 2002, there is an even larger increase in gross installations                

between 2007 and 2012, which lends support to the presence of clustering solar installations, and               

peer effects.  

Table 2: Policies   

 Affect MN Affect WI 

Net Metering  1983(2000,2014) 1992 
(2011) 

US Residential  
Renewable Energy Tax   
Credit 

 
 2006 

 
2006 

MN Power-Solar Sense   
Rebate Program 

 2004 -- 

RPS/(Solar Carve Out) 1997/(2013) 1999 

Xcel Solar Rewards  2014  2014 

Made in MN Incentive    
Program 

2014 -- 

Clean Power Partner   
Solar Buyback Program 

-- 2007 

18 The limited growth in less populated areas may also indicate peer effects, as the observations of a potential 
installer would most likely occur in denser areas. There are also some notable exceptions near the Canadian border, 
which see greater clustering. This may be the result of access issues to grid energy or a wealth effect manifested in 
solar installations on second homes in rural areas.  
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VII. Empirical Results, Discussion and Caveats 

In estimating Equation 2.4, I begin with a random effects model. I expect that there are                

unobservable differences at the zip code level that would affect the probability of adoption. To               

address this heterogeneity I then use a fixed effects model that includes both zip code and county                 

level analysis across time. County-time fixed effects would be ideal in this case, as I expect                19

there to be unobserved correlations between counties and my variable of interest. Instead, county              

fixed effects were used to account for time-independent county-specific differences that are            

correlated with the probability to install solar. The data is more complete at a county level (i.e.                 

most of the demographic values are at the county level, as zip codes are not evaluated in the                  

Census), but zipcodes are more representative of neighborhoods, and thus the effect of the base               

level on the probability of installation in a zip code may be more nuanced approach. 

I find that while the models are able to predict a good amount of the variation in the data,                   

there are considerable differences between the signs of the models and the expected relationships              

between independent variables and Yzt. Like Bollinger’s estimation in California, I find that             

using zip codes leads to a positive, significant coefficient on the base level of installations. An                

analysis on the county level does not. Specifically, I find that an additional 1000 solar               

installations in a zip code would increase the probability of adoption by .47 percentage points               

(Table 2.1, Appendix A). Therefore, an additional 100 installations in a local zip code will, on                

average, increase the likelihood of a household adopting PV by .047%. For a zip code with 3,000                 

homes, an additional installation will increase the probability of installation by 1.4 percentage             

19 A Hausman test indicates that the fixed effects model is preferable to the random effects model.  
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points. In the context of Bollinger’s estimations, the power associated with these measures are              

greater given the smaller sample size.This is consistent with the principle that the observation of               

neighboring installations influences the perception of adoption uncertainty, and positively          

impacts solar adoption decisions.  

Additionally, I examined how differences in the base level affect the rate by which the               

probability of adoption increases. For this analysis, I used zipcode and year fixed effects to               

account for the unobserved time-variant differences in zip codes that would affect the likelihood              

of adoption. Detailed in 2.2, I find insignificant evidence that Wisconsin homeowners are more              

affected by peer effects than Minnesota homeowners, and that these peer effects are manifested              

in the positive relationship between the base level and probability of adoption, Yzt. These results               

are limited by a much smaller sample size, as many zip codes have inconsistent adoption patterns                

(some years may see many installations, while others may see none).  

The largest concern with these results lies in the inability of the model to distinguish the                

characteristics of counties or zip codes that would already be predisposed to installing solar.              

While I attempt to curtail this by providing a rich set of fixed effects, I still anticipate the                  

endogeneity of the dependant variable, the likelihood of adoption.  
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Table 2.2  
Resul ts  20   

 County FE Zip FE 1 Zip FE 2 

Estimates of B3 -6.72E-08 4.69E-6*** 4.25E-6*** 

SE (-9.73E-7) (1.49E-6) (1.5E-6) 

Number of Obs 2,119 2,090 2,090 

Policy Dummy Y Y Y 

Pol. Interaction N N Y 

Local-Time 
Dummies Y Y Y 

 

I have attempted to see whether the base level of solar would influence the slope of the                 

adoption curve empirically through the fixed effects. I do the same visually. I regress with and                

without the base level variable, and attempt to visualize if the slope is steeper (i.e greater) in the                  

presence of peer effects. The result is seen in Plot 4, where each line represents the relationship                 

between an approximation of the adoption rate (Yzt) and explanatory variable of household             

income. From this analysis, I determine that the presence of a base level does increase the slope                 

of the adoption curve    

consistently, and there is support     

to my hypothesis. Additionally,    

the magnitude to which the     

adoption curve is steeper is     

affected by collinearity, as the     

lines are not parallel. Essentially,     

the adoption curve may be     

20 This table records only to coefficient of interest. The County and Zip Code Level FE regressions include the 
variables tabulated in Table 2.1 (Appendix A.3).  
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steeper in the presence of peer effects, and this steepness is dependant at least in part on the                  

Household’s level of income.  

