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Abstract

An integer partition is a weakly decreasing sequence of positive integers.
We study the family of packings of integer partitions in the triangular array
of size n, where successive partitions in the packings are separated by at
least one zero. We prove that these are enumerated by the Bell-Like number
sequence (OEIS A091768), and investigate its many recursive properties.
We also explore their poset (partially ordered set) structure. Finally, we
characterize various subfamilies of these staircase packings, including one
restriction that connects back to the original patterns of the whole family.
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Chapter 1

Introduction

Combinatorics is a branch of mathematics that counts and enumerates dis-
crete structures. We investigate a specified family of lists of integer par-
titions and characterize some of its patterns and properties. We offer an
overview of the paper and some of the conclusions we will draw through
our investigation.

In this chapter, we define some combinatorics terms that will be used
throughout the paper, including integer partitions and posets. For any
other terms or concepts that are not defined, we recommend Introductory
Combinatorics by Richard Brualdi [7]. We also give some background on
previous works that have informed the research done for this paper. Then
we define the main problem being investigated: staircase packings of integer
partitions, which we denote by Mn. This family is counted by an integer
sequence called the Bell-Like number sequence.

In Chapter 2, we will go into some background about our subfamily, as
well as the interpretation of the Bell-Like number sequence as it relates to
our subfamily.

In Chapter 3, we will prove that there are various bĳections within the
family of Mn.

In Chapter 4, we will discuss the poset structure of Mn. We give formu-
las for the number of maximal chains of minimum length and of maximum
length.

In Chapter 5, we will observe what happens when further restrictions
are added to our subfamily. Here we will prove the bĳections between these
restrictions, including one that relates back to Mn.

Finally, Chapter 6 will conclude the paper by summarizing the main
ideas and discussing future research that can be done with this problem.



2 Introduction

1.1 Combinatorics Definitions

In this section, we will begin by defining and giving examples of some
combinatorics terms that will be relevant for this paper.

1.1.1 Integer Partitions

Definition 1.1. A partition of a positive integer n is a representation of n as
a sum of one or more positive integers, listed in weakly decreasing order,
called parts.

Definition 1.2. The number of integer partitions of n is given by the partition
function p(n).

Figure 1.1 shows the examples for the partitions of 1, 2, 3, 4, and 5.

1;

2, 1 + 1;

3, 2 + 1, 1 + 1 + 1;

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1;

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1;

Figure 1.1 Examples for the partitions of 1, 2, 3, 4, and 5. Here we can see
that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7.

This paper will refer to integer partitions throughout the paper, as it will
focus on counting the staircase packings of integer partitions.

1.1.2 Partially Ordered Sets

In order to define a partially ordered set, we must first define partial order.

Definition 1.3. A partial order ⪯ on a set is a binary relation that is reflexive,
transitive and antisymmetric. Therefore, it is an arrangement of a set such
that, for certain pairs of elements, one precedes the other.

Definition 1.4. A partially ordered set (or more simply, a poset) is a set X

along with a partial order, ⪯. We denote this poset by (X,⪯).
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We can visualize a poset and its structure using a Hasse diagram. Before
defining a Hasse diagram, we must first define a covering relation.

Definition 1.5. If (X,⪯) is a poset with elements a, b ∈ X , then a is covered
by b provided that a ⪯ b and no element x can be squeezed between a and
b; that is, there does not exist an element x such that both a ⪯ x and x ⪯ b

hold.

Definition 1.6. A Hasse diagram of a finite poset (X,⪯) is a directed graph
whose vertices are labeled by elements of X where (x1, x2) is an arc if and
only if x2 covers x1.

Typically we visualize the Hasse diagram by positioning the point x1
below the point x2 when x1 ⪯ x2, and connecting x1 and x2 by a line
segment if and only if x1 is covered by x2.

Take set X such that X = {1, 2, 3}. For every element x ∈ P (X), we can
define a covering relation such that x1, x2 ∈ P (X), x1 ⪯ x2 if and only if
x1 ⊆ x2. Figure 1.2 shows an example of the Hasse diagram for this set.

Figure 1.2 Hasse diagram of the poset (P (X),⪯) where X = {1, 2, 3} and
for x1, x2 ∈ P (X), we have x1 ⪯ x2 if and only if x1 ⊆ x2.

1.2 Bĳections

The families we study in this paper will have relationships within them-
selves and other families. We want to describe one of these relationships,
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which are bĳections.

Definition 1.7. A bĳection is a function f : A → B between two sets A and
B such that

1. For all a1, a2 ∈ A, if f(a1) = f(a2), then a1 = a2, and

2. For all b ∈ B, there exists an a ∈ A such that f(a) = b

If there is a bĳection between two sets then there is a correspondence
between their elements. This means that bĳections are invertible. Also note
that when two finite sets are in bĳection, they have the same number of
elements.

1.3 Staircase Packings of Integer Partitions

We now introduce the combinatorial family that we will investigate.

Definition 1.8. The set Mn of staircase packings of integer partitions is the
collection of sequences m = (m1,m2, . . . ,mn) such that

• We have 0 ≤ mi ≤ i for 1 ≤ i ≤ n

• If mi < mi−1 then mi = 0 for 2 ≤ i ≤ n.

The first condition states that the ith element is less than or equal to i.
The second condition states that whenever the sequence decreases, the next
value must be zero. The sets M0,M1,M2 and M3 are shown in Figure 1.3.
Note that |M0| = 1, |M1| = 2, |M2| = 6 and |M3| = 22.

We enumerated larger sets using Python code, and discovered that the
sequence of sizes

1, 2, 6, 22, 92, 426, 2150, 11708, 68282, . . .

matches sequence A091768 in the Online Encyclopedia of Integer Sequences
[11].

Definition 1.9. Bell-Like numbers (OEIS sequence A091768) are the numbers
in the sequence:

1, 2, 6, 22, 92, 426, 2150, 11708, 68282, . . .
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n Mn

0 ∅

1 (0) (1)

2 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

3

(0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 0, 3) (0, 1, 0) (0, 1, 1)

(0, 1, 2) (0, 1, 3) (0, 2, 0) (0, 2, 2) (0, 2, 3) (1, 0, 0)

(1, 0, 1) (1, 0, 2) (1, 0, 3) (1, 1, 0) (1, 1, 1) (1, 1, 2)

(1, 1, 3) (1, 2, 0) (1, 2, 2) (1, 2, 3)

Figure 1.3 Staircase packings of integer partitions Mk for 0 ≤ k ≤ 3.

which are given by the formula

b1 = 1,

bn+1 =
1

n+ 1

(
2n

n

)
+

n−1∑
k=0

k + 2

n+ 1

(
2n− k − 1

n− k − 1

)
for n ≥ 1.

We will prove thatMn is enumerated by the Bell-Like numbers. Further-
more, our family Mn of staircase packings of integer partitions is simpler
than any of the examples given in the OEIS. So our family may be the most
elementary example of structures enumerated by this sequence.

We now explain what we mean by a “staircase packing of integer parti-
tons.” When (m1,m2, . . . ,mn) is viewed in reverse order, we have a packing
of integer partitions that fit in the staircase shape 1, 2, . . . , n − 1, n. Figure
1.4 shows an example. The sequence

m = (1, 2, 3, 0, 0, 1, 3, 0, 2, 5, 7, 9)

becomes
(9, 7, 5, 2, 0, 3, 1, 0, 0, 3, 2, 1)

which corresponds to a list of three integer partitions

9 + 7 + 5 + 2 3 + 1 3 + 2 + 1,



6 Introduction

each separated by one or more zeros. The reversed list is elementwise
smaller than the staircase shape

s = (12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1),

so we can viewm as a packing of three integer partitions that fits in staircase
shape s. In such a packing, we require that the integer partitions are
separated by one or more zeros.

• • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • •
• • • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
• • • •
• • •
• •
•

Figure 1.4 An example of an interpretation for Mn. This is the visualization
for the sequence of m ∈ M12 where m = (1, 2, 3, 0, 0, 1, 3, 0, 2, 5, 7, 9).

1.3.1 Understanding Mn

Having a strong understanding of Mn is important for this paper, so we
will further investigate Mn.

For Mn, the bounding staircase shape will have size n. Figure 1.5,
shows the empty staircase shapes for M1, M2, M3, and M4. The pattern
continues for all sizes n of Mn.
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a.M1 b.M2 c.M3 d.M4

Figure 1.5 Empty staircase shapes for M1 through M4.

The definition of Mn specifies the rules for packing the staircase shape.
The main restriction states that if mi < mi−1 then mi = 0. In the corre-
sponding staircase packing, this means that if the ith row from the bottom
is smaller than the (i− 1)th row from the bottom, then the ith row must be
empty.

More intuitively, in the staircase packing, the row sizes must weakly
decrease to zero as you move down (which forms an integer partition). The
next non-zero row is the start of another integer partition. In other words,
there are one or more buffer (empty) rows between the integer partitions in
the staircase packing. Figure 1.6 illustrates what is allowed in Mn, as well
as an example of a packed staircase that would not follow the rules of Mn.

• • • •
• • •
• •
•

a. Allowed

• • • •
• • •
• •
•

b. Allowed

• • • •
• • •
• •
•

c. Allowed

• • • •
• • •
• •
•

d. Not allowed

Figure 1.6 The first three are elements ofM4. The last one is not an element
of Mn, because 1 + 2 + 1 is not a valid integer partition.

It is through these packings, for every size ofMn, that the numbers from
the Bell-Like number sequence appear. For n = 1 there are 2 ways to pack
the staircase shape (Figure 1.7). For n = 2 there are 6 ways for the staircase
to be packed (Figure 1.8). For n = 3 there are 22 ways for the staircase to
be packed (Figure 1.9). The pattern continues with n = 4 having 92 ways,
n = 5 having 426 ways, n = 6 having 2150 ways, and so on.
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•

a. (0)

•

b. (1)

Figure 1.7 All elements of M1.

• •
•

a. (0,0)

• •
•

b. (1,0)

• •
•

c. (1,1)
• •
•

d. (1,2)

• •
•

e. (0,1)

• •
•

f. (0,2)

Figure 1.8 All elements of M2.
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• • •
• •
•

a. (0,0,0)

• • •
• •
•

b. (0,0,1)

• • •
• •
•

c. (0,0,2)
• • •
• •
•

d. (0,0,3)

• • •
• •
•

e. (0,1,0)

• • •
• •
•

f. (0,1,1)
• • •
• •
•

g. (0,1,2)

• • •
• •
•

h. (0,1,3)

• • •
• •
•

i. (0,2,0)
• • •
• •
•

j. (0,2,2)

• • •
• •
•

k. (0,2,3)

• • •
• •
•

l. (1,0,0)
• • •
• •
•

m. (1,0,1)

• • •
• •
•

n. (1,0,2)

• • •
• •
•

o. (1,0,3)
• • •
• •
•

p. (1,1,0)

• • •
• •
•

q. (1,1,1)

• • •
• •
•

r. (1,1,2)
• • •
• •
•

s. (1,1,3)

• • •
• •
•

t. (1,2,0)

• • •
• •
•

u. (1,2,2)
• • •
• •
•

v. (1,2,3)

Figure 1.9 All elements of M3.
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1.4 Previous Works

We give an overview of some work related to staircase packings of integer
partitions.

1.4.1 Approval Ballot Triangles

The family Mn can be viewed as as subfamily of approval ballot triangles
(ABTS).

Definition 1.10. An approval ballot triangle (ABT) of order n is a binary
triangular array A(i, j) for 1 ≤ j ≤ i ≤ n − 1 satisfying the following row
condition

k∑
k=j

A(i, k) ≤
i+1∑
k=j

A(i+ 1, k) for 1 ≤ j ≤ i ≤ n− 2.

We denote this family An.

Note that an ABT of order n has n−1 rows. Intuitively, a binary triangle
is an ABT when row i+ 1 ends with at least as many ones as row i.

It is straight-forward to convert a staircase packing m ∈ Mn into an
ABT A ∈ An+1. Given m = (m1, . . . ,mn), let A be the ABT whose (n− k)th
column contains n− k −mk zeros on top of mk ones. Since each column is
weakly increasing, the triangle A satisfies the ABT row condition.

Approval ballot triangles (ABTs) are in bĳection with totally symmetric
self-complementary plane partitions (TSSCPPs). A TSSCPP of order n is a
plane partition in a 2n×2n×2n box with with maximum possible symmetry.
Andrews [1] proved that the number of TSSCPPs of order n is

n−1∏
k=0

(3k + 1)!

(n+ k)!
,

see OEIS A005130 [11]. See Bressoud [6] for a recounting of the history and
mathematical connections of this remarkable formula.

Beveridge and Calaway [4] recently introduced the family of approval
ballot triangles. ABTs are a binary encoding of a nest of lattice paths
obtained from the fundamental domain of a TSSCPP. This was proven in
[4], but equivalent encodings appear in [8] and [12].
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Beveridge and Calaway show that ABTs encode an approval voting
process with n − 1 ballots in which candidate i never trails candidate j

whenever 1 ≤ i < j ≤ n. This generalizes many known ballot problems,
including the famous Bertrand Ballot Problem for two candidates. See
Barton and Mallows [3], Takàcs [14], and Renault [9] for surveys of ballot
problems.

1 1 1

1
1 1 1 1 1

1
1

1
1 1 1

1
1

1
1

1
1
1

1
1

1
1

1 1

1
1

11 1 1
1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1
1

1
1

1

1
1
1 1

1
1
1 1

1 1
1 1

1
1

1 1
1
1 1 1

1
1 1 1

1 1
1 1

1
1

1 1

1
1
1 1

1 1
1 1

1
1

1 1

1 1
1 1 1

1
1 1
1 1

1
1
1 1 1

1
1

1 1 1

1
1 1

1 1

1
1 1
1 1

1
1 1
1 1 1

Figure 1.10 The 42 approval ballot triangles of order 4. The zero entries are
rendered blank for visual clarity. The blue arrays are the 22 staircase packings
of integer partitions in a triangular array of size 3.

The 42 ABTS of order 4 are shown in Figure 1.10. The 22 ABTS that
correspond to staircase packings of integer partitions are shown in blue.
Approval ballot triangles have many other natural subfamilies that are in
bĳection with famous combinatorial families, including permutations, set
partitions and Catalan numbers. See [2] for an extensive list of these sub-
families and their structures.

1.4.2 Robertson’s Binary Triangles

In her 2022 Macalester honors project [10], Robertson explored another
family of binary triangles, this one with weakly increasing columns. We
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describe these triangles using the sequences corresponding to their column
sums.

A binary triangle is a left-justified binary array T (i, j) for 1 ≤ j ≤ i ≤
n − 1. Robertson [10] defines a subfamily Ln of the binary triangle family
with weakly increasing columns, Tn. If r(i) is the sum of columns of i of
t ∈ Tn, then this subfamily that can be defined as the following:

Definition 1.11. Let Ln = {t ∈ Tn|r(i) > 0 7→ r(i) ≥ r(i− 1).

Definition 1.12. Let Rn be the set of sequences (r1, r2, . . . , rn) such that

• 0 ≤ ri ≤ i

• if ri > ri−1 then ri−1 = 0.

Note that Robertson’s second condition is the opposite of ours (if mi <

mi−1 then mi = 0). So her sequences consist of weakly increasing blocks,
separated by one or more zeros.

We define a partial ordering on R in the natural way.

Definition 1.13. For r, s ∈ Rn, we have r ⪰ s when ri ≤ si for 1 ≤ i ≤ n.