 

A. Policy Interactions 

I also examine the effect of policy on the relationship between base level of solar and                

probability of Installation. In evaluating whether variable B3, I first examine potential sources of              

stimuli that could create a “shock” to the base level of solar. From there, I can examine whether                  

this shock is accompanied by a change in the relationship between the probability of adoption               

and the base level of solar. I continue with the zip code fixed effects model, but include an                  

interaction term across several unique policy variables (outlined in Table 2). I then examine both               

the effect of the policy on the average rate of adoption (the intercept, or B2 variable) and the                  

effect of the policy on the relationship between probability of adoption and the base level (the                

interaction, or B3 variable). If both B2 and B3 are significantly positive, there would be evidence                

supporting the narrative that PV policies supply shocks to the base level of solar, and increase                

peer effects.  

From this analysis, I find that there is considerable amount of collinearity between the              

policy variables. This is potentially due to the close time span in which these policies are                

implemented. Since most of these policies are active at the same time, and the household level                

data does not include the rebate source, a homeowner may be influenced by any of those                

available. Additionally, the Renewable Portfolio Standard was implemented earlier than the start            

of this analysis, and thus its effects cannot be fully observed in the study. The results of this                  

analysis are detailed in table 3.3. I find that there exists strong support that the Minnesota                
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Power-Solar Sense Rebate Program increased the magnitude of the peer effect with strong             

statistical significance, although the effect of a shock to the base level of solar is unobserved.                

The shock is somewhat unobserved across all policy variables. The coefficients on the XCEL              21

Solar Rewards Program are both negative, indicating that the incentive would decrease both the              

probability of adoption and the magnitude of peer effects. A potential explanation for this lies in                

either the relationship between the program and the Made in Minnesota program and the Net               

Metering policy changes, both of which occurred the year XCEL Solar Rewards began.  

The Made in Minnesota program notably does not address the upfront cost, and is instead               

a performance based incentive similar to net metering (DSIRE). The National ITC policy is an               

income tax credit meant to address this, and the XCEL Solar rewards is a performance based                

incentive that offers less per kwh produced than Made in Minnesota. Additionally, since XCEL              

Solar Rewards began in 2014, and this analysis extends to 2016, there may be a significant lag in                  

the way information on this policy is distributed across residents. The National Income Tax              

Credit for residential solar installations yields no conclusive results on either trend. 

Of course, because these policies occur near the same period of time, it likely that the                

reason behind the relative insignificant results is due to collinearity across the policy variables.              

In a somewhat extreme example, both the Made in Minnesota and XCEL Solar Rewards polies               

occur in 2014. However, Made in Minnesota is dropped due to collinearity while XCEL Solar               

Rewards shows evidence of affecting Yzt. This implies that all of these policies occurring              

simultaneously may be providing noise, and distorting the results. Ideally, the data would             

include the incentives that a homeowner would utilize when making their decision.  

21 Unobserved refers to either negative or statistically insignificant values of the coefficient. 
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Table 3.3 Policy Interaction Models  22     

Interaction Model Base level Effect Interaction (B3) Intercept (B2) r2 n 

MN Power 
4.25E-6*** 
(2.86) 

2.5E-5*** 
(3.8) 

-.003 
(.0049) 0.9564 2,090 

XCEL Solar Rewards 
7.49E-6*** 
(4.01) 

-3.48E-6** 
(2.49) 

-4.27E-5 
(-.91) 0.9562 2,090 

National ITC 
1.64E-5 
(1.22) 

-1.15E-5 
(-.88) 

4.18E-5 
(.46) 0.956 2,090 

*** for p< .01, ** for p< .05, *for p< .2     

  

B. A Case Study Approach 

In my analysis, I also consider counties and zip codes that are either incredibly over               

performing or underperforming in the adoption of PV solar. From a policy perspective, it may be                

useful to understand the demographics of these areas, and their responses to policy effects. In               

order to do so, I take a visual approach. I search for a relationship between demographics factors                 

and a per capita measure of solar adoption. This measure is total number of adoptions up to that                  

year per household. Figures B.1 and B.2 illustrate the results for the year 2013, which I use as an                   

example. Each zip code has been labeled with its respective county for ease of reference. I                

additionally compile residuals across both states throughout the study in figures B3 and B4              

(Appendix D). I do so for ease of reference because Wisconsin generally has greater outliers than                

Minnesota.  