Having the partial order allows for the investigation of the set’s maximal
elements. Robertson showed that these maximal elements are counted by
the Fibonacci numbers. Robertson also counted the number of maximal
elements with maximum weight w(r) =

∑n
i=1 ri.

1.4.3 Rectangle Packings of Integer Partitions

In the section, we discuss packings of integer partitions into rectangles of
size r × s. The number of such packings was determined by Birmajer, Gil
and Weiner [5].

Recall that an integer partition is a weakly decreasing sequence of
positive integers. More concretely, the sequence (a1, a2, . . . , ar) where
a1 ≥ a2 ≥ · · · ≥ ar is an integer partition of n =

∑r
k=1 ar into r parts

and whose largest part is size a1.
Rather than fixing an integer n and considering all of its integer parti-

tions, we start with a different question:

Question 1.14. How many integer partitions are there with at most r parts and
whose largest part has size at most s?
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The answer to this question will be revealed by drawing a Ferrers dia-
gram for each of these integer partitions inside an r × s rectangular array.
For example, Figure 1.11 shows the 20 such integer partitions when r = 3

and s = 3. Furthermore, tracing the lower boundary of these integer par-
titions gives a bĳection to lattice paths from (0, 0) to (3, 3) using only right
steps and up steps. This shows that there are

(
6
3

)
such partitions.

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

Figure 1.11 Integer partitions with at most 3 parts and whose largest part is
at most 3.

The same argument applies to the general case.

Proposition 1.15. There are
(
r+s
s

)
integer partitions with at most r parts and

whose largest part is at most s.

Proof. Given such a partition (a1, a2, . . . , ak), we append r − k zeros so
that we have a weakly decreasing sequence of nonnegative integers. The
resulting sequences (a1, a2, . . . , ar) are in bĳection with lattice paths from
(0, 0) to (r, s). The i-th up step travels from (i− 1, ar+1−i) to (i, ar+1−i).

Inspired by Figure 1.11, we can turn this into a packing problem by
allowing for two generalizations.

• We can start with empty rows, if we so choose.

• We can add more integer partitions inside the rectangle, when there
is room to do so. Our restriction will be that there must be at least one
empty row between integer partitions.
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Figure 1.12 shows the additional 21 valid integer partition packings in a
3 × 3 array. So there are a total of 41 ways to pack integer partitions in a
3× 3 rectangle.

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

Figure 1.12 Integer partition packings in a 3× 3 that either have two blocks,
or one block that starts in the second or third row.

This leads to the following definition.

Definition 1.16. A packing of integer partitions inside an r × s rectangle is a
sequence (a1, a2, . . . , ar) where

• 0 ≤ ai ≤ s for 1 ≤ i ≤ r, and

• if ai > 0 then ai+1 ≤ ai for 1 ≤ i < r.

Adapting the work of Birmajor, Gil and Weiner [5] shows that the num-
ber of integer packings in an r × s rectangle is

r∑
k=1

(
r + (s− 1)k

r − k + 2

)
.
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Bell and Bell-Like Numbers

2.1 Bell Numbers

The main result of this project is that Mn is enumerated by the sequence
of Bell-Like numbers. This sequence is called ‘Bell-Like’ because they are
generated by a recurrence that is similar to a recurrence for the Bell numbers,
OEIS sequence A000110.

Definition 2.1. Bell numbers are the number of ways to partition a set of n
labeled elements. The sequence of Bell numbers begins:

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . .

We can generate the Bell numbers using a triangular recurrence, as
shown in Figure 2.1. Row i contains i entries. The first row has one entry:
B1,1 = 1. Assuming that we have generated row i − 1, here is how we
generate row i. We set the first entry Bi,1 = Bi−1,i−1, the last entry of the
previous row. Then for 2 ≤ i, we set

Bi,j = Bi,j−1 +Bi−1,j−1.

The last entry Bi,i in row i is the ith Bell number.
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1
1 2
2 3 5
5 7 10 15
15 20 27 37 52
52 67 87 114 151 203
203 255 322 409 523 674 877

...

Figure 2.1 Triangular recurrence used to generate the Bell numbers, where
the Bell numbers are the last entry of each row.

The combinatorial interpretation of the triangular recurrence, as ex-
plained by Sun and Wu [13], is as follows: Bi,j counts the number of
partitions of the set {1, 2, ..., i+ 1}, where the element j + 1 is the only ele-
ment of its set and each higher-numbered element is in a set of more than
one element, meaning j + 1 is the largest singleton of the partition.

Figure 2.2 shows an example of the interpretation of the triangular
recurrence, where B4,2 counts the number of partitions of {1, 2, 3, 4, 5}. In
this case, j + 1 = 3, so 3 is the largest singleton element and every element
greater than 3, cannot be in its own subset. This interpretation can be
applied to any number in the triangular recurrence used to generate the
Bell numbers.

{1, 2, 4, 5}{3} {1, 5}{2, 4}{3} {1}{2}{4, 5}{3} {1, 4, 5}{2}{3}

{1, 2}{4, 5}{3} {1}{2, 4, 5}{3} {1, 4}{2, 5}{3}

Figure 2.2 B4,2 = 7 counts the number of partitions of {1, 2, 3, 4, 5} where
element 3 is the largest element that is in a singleton set.

2.2 Bell-Like Numbers

Recall that the Bell-Like number sequence is:

1, 2, 6, 22, 92, 426, 2150, 11708, 68282, . . .
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The Bell-Like numbers can be generated in by using a triangular recur-
rence that is similar to the triangular Bell recurrence. Figure 2.3 illustrates
how this new triangular recurrence can generate the numbers in the Bell-
Like number sequence: they appear as the last entry of each row.

1
1 2
2 4 6
6 10 16 22
22 32 48 70 92
92 124 172 242 334 426
426 550 722 964 1298 1724 2150

...

Figure 2.3 Triangular recurrence used to generate the Bell-Like numbers,
where the Bell-Like numbers are the last entry of each row.

To generate this triangle, we set B1,1 = 1. Then, assuming that we have
defined row i − 1, we set the first entry of row i to be Bi,1 = Bi−1,i−1, the
last entry of row i− 1. The rest of the numbers in a given row are generated
by adding all the numbers in the previous column. We have

Bi,j =

i∑
k=j−1

Bk,j−1. (2.2)

This is similar to how we generate Bell numbers, but instead of just adding
the last two entries in the previous column, we are adding all of the entries
from the previous column.

Figure 2.4 shows a comparison of the triangular recurrence used to
generate the Bell numbers and the triangular recurrence used to generate
the Bell-Like numbers. We can see that the two triangular recurrences are
similar to one another.
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1
1 2
2 3 5
5 7 10 15

15 20 27 37 52

52 67 87 114 151 203
...

a. Triangular recurrence used to gener-
ate the Bell numbers

1

1 2
2 4 6

6 10 16 22

22 32 48 70 92

92 124 172 242 334 426
...

b. Triangular recurrence used to gener-
ate the Bell-Like numbers

Figure 2.4 A comparison of the two triangular recurrences used to generate
the Bell numbers and Bell-Like numbers.

2.2.1 Combinatorial Interpretation

Recall that the set Mn of staircase packings of integer partitions is the
collection of the sequences m = (m1,m2, . . . ,mn) such that

• We have 0 ≤ mi ≤ i for 1 ≤ i ≤ n

• If mi < mi−1 then mi = 0 for 2 ≤ i ≤ n.

Using the elements of the subsets of Mn, we give a combinatorial in-
terpretation of the triangular recurrence Equation 2.2 used to generate Bell-
Like numbers. We will show that |Mn| = Bn+1,n+1, and the otherBi,j count
particular elements of the subsets of Mn.

We start by looking at some examples. The subset M1 and its elements
are represented by the triangle

1

1 2

We have |M1| = B2,2 = 2, and indeed

M1 = {(0), (1)}.

Next, B2,1 = 1 counts the elements of M1 that do not end in 0. In this case
the only element would be (1). Finally, B1,1 counts the elements of M1 that
do end in 0. The only element would be (0). Visually, our interpretation is
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1

1 2

7−→
(0)

(1) (0) (1)

The subset M2 and its elements are represented by the following trian-
gular recurrence of Figure 2.5.

1

1 2

2 4 6

a. B3,3 = 6

Bi,j Interpretation M2 elements
B3,3 All of M2 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
B3,2 end in not 0 (0, 1) (0, 2) (1, 1) (1, 2)
B2,2 end in 0 (0, 0) (1, 0)
B3,1 end in not 1 and not 0 (0, 2) (1, 2)
B2,1 end in (not 1,1) (0, 1)
B1,1 end in (1, 1) (1, 1)

b. B3,3 counts all the elements of M2

Figure 2.5 Showing how this triangle counts the sequences of M2.

Here is how to interpret this triangle, as illustrated in Figure 2.5. We
describe the triangle, column by column, starting from the right.

• B3,3 counts all the sequences of M2.

• B3,2 counts all of the sequences of M2 that end in not 0

• B2,2 counts all of the sequences of M2 that end in 0.

• B3,1 counts all of the sequences of M2 that end in not 1 and not 0. In
this case, this is the same as counting sequences that end in 2.

• B2,1 counts all of the sequences of M2 that end in (not 1, 1). In this
case, this is the same as counting sequences that end in (0, 1).
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• B1,1 counts all of the sequences of M2 that end in (1, 1). .

With these interpretations, we can see why each entry is the sum of the
entries in the previous column, in the same row and above.

• B3,3 = B2,3 + B2,2 because the set of all sequences counted by B3,3

consists of the sequences that do not end in 0 (which are counted by
B3,2 and sequences that do end in 0 which are counted by B2,2).

• B3,2 = B3,1 +B2,1 +B1,1 because the set of sequences that do not end
in 0 can be partitioned into three subsets: those that do not end in
either 0 or 1 (that is, sequences that end in 2), those that end in (0, 1),
and those that end in (1, 1).

2.2.2 Interpretation Notation

Now that we have a basis for the interpretation of the triangular recurrence
used to generate the Bell-Like numbers, we can generalize the interpretation
for any size of Mn. We define the general pattern for the subsets of Mn that
are counted by entries of the triangle. Each of these sets specifies constraints
on the last entry (or entries) of a sequence m ∈ Mn.

Definition 2.3. We define the following subsets of Mn.

• M(n, k) = {m ∈ Mn : mn = k}

• M(n, 0̃) = {m ∈ Mn : mn ̸= 0}

• M(n, 1̃) = {m ∈ Mn : mn = n}

• M(n, k̃) = {m ∈ Mn : either 1 ≤ mn ≤ k − 1 or mn = n}

• M(n, k̃k) = {m ∈ Mn : mn = k and mn−1 ̸= k}

• M(n, k̃kk) = {m ∈ Mn : mn = mn−1 = k and 0 ≤ mn−2 ≤ k − 1}

Here, we are using the k̃ notation in two slightly different ways for
m = (m1,m2, . . . ,mn).

• The symbol 0̃ means that the last entry mn is nonzero.

• For k > 0, the symbol k̃ means that the corresponding entry mj of
the sequence is either 1 ≤ mj ≤ k − 1, or that mj = n (which is only
allowed when j = n because mj ≤ j by definition).
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More generally, we can define M(n, k̃kr), which specifies the last r + 1

entries of m ∈ Mn.

Definition 2.4. We define

M(n, k̃kr) = {m ∈ Mn : mi = k for i > n− r

and mn−r ̸= k}.

Note that
M(n, k̃k0) = M(n, k̃),

and that
M(n, k̃kn−k+1) = M(n, kn−k+1)

because mk−1 cannot be larger than k − 1.
Similarly, we can also define M(n, kr), which specifies the last r entries

of m ∈ Mn.

Definition 2.5. We define

M(n, kr) = {m ∈ Mn : mi = k for i > n− r}.

In the previous section, we gave an explanation of our interpretation
(see Figure 2.5). Now we can apply this new notation to that interpretation,
meaning that this notation is also our interpretation ofBi,j on the sequences
of Mn. Figure 2.6 shows the notation used to indicate the sequences of M1

and Figure 2.7 shows the notation used to indicate the sequences of M2.

Bi,j M(1, k̃kr) Interpretation M1 sequences

B2,2 M1 All of M1 (0) (1)

B2,1 M(1, 0̃) ends in not 0 (1)

B1,1 M(1, 0) ends in 0 (0)

Figure 2.6 M(1, k̃kr) notation being used to indicate the sequences of M1

counted by Bi,j .
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Bi,j M(2, k̃kr) Pattern M2 sequences

B3,3 M2 All of M2 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

B3,2 M(2, 0̃) ends in not 0 (0, 1) (0, 2) (1, 1) (1, 2)

B2,2 M(2, 0) ends in 0 (0, 0) (1, 0)

B3,1 M(2, 1̃)
ends in not 1

and not 0 (0, 2) (1, 2)

B2,1 M(2, 1̃1) ends in (not 1, 1) (0, 1)

B1,1 M(2, 11) ends in (1, 1) (1, 1)

Figure 2.7 M(2, k̃kr) notation being used to indicate the sequences of M2

counted by Bi,j .

Now that we have this notation, we can apply it to any Mn. Figure 2.8
shows the notation for the sequences of M3 that are counted by every Bi,j .
The interpretation, and pattern, are similar to that of M1 and M2.
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Bi,j M(3, k̃kr) Pattern M3 sequences

B4,4 M3 All of M3

(0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 0, 3) (0, 1, 0) (0, 1, 1)
(0, 1, 2) (0, 1, 3) (0, 2, 0) (0, 2, 2) (0, 2, 3) (1, 0, 0)
(1, 0, 1) (1, 0, 2) (1, 0, 3) (1, 1, 0) (1, 1, 1) (1, 1, 2)
(1, 1, 3) (1, 2, 0) (1, 2, 2) (1, 2, 3)

B4,3 M(3, 0̃) ends in not 0
(0, 0, 1) (0, 0, 2) (0, 0, 3) (0, 1, 1) (0, 1, 2) (0, 1, 3)
(0, 2, 2) (0, 2, 3) (1, 0, 1) (1, 0, 2) (1, 0, 3) (1, 1, 1)
(1, 1, 2) (1, 1, 3) (1, 2, 2) (1, 2, 3)

B3,3 M(3, 0) ends in 0 (0, 0, 0) (0, 1, 0) (0, 2, 0) (1, 0, 0) (1, 1, 0) (1, 2, 0)

B4,2 M(3, 2̃)
ends in not 2,

and not 0
(0, 0, 1) (0, 0, 3) (0, 1, 1) (0, 1, 3) (0, 2, 3)
(1, 0, 1) (1, 0, 3) (1, 1, 1) (1, 1, 3) (1, 2, 3)

B3,2 M(3, 2̃2) ends in (not 2, 2) (0, 0, 2) (0, 1, 2) (1, 0, 2) (1, 1, 2)

B2,2 M(3, 22) ends in (2, 2) (0, 2, 2) (1, 2, 2)

B4,1 M(3, 1̃)
ends in not 1,

not 2, and not 0 (0, 0, 3) (0, 1, 3) (0, 2, 3) (1, 0, 3) (1, 1, 3) (1, 2, 3)

B3,1 M(3, 1̃1) ends in (not 1, 1) (0, 0, 1) (1, 0, 1)

B2,1 M(3, 1̃11) ends in (not 1, 1, 1) (0, 1, 1)

B1,1 M(3, 111) ends in (1, 1, 1)
(1, 1, 1)

Figure 2.8 M(3, k̃kr) notation being used to indicate the sequences of M3

counted by Bi,j .
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Since M4 has 92 elements, we will not explicitly enumerate how all
the subsets are counted by the triangular recurrence. However, Figure 2.9
shows which sequences would be counted by the triangular recurrence
using our new notation. Recall that every element of M4 can be written as
m = (m1,m2,m3,m4).