22 The Made in Minnesota, RPS, and RPS Carve Out policies have been removed due to collinearity. T values for 
each coefficient are given in parentheses.  
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Noticeably, several zip codes in Portage County, WI, are over performing in solar             

installations given, while zip codes in Dane, Hennepin, and Ozaukee counties are relatively             

underperforming. Portage is below the state average in terms of median house values and              

average household income. Dane and Ozaukee are both above average in this respect. I examine               

the relationship between the base level and probability of adoption in these three areas. I use                

Wood county as a comparison.  

First, I examine Dane,Hennepin and Ozaukee counties. Dane and Ozaukee are located in             

Wisconsin, while Hennepin is located in Minnesota. All three have greater average household             

incomes and median house values (Table 4.1, Appendix C). Theoretically, these countries should             

have a generally greater aptitude to install PV systems given these demographics. Of the three,               

Dane is the only one considerably with a an average base level of solar well above the state                  

average. Hennepin County is slightly above average, and Ozaukee is well below. Alongside this,              

I run a random effects model across each of the five counties individually.  
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The results of these regressions are compiled in Table 4.2. I find that across the five                

individual counties, the coefficient on the base level of solar first increases alongside increases in               

both household income and house value (from Portage to Wood). This trend noticeably reverse              

across an analysis of the higher income counties, which see a progressive decline in the               

relationship between the two. I find that in Dane and Ozaukee, the two richest counties, there is a                  

negative relationship between the probability of adoption and the base level of solar that is               

statistically insignificant. This implies that extremely wealthy counties may be less affected by             

the presence of a peer effect.  

Why may Portage be over performing in solar installations? It may be, that like other               

parts of Minnesota and Wisconsin, that Portage sees an influx of second homes. There is an                

exceptionally high white percentage living in Portage, at more than 90% (DataUSA). Given that,              

the relatively high poverty rate, and it’s somewhat rural location along the Wisconsin river,              

Portage WI may be installing solar on many second homes who would benefit from not being                

connected to the grid.  

 

C. Caveats 

My results are limited in several ways. Firstly, my results are unable to fully address               

endogeneity. My results do not indicate causality- I am unable to determine whether the base               

level of solar causes an increase in the probability of adoption. Instead, there exists the               

possibility of simultaneous causality- that areas with high base levels of solar are more likely to                

adopt solar in the first place.  
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There is also the potential for omitted variable bias that contributes to endogeneity, due to               

limitations in my data. I am unable to include covariate shocks such as technological efficiency               

developments in solar, consumer preferences, and the access of nearby community solar            

programs in my models. In a way, endogeneity is observational equivalent to peer effects, as peer                

effects attempt to explain the reason some localities see greater levels of adoption.  

A third limitation arises in my methodology. Instead of a predictive model, I use a               

general fraction of the number of households that have installed solar as my dependant variable.               

It is likely that different zip codes have varying equilibrium adoption rates, and this cross               

sectional analysis may consider areas with low ceilings or late origins as underperforming. 

Lastly, I am limited by the data. I established earlier that the OpenPV data source did not                 

match the adoption demographics of small scale solar from the EIA. Because the OpenPV              

project relies on voluntary adoption information, the trends I observe and relate to peer effects               

may in fact be a measure of the likelihood to provide information. This could bias my results in                  

either direction.  

 
VIII. Conclusion  

The purpose of this analysis was to examine whether there are peer effects present in the                

adoption of photovoltaic solar in Minnesota and Wisconsin. The presence of these peer effects is               

expected to expedite solar installations through increased social learning and social utility, I             

tentatively find that there is a positive, significant relationship between the previous number of              

installations and likelihood of adoption within a zip code. I tentatively prefer the usage of the                

zipcode model for its better prediction of more factors in the data, but recognize the value of the                  

county level estimates. I additionally find that policies are found to have a weak effect as a shock                  
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to the base level, but a select few (for example, the Made in Minnesota Program) may influence                 

the magnitude of peer effects. 

My results are not necessarily conclusive, but point towards an association of peer effects              

in Minnesota and Wisconsin that could be a reason for the observed clustering of residential PV.                