M(4, 1111)

M(4, 1̃111) M(4, 222)

M(4, 1̃11) M(4, 2̃22) M(4, 33)

M(4, 1̃1) M(4, 2̃2) M(4, 3̃3) M(4, 0)

M(4, 1̃) M(4, 2̃) M(4, 3̃) M(4, 0̃) M4

a. Notation for M4.

(1, 1, 1, 1)

(1̃, 1, 1, 1) (m1, 2, 2, 2)

(m1, 1̃, 1, 1) (m1, 2̃, 2, 2) (m1,m2, 3, 3)

(m1,m2, 1̃, 1) (m1,m2, 2̃, 2) (m1,m2, 3̃, 3) (m1,m2,m3, 0)

(m1,m2,m3, 1̃) (m1,m2,m3, 2̃) (m1,m2,m3, 3̃) (m1,m2,m3, 0̃) (m1,m2,m3,m4)

b. Sequences of M4 that correspond to the notation in Figure 2.9a.

Figure 2.9 M(4, k̃kr) notation being used to indicate the sequences of M4

To fully understand this pattern, we can analyze what the notation
represents for M4.

• M(4, 0̃) represents the subset of all elements of M4 that end in not 0
and M(4, 0) represents all subsets of M4 that end in 0.

• M(4, 3̃) represents the subset of all elements of M4 that end in not 3
and not 0. This means that an element in M(4, 3̃) can end in 1, 2, or 4.

• M(4, 3̃3) represents the subset of all elements of M4 that end in
(not 3, 3).

• M(4, 33) represents the subset of all elements of M4 end in (3, 3).
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• M(4, 2̃) represents the subset of all elements of M4 that end in not 2
and not 3 and not 0. This means that an element in M(4, 2̃) can end
in 1 or 4.

• M(4, 2̃2) represents the subset of all elements of M4 that end in (not
2,2).

• M(4, 2̃22) represents the subset of all elements of M4 that end in
(not 2,2, 2).

• M(4, 222) represents the subset of all elements of M4 that end in
(2, 2, 2).

• M(4, 1̃) represents the subset of all elements of M4 that end in not 1
and not 2 and not 3 and not 0. This means that an element in M(4, 2̃)

can end in 4.

• M(4, 1̃1) represents the subset of all elements of M4 that end in (not
1,1).

• M(4, 1̃11) represents the subset of all elements of M4 that end in (not
1,1, 1).

• M(4, 1̃111) represents the subset of all elements of M4 that end in
(not 1,1, 1, 1).

• M(4, 1111) represents the subset of all elements of M4 that end in
(1, 1, 1, 1).

Through the generalized pattern and interpretation for Mn we can see
that Mn is enumerated by the Bell-Like number triangular recurrence and
in turn, the Bell-Like numbers themselves. Figure 2.10 shows how the
triangular recurrence relates to the pattern for M1 through M4.



26 Bell and Bell-Like Numbers

1

1 2
−→

0

0̃ M1

a. Bi,j mapping to the interpretation of
the subsets of M1

1

1 2

2 4 6

−→

11

1̃1 0

1̃ 0̃ M2

b. Bi,j mapping to the interpretation of
the subsets of M2

1

1 2

2 4 6

6 10 16 22

−→

111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ M3

c. Bi,j mapping to the interpretation of the subsets of M3

1

1 2

2 4 6

6 10 16 22

22 32 48 70 92

−→

1111

1̃111 222

1̃11 2̃22 33

1̃1 2̃2 3̃3 0

1̃ 2̃ 3̃ 0̃ M4

d. Bi,j mapping to the interpretation of the subsets of M4

Figure 2.10 The triangular recurrence mapped to the interpretation of the
subsets of M1 through M4.

Later, we will discuss the different properties of the columns of Mn.
Therefore, we will provide these columns with their own notation.
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Definition 2.6. Let the columns of Mn be defined as

M0
n = M(n, 0̃) ∪M(n, 0)

and for 1 ≤ k ≤ n− 1, we define

Mk
n = M(n, k̃) ∪M(n, k̃k) ∪M(n, k̃kk) ∪ · · ·

Here is an example of how we would use this column notation for M4:

• M0
4 is the column that includes M(4, 0̃) and M(4, 0).

• M3
4 is the column that includes M(4, 3̃),M(4, 3̃3), and M(4, 33).

• M2
4 is the column that includes M(4, 2̃),M(4, 2̃2),M(4, 2̃22), and

M(4, 222).

• M1
4 is the column that includesM(4, 1̃),M(4, 1̃1),M(4, 1̃11),M(4, 1̃111),

and M(4, 1111).

Figure 2.11 shows the column notation being used for M4.

1111

1̃111 222

1̃11 2̃22 33

1̃1 2̃2 3̃3 0

1̃ 2̃ 3̃ 0̃ M4

M1
4 M2

4 M3
4 M0

4 M4

Figure 2.11 The column notation for the interpretation of the subsets M4.





Chapter 3

Bĳections Within the Bell-Like
Sequence Interpretation

In this section we will prove Mn is counted by the Bell-Like number se-
quence from Section 2.2. First, we discuss some of the properties that come
from the interpretation of the triangular recurrence as it relates to the sub-
sets ofMn. With this interpretation there are various bĳections that appear.
We will start by studying some of these bĳections.

3.1 Column and Ends In ’Not’ Mapping

Recall that M(n, k̃ + 1) are the sequences m ∈ Mn such that

m = (m1,m2, . . . ,mn−1,mn)

where either 1 ≤ mn ≤ k or mn = n.
Also recall that Mk

n represents the column k of Mn, where the column
includes M(n, k̃) ∪M(n, k̃k) ∪M(n, k̃kk) ∪ · · · .

We will show that
M(n, k̃ + 1) = Mk

n.

We first provide an example of the bĳection between these sets: Figure 3.1
shows how to bĳectively map M(3, 2̃) to M1

3. The column M1
3 is the first

column where all the entries are highlighted.
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111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ all

Figure 3.1 M(3, 2̃) = M1
3.

Figure 3.2 shows all the sequences of M(3, 2̃) and all the sequences of
the column M1

2. In this example we can see that every sequence of M(3, 2̃)

is also a sequence in M1
2.

M(3, 2̃) 7→ M(3, 1̃) M(3, 2̃) 7→ M(3, 111)

(0, 0, 3) 7→ (0, 0, 3) (1, 1, 1) 7→ (1, 1, 1)

(0, 1, 3) 7→ (0, 1, 3)

(0, 2, 3) 7→ (0, 2, 3) M(3, 2̃) 7→ M(3, 1̃11)

(1, 0, 3) 7→ (1, 0, 3) (0, 1, 1) 7→ (0, 1, 1)

(1, 1, 3) 7→ (1, 1, 3)

(1, 2, 3) 7→ (1, 2, 3) M(3, 2̃) 7→ M(3, 1̃1)

(0, 0, 1) 7→ (0, 0, 1)

(1, 0, 1) 7→ (1, 0, 1)

Figure 3.2 Explicitly showing how M(3, 2̃) = M1
3.

Now that we see that

M(3, 2̃) = M(3, 1̃) ∪M(3, 1̃1) ∪M(3, 1̃11) ∪M(3, 111) = M1
3,

we can generalize this statement to apply to all n, k, and k + 1.
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Lemma 3.1. We have

M(n, k̃ + 1) = Mk
n =

n−k+1⋃
r=0

M(n, k̃kr).

Proof. Pick anym ∈ M(n, k̃ + 1). We havem = (m1,m2,m3, . . . ,mn)where
1 ≤ mn ≤ k or mn = n. We look at how many k’s appear at the tail end of
m. This partitions M(n, k̃ + 1) into disjoint sets.

• If mn ̸= k then m ∈ M(n, k̃).

• If mn = k and 0 ≤ mn−1 ≤ k − 1 then m ∈ M(n, k̃k).

• If mn = mn−1 = k and 0 ≤ mn−2 ≤ k − 1 then m ∈ M(n, k̃kk).

• If mn = mn−1 = · · · = mn−r+1 = k and 0 ≤ mn−r ≤ k − 1 then
m ∈ M(n, k̃kr).

• If mi = k for n − r + 1 ≤ i ≤ n and 0 ≤ mn−r ≤ k − 1 then m ∈
M(n, k̃kr). This holds for 0 ≤ r ≤ n− k + 1

This covers all possible suffixes for m ∈ M(n, k̃ + 1), and we are done.

An example of what was proven above can be seen in Figure 3.1 Here
we see that M(3, 2̃) = M1

3. Figure 3.2 shows how every m in M(3, 2̃) is
equal to every restriction from the previous column, M1

3.

3.2 All Sequences End in 0 or End in Not 0

Next we want to show that all sequences of Mn map to the column M0
n.

Recall that M0
n = M(n, 0̃) ∪ M(n, 0). So the claim that Mn maps to the

column M0
n is saying that every sequence in Mn ends in either not 0 or 0.

Let us start with an example. Take M3 and M0
3, as shown in Figure 3.3.
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111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ all

Figure 3.3 M3 = M0
3

The mapping is given in Figure 3.4. Clearly, M(3, 0̃) and M(3, 0) are
disjoint subsets of M3, and each sequence in M3 belongs to one of these
two sets.

M3 7→ M(3, 0̃)
(0, 0, 1) 7→ (0, 0, 1) (1, 0, 1) 7→ (1, 0, 1)

(0, 0, 2) 7→ (0, 0, 2) (1, 0, 2) 7→ (1, 0, 2)

(0, 0, 3) 7→ (0, 0, 3) (1, 0, 3) 7→ (1, 0, 3)

(0, 1, 1) 7→ (0, 1, 1) (1, 1, 1) 7→ (1, 1, 1)

(0, 1, 2) 7→ (0, 1, 2) (1, 1, 2) 7→ (1, 1, 2)

(0, 1, 3) 7→ (0, 1, 3) (1, 1, 3) 7→ (1, 1, 3)

(0, 2, 2) 7→ (0, 2, 2) (1, 2, 2) 7→ (1, 2, 2)

(0, 2, 3) 7→ (0, 2, 3) (1, 2, 3) 7→ (1, 2, 3)

M3 7→ M(3, 0)
(0, 0, 0) 7→ (0, 0, 0) (1, 0, 0) 7→ (1, 0, 0)

(0, 1, 0) 7→ (0, 1, 0) (1, 1, 0) 7→ (1, 1, 0)

(0, 2, 0) 7→ (0, 2, 0) (1, 2, 0) 7→ (1, 2, 0)

Figure 3.4 Explicitly showing how M3 = M0
3

We can show this will always be the case for any Mn and M0
n.

Lemma 3.2. Mn = M0
n
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Proof. Pick any m ∈ Mn. We have m = (m1,m2,m3, . . . ,mn) where 0 ≤
mn ≤ n. We can partition Mn into two disjoint sets: sequences with
mn = 0 and sequences with mn ̸= 0. These are preccisely the sets M(n, 0)

and M(n, 0̃).Therefore Mn = M0
n.

3.3 Bĳection Between Two Sizes

We now explore the bĳections that occur between Mn and Mn+1.
To begin, we explore the mappingsbetween Mn and M(n + 1, 0). We

start with the example M3 and M(4, 0) as shown in Figure 3.5.

111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ all

7−→

1111

1̃111 222

1̃11 2̃22 33

1̃1 2̃2 3̃3 0

1̃ 2̃ 3̃ 0̃ all

Figure 3.5 M3 7→ M(4, 0).

Recall that M(4, 0) is all the sequences of m ∈ M4 that end in 0, which
look like m = (m1,m2,m3, 0). On the other hand, M3 are all the sequences
of m ∈ M3, which look like m = (m1,m2,m3).

We map a sequence inM3 to a sequence inM(4, 0)by appending a 0. We
exhibit this mapping in Figure 3.6. For example, the sequence (1, 2, 3) ∈ M3

maps to (1, 2, 3, 0) ∈ M(4, 0).
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M3 7→ M(4, 0)

(0, 0, 0) 7→ (0, 0, 0, 0) (0, 2, 0) 7→ (0, 2, 0, 0) (1, 1, 1) 7→ (1, 1, 1, 0)

(0, 0, 1) 7→ (0, 0, 1, 0) (0, 2, 2) 7→ (0, 2, 2, 0) (1, 1, 2) 7→ (1, 1, 2, 0)

(0, 0, 2) 7→ (0, 0, 2, 0) (0, 2, 3) 7→ (0, 2, 3, 0) (1, 1, 3) 7→ (1, 1, 3, 0)

(0, 0, 3) 7→ (0, 0, 3, 0) (1, 0, 0) 7→ (1, 0, 0, 0) (1, 2, 0) 7→ (1, 2, 0, 0)

(0, 1, 0) 7→ (0, 1, 0, 0) (1, 0, 1) 7→ (1, 0, 1, 0) (1, 2, 2) 7→ (1, 2, 2, 0)

(0, 1, 1) 7→ (0, 1, 1, 0) (1, 0, 2) 7→ (1, 0, 2, 0) (1, 2, 3) 7→ (1, 2, 3, 0)

(0, 1, 2) 7→ (0, 1, 2, 0) (1, 0, 3) 7→ (1, 0, 3, 0)

(0, 1, 3) 7→ (0, 1, 3, 0) (1, 1, 0) 7→ (1, 1, 0, 0)

Figure 3.6 Explicitly showing how M3 7→ M(4, 0).

Now that we can see the mapping between M3 and M(4, 0), we can
generalize this mapping to all n and n+ 1.

Lemma 3.3. There exists a bĳection between Mn and M(n+ 1, 0).

Proof. We define a mapping f : Mn → M(n + 1, 0). We simply append a
zero to the sequence. Our mapping is

f : (m1,m2,m3, . . . ,mn) 7→ (m1,m2,m3, . . . ,mn, 0).

This mapping is well-defined, and it is invertible. The inverse mapping is
g : M(n+ 1, 0) → Mn where

g : (b1, b2, b3, . . . , bn, 0) 7→ (b1, b2, b3, . . . , bn).

Indeed, we see that g ◦ f is the identity mapping on Mn and that f ◦ g is
the identity mapping on M(n+ 1, 0).

3.4 Ends In Not 0 Maps to (not n, n)

We want to prove that M(n, 0̃) 7→ M(n+ 1, ñn).
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We start with an example: we give a bĳection M(3, 0̃) 7→ M(4, 3̃3), as
depicted in Figure 3.7.

111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ all

7−→

1111

1̃111 222

1̃11 2̃22 33

1̃1 2̃2 3̃3 0

1̃ 2̃ 3̃ 0̃ all

Figure 3.7 M(3, 0̃) 7−→ M(4, 3̃3).

The set M(3, 0̃) contains sequences in M3 that end in not 0, which look
like

m = (m1,m2,m3) where 1 ≤ m3 ≤ 3.

We also haveM(4, 3̃3)which are the sequences ofM4 that end in 3̃, 3,which
look like

m′ = (m′
1,m

′
2,m

′, 3) where 0 ≤ m′
3 ≤ 2.

The mapping between M(3, 0̃) and M(4, 3̃3) is shown in Figure 3.8. There
are two ways for the mappings to be accomplished.

The first is when m ∈ M(3, 0̃) does not end in 3. We can simply
append a 3 to this sequence to obtain a sequence in M(4, 3̃3). The resulting
sequence follows the condition of membership in M(4, 3̃3). An example of
this mapping is (0, 0, 1) 7→ (0, 0, 1, 3).