Stronger evidence in support of peer effects may be beneficial to policy makers in the allocation                

of incentives. 
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Appendix A1: Complete Summary Statistics for Minnesota and Wisconsin 
 

Table 1.3 Summary Statistics at the Zipcode Level     

  Minnesota   Wisconsin  

Variable     Mean Min Max       Mean Min Max 

Base Level 5.8 0 54 9.47 0 91 

PV Pricing (cost/watt) 7.18 1.83 24.28 7.2 .91 27.0 

Solar Potential (kWh/m/day) 4.49 4.26 4.66 4.44 4.33 4.5 

Nat Gas Pricing 10.61 7.12 18.76 11.27 6.85 19.93 

Population per square mile 1139.654 3.6 3341.7 536.5 9.1 3926 

Median House Value 159891.5  65317 226897 151932.6 86245 236340 

Median Income 42404.8 29033 53249 38975.45 29676 59866 

Rebate per watt 1.89 0.37 2.25 1.24 0.09 5.06 

Gross State Product (GSP) 343286 240282 2613895 31188.8 25124 34451 

% with Bachelors 28.8 10 39.1 24.36 10 40.6 

% Hispanic 2.98 0.51 15.2 2.78 .33 8.76 

% Black 3.94 0.07 8.84 3.41 0.06 24.3 

Number of Households 185685 2494 504178 106147 2494 417524 

 
 
 
 
Appendix A2: Residual Plots for County, Zip Code Fixed Effects 

 
 
Figure 1: Residuals for County Fixed effects model            Figure 2: Residuals for Zipcode Fixed Effects 
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Appendix A.3: Fixed and Random Effect Modeling Results 

Table 2.1 Probability of Adoption Model (Yzt)  23   

Variable OLS(County FE) OLS Zip(Zip FE) Zip FE with Interaction 

Cost per Watt     .000033*(.0000605) 2.98E-6(1.49E-6) 3.39E-6 (1.5E-6) 

Rebate per Watt 9.06E-7***(2.39E-7) -1.38E-8(2.47E-8) -2.55E-8(2.48E-8) 

GSP 1.5E-9***(9.26E-10) -3.5E-10***(1.02E-10) -3.64E-10***(1.02E-10) 

Population/sq. mile 1.8E-5(5.47E-5) 2.97E-6(5.01E-6) 4.21E-6(5E-6) 

Household Count -2.39E-8*(3.18E-8) -2.5E-09(2.8E-9) -2.98E-9(2.82E-9) 

Potential -.119(.273) .0118(.0122) .0132(.0122) 

NG Pricing -2.87E-4***(4.76E-5) -1.3E-6(4.25E-06) -9.44E-7(4.23E-6) 

Base Level -6.72E-8(9.73E-07) 4.69e-6***(5.8E-6) 4.25E-6***(1.49E-6) 

Base Level- MN 
Power Interaction 

--- ---- .000025***(6.59E-6) 

Bachelors -.0056(8E-4)) -1.5E-5(.0001) -5.1E-5(.00012) 

%Black -.022(0.19) -.2079(1.13) .00015(.00047) 

%Hispanic .003(.006) -.00024(.0006) .00028(.00004) 

Median Household 
Value 

.000107(.00305) -1.39E-8(1.17E-8) -8.87E-9(1.17E-8) 

Xcel Solar Rewards .0013***(.00346) -.0001***(3.91E-5) -9.02E5**(3.9E-5) 

Nat ITC .008***(.0007) -7.13E-6(7.2E-5) -1.3E-5(7.18E-5) 

Milwaukee Shines  -0.0013(.0012) -3.7E-5(3.91E-5) -4.29E-5(1.04E-4) 

WI -.0062(.018) .002(.005) --- 

Intercept .594(1.211) -.0463(.047) -.0484(.0437) 

 r2=.819 
n= 2,119 

r2=.9560 
n= 2,090 

r2=.9564 
n=2,090 

*** for p< .01, ** for p<.0 5, *for p< .2   

 

23 Standard errors are expressed in parentheses.  
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Appendix B: Solar Installation Base level GIS Maps 
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Appendix C: Outliers  
 
 
Table 4.1 Summary of Outliers     

 HH Income State Average 
Median Home 

Value State Average 
Average Base 

Level State Average 

Portage 34399.03 38975.45 131033.9 151932.6 20.8 9.47 

Wood 38763.17 38975.45 108506.2 151932.6 3.7 9.47 

Hennepin 50631.82 42404.8 191152.2 159891.5 6.5 5.8 

Dane 41866.38 38975.45 195817.7 151932.6 19.6 9.47 

Ozaukee 59866.25 38975.45 236340.9 151932.6 3.11 9.47 

 
 
Table 4.2 Outlier Coefficients OLS  

 Base Level Estimate t value 

Portage 6.25E-06 0.67 

Wood 0.0000646 0.79 

Hennepin 0.0000213 1.19 

Dane -3.55E-07 -0.21 

Ozaukee -8.43E-06 -0.36 

*** for p<.01, ** for p<.05, *for p<.2  
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Appendix D: Additional Outliers 
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