The second mapping is slightly more complicated, but still straightfor-
ward. This mapping starts with the sequences of M(3, 0̃) where m3 = 3.
The reason that we cannot append a 3 to the end of these sequences for
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M(4, 3̃3), is because it breaks the rule of not ending in 3, 3 for M(4, 3̃3).
Meanwhile, we have not yet mapped anything to the sequences of M(4, 3̃3)

of the form (m′
1,m

′
2, 0, 3) because the sequences of M(3, 0̃) cannot end in 0.

Therefore the second mapping is between these two subsets. It maps
a sequence (m1,m2, 3) ∈ M(3, 0̃) to (m1,m2, 0, 3 ∈ M(4, 3̃3). An example
of this mapping is (1, 2, 3) 7→ (1, 2, 0, 3). Since (1, 2, 3) ends in 3, it gets
mapped with the sequence (1, 2, 0, 3) which ends in 0, 3.

M(3, 0̃) 7→ M(4, 3̃3)
(0, 0, 1) 7→ (0, 0, 1, 3) (1, 0, 1) 7→ (1, 0, 1, 3)

(0, 0, 2) 7→ (0, 0, 2, 3) (1, 0, 2) 7→ (1, 0, 2, 3)

(0, 0, 3) 7→ (0, 0, 0, 3) (1, 0, 3) 7→ (1, 0, 0, 3)

(0, 1, 1) 7→ (0, 1, 1, 3) (1, 1, 1) 7→ (1, 1, 1, 3)

(0, 1, 2) 7→ (0, 1, 2, 3) (1, 1, 2) 7→ (1, 1, 2, 3)

(0, 1, 3) 7→ (0, 1, 0, 3) (1, 1, 3) 7→ (1, 1, 0, 3)

(0, 2, 2) 7→ (0, 2, 2, 3) (1, 2, 2) 7→ (1, 2, 2, 3)

(0, 2, 3) 7→ (0, 2, 0, 3) (1, 2, 3) 7→ (1, 2, 0, 3)

Figure 3.8 Explicitly showing how M(3, 0̃) 7−→ M(4, 3̃3).

We can follow this same bĳection for all n and n + 1. It will always be
true that we can either append n to the end, or replace a final n with 0, n.

Lemma 3.4. There exists a bĳection between M(n, 0̃) and M(n+ 1, ñn).

Proof. We define a mapping f : M(n, 0̃) → M(n+ 1, ñn)

f : (m1,m2,m3, . . . ,mn−1, n) 7→ (m1,m2,m3, . . . ,mn−1, 0, n)

and
f : (m1,m2,m3, . . . ,mn) 7→ (m1,m2,m3, . . . ,mn, n)

when 1 ≤ mn ≤ n− 1. This mapping is well-defined because the nth entry
of the image is not n in either case.

This mapping is invertible. The inverse mapping is g : M(n+ 1, ñn) →
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M(n, 0̃) where

g : (b1, b2, b3, . . . , bn−1, 0, n) 7→ (b1, b2, b3, . . . , an−1, n)

and
g : (b1, b2, b3, . . . , bn, n) 7→ (b1, b2, b3, . . . , bn)

when bn ∈ [n− 1].

We see that g ◦ f is the identity mapping on M(n, 0̃) and that f ◦ g is the
identity mapping on M(n+ 1, ñn).

We generalize this result in the next subsection.

3.5 Row Correspondence Between Mn and Mn+1

We prove that there is always a row correspondence between the last row
of Mn and the second to last row of Mn+1.

As always, we start with an example: M3 and M4. Figure 3.9 shows
where the bĳection takes place between M3 and M4. We have already
proved the following bĳections: M(3, 0̃) 7→ M(4, 3̃3) and M3 7→ M(4, 0).
We will now show the mappings M(3, 2̃) 7→ M(4, 2̃2), and M(3, 1̃) 7→
M(4, 1̃1).
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111
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1̃1 2̃2 0

1̃ 2̃ 0̃ all

7−→
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1̃111 222

1̃11 2̃22 33

1̃1 2̃2 3̃3 0

1̃ 2̃ 3̃ 0̃ all

Figure 3.9 The colors indicate the four bijections M3 7→ M(4, 0),
M(3, 0̃) 7→ M(4, 3̃3),M(3, 2̃) 7→ M(4, 2̃2), and M(3, 1̃) 7→ M(4, 1̃1).

Let’s look at M(3, 2̃) 7→ M(4, 2̃2). Recall that M(3, 2̃) is the sequences
of M3 that do not end in either 2 or 0, meaning the sequence can end in
1 or 3. Also recall that M(4, 2̃2) is the sequences of M4 that end in (not
2, 2), so it can end with either (0, 2) or (1, 2). The bĳection requires two
distinct submappings. We can see all the mappings of M(3, 2̃) 7→ M(4, 2̃2)

in Figure 3.10.
The first mapping handles the sequences of M(3, 2̃) that end in 1. We

use the mapping
(m1,m2, 1) 7→ (m1,m2, 1, 2).

An example of this can be seen with the mapping (0, 0, 1) 7→ (0, 0, 1, 2).
The second mapping handles the sequences of M(3, 2̃) that end in 3.

We use the mapping

(m1,m2, 3) 7→ (m1,m2, 0, 2).

An example is (1, 2, 3) 7→ (1, 2, 0, 2). These map to the sequences ofM(4, 2̃2)

that end in (0, 2). Recall that it will never be the case that a sequence of
M(4, 2̃2) ends in (3, 2), because that does not follow the definition of Mn:
we are only allowed to decrease to 0. Therefore all remaining sequences get
mapped to one another.



Row Correspondence Between Mn and Mn+1 39

Finally, we exhibit our mapping M(3, 1̃) 7→ M(4, 1̃1), which follows a
similar pattern. In this case, M(3, 1̃) is the sequences of M3 that end in
3 and M(4, 1̃1) are the sequences of M4 that end in (not 1,1). We use the
mapping

(m1,m2, 3) 7→ (m1,m2, 0, 1),

which is similar to a mapping from the previous bĳection.

M(3, 2̃) 7→ M(4, 2̃2)

(0, 0, 1) 7→ (0, 0, 1, 2) (1, 0, 1) 7→ (1, 0, 1, 2)

(0, 0, 3) 7→ (0, 0, 0, 2) (1, 0, 3) 7→ (1, 0, 0, 2)

(0, 1, 1) 7→ (0, 1, 1, 2) (1, 1, 1) 7→ (1, 1, 1, 2)

(0, 1, 3) 7→ (0, 1, 0, 2) (1, 1, 3) 7→ (1, 1, 0, 2)

(0, 2, 3) 7→ (0, 2, 0, 2) (1, 2, 3) 7→ (1, 2, 0, 2)

a.M(3, 2̃) 7→ M(4, 2̃2)

M(3, 1̃) 7→ M(4, 1̃1)

(0, 0, 3) 7→ (0, 0, 0, 1)

(0, 1, 3) 7→ (0, 1, 0, 1)

(0, 2, 3) 7→ (0, 2, 0, 1)

(1, 0, 3) 7→ (1, 0, 0, 1)

(1, 1, 3) 7→ (1, 1, 0, 1)

(1, 2, 3) 7→ (1, 2, 0, 1)

b.M(3, 1̃) 7→ M(4, 1̃1)

Figure 3.10 Explicitly showing how M(3, 2̃) 7→ M(4, 2̃2), and M(3, 1̃) 7→
M(4, 1̃1).

This pattern can be generalized to a bĳection between M(n, k̃) and
M(n+ 1, k̃k) where k ∈ [n− 1].

Theorem 3.5. There exists a bĳection between M(n, k̃) and M(n+1, k̃k) where
k ∈ [n− 1].

Proof. We define a mapping f : M(n, k̃) → M(n+ 1, k̃k)

f : (m1,m2, . . . ,mn−1, n) 7→ (m1,m2, . . . ,mn−1, 0, k) ∈ M(n+ 1, k̃k)

and

f : (m1,m2, . . . ,mn) 7→ (m1,m2, . . . ,mn, k) ∈ M(n+ 1, k̃k)

when mn ∈ [k − 1]. This mapping is well-defined because the nth entry of
the image is in [k − 1].

This mapping is invertible. The inverse mapping is g : M(n+ 1, k̃k) →
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M(n, k̃) where

g : (b1, b2, . . . , bn−1, 0, k) 7→ (b1, b2, . . . , bn−1, n) ∈ M(n, k̃)

and
g : (b1, b2, . . . , bn, k) 7→ (b1, b2, . . . , bn) ∈ M(n, k̃)

when bn ∈ [k − 1].

We see that g ◦ f is the identity mapping on M(n, k̃) and that f ◦ g is the
identity mapping on M(n+ 1, k̃k).

This last proof shows that there is a correspondence between the ele-
ments of Mn and Mn+1. Meaning that we can see Mn in the triangular
recurrence of Mn+1.



Chapter 4

Poset

In this section, we study the poset structure of Mn.
Recall that a poset is a set X on which a partial order, ⪯, is denoted by

(X , ⪯). We define our poset (Mn ⪯) in the natural way. We have

(a1, a2, . . . , an) ⪯ (b1, b2, . . . , bn) ⇐⇒ ai ≤ bi for 1 ≤ n.

Clearly, (0, 0, . . . , 0) is the unique minimum element of our poset, and
(1, 2, . . . , n) is the unique maximum element of our poset.

Figure 4.1 Hasse diagram illustrating the poset structure of M3.



42 Poset

Figure 4.1 shows the Hasse diagram of M3 and Figure 4.2 shows the
Hasse diagram of M4. We will determine the maximum and minimum
length for a maximal chain of the poset Mn.

Definition 4.1. A collection C of elements of poset X is a chain provided
that elements in C are pairwise comparable. That is, for all x1, x2 ∈ C,
either x1 ⪰ x2 or x2 ⪰ x1. A maximal chain is a chain C such that no superset
of C is also a chain.

Figure 4.2 Hasse diagram illustrating the poset structure of M4.

4.1 Maximum Length for a Maximal Chain

We will show that the maximum length for a maximal chain of Mn is
1 +

(
n+1
2

)
. That is to say that the longest path to create a maximal chain
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in the poset structure of Mn contains 1 +
(
n+1
2

)
elements of Mn. Figure

4.3 shows the maximum size of subsets to create a maximal chain of M1

through M5.

Mn M1 M2 M3 M4 M5

Maximum length

for a maximal chain: 1 +
(
n+1
2

) 2 4 7 11 16

Figure 4.3 Table illustrating the size of the maximum length for a maximal
chain for M1 through M5.

Figure 4.4 shows the Hasse diagram of M3. The green highlighted path
is an example of the maximum length for a maximal chain of M3. The
maximal chain in this example is:

(0, 0, 0) ≺ (1, 0, 0) ≺ (1, 0, 1) ≺ (1, 0, 2) ≺ (1, 0, 3) ≺ (1, 1, 3) ≺ (1, 2, 3)

We can now prove that this statement is true.

Lemma 4.2. The maximum length for a maximal chain of Mn is 1 +
(
n+1
2

)
.

Proof. We must find the longest path from the minimum element (0, 0, . . . , 0)
to the maximum element (1, 2, 3, . . . , n).

Here is our proposed maximal chain. The chain will always begin with
the minimum sequence (0, 0, . . . , 0). From here, we increment the entry mn

a total of n times,

(0, . . . , 0, 0) −→ (0, . . . , 0, 1) −→ (0, . . . , 0, 2) −→ · · · −→ (0, . . . , 0, n).

Then we move on to mn−1. We can increment entry mn−1 a total of n − 1

times. This pattern continues: we can increment mk a total of k times for
1 ≤ k ≤ n. Finally, after increasing m1, we will be at the maximal element
at (1, 2, 3, 4, . . . , n). The total number of steps is

1 + 2 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
.

Therefore the length of the chain is 1 +
(
n+1
2

)
. Finally, we observe that this

is certainly the longest possible chain. Entry mk can be changed a total of k
times, and we have found a valid chain of this length.
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Figure 4.4 Hasse diagram illustrating the poset structure of M3 where the
green, highlighted, path is an example of the maximum length for a maximal
chain.

4.2 Minimum Length for a Maximal Chain

Next we can show that the minimum length for a maximal chain of Mn is
2n. That is to say that the shortest path to create a maximal chain in the
poset structure of Mn contains 2n elements.

Figure 4.5 shows the minimum size of subsets to create a maximal chain
of M1 through M5. Here we can see that the minimum length is 2n.

Mn M1 M2 M3 M4 M5

Minimum length

for a maximal chain: 2n
2 4 6 8 10

Figure 4.5 Table illustrating the size of the minimum length for a maximal
chain for M1 through M5.

Figure 4.6 shows the Hasse diagram of M3. The purple highlighted
path is an example of the minimum length for a maximal chain of M3. The



Minimum Length for a Maximal Chain 45

maximal chain is

(0, 0, 0) ≺ (1, 0, 0) ≺ (1, 1, 0) ≺ (1, 2, 0) ≺ (1, 2, 2) ≺ (1, 2, 3).

Figure 4.6 Hasse diagram illustrating the poset structure of M3 where the
purple, highlighted, path is an example of the minimum length for a maximal
chain.

We can now prove that this statement is true.
Lemma 4.3. The minimum length for a maximal chain of Mn is 2n.

Proof. We must find the shortest path from (0, 0, . . . , 0) to (1, 2, . . . , n). Here
is our proposed chain of minimum length.

First, change m1 from 0 to 1. Then, change m2 from 0 to 1, and then
from 1 to 2. This is where we start moving more quickly. Change m3 from
0 to 2 (because we can only decrease to 0), and then from 2 to 3. More
generally, for 2 ≤ k ≤ n, change mk to k − 1 and then to k. This takes a
total of 1 + 2(n− 1) = 2n− 1 steps, so there are 2n− 1 + 1 elements in this
maximal chain.

We now show that every maximal chain contains at least 2n elements.
For k = 1, we change m1 from 0 to 1. This requires 1 step. Suppose that
we are updating the kth entry as we step through our chain. There are two
cases we must consider.
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Case 1: mk < k− 1. Then we update mk to be max{mk−1,mk +1} ≤ k− 1. So
we must increment this entry at least once more.

Case 2: mk−1 = k − 1. We update the kth entry to be its maximum value k

The two cases show that for 2 ≤ k ≤ n, there are at least 2 steps that need to
be performed to make mk = k. Since this is the case for k > 1, we require
at least 2n − 2 steps to achieve mk = k for 1 < k ≤ n. The total number of
steps is at least 1 + (2n − 2) = 2n − 1, and the number of elements in the
chain is at least 2n.

4.2.1 Counting Maximal Chains of Minimum Length

Finally, we can also show that the number of maximal chains of minimum
length of Mn is 2n− 1. This means that there are 2n− 1 maximal chains of
minimum length in Mn.

Figure 4.7 shows the number of maximal chains of minimum length of
M1 through M5. Here we can see that the minimum length is 2n− 1.

Mn M1 M2 M3 M4 M5

Number of maximal chains

of minimum length: 2n− 1
1 3 5 7 9

Figure 4.7 Table illustrating the size of the number of maximum chains of
minimum length for M1 through M5.

We can prove that this statement is true.

Lemma 4.4. There are 2n− 1 maximal chains of minimum length of Mn.

Proof. From the previous lemma, we know that for 2 ≤ k ≤ n we must
change entry mk exactly twice in order to have a minimum length chain.

For 3 ≤ k ≤ n, we can only change mk when mk−1 = k−1. Here is why:

• The first step is to change mk = 0 to mk = k − 1, which can be done
because mk−1 = k − 1.

• The second step is to change mk = k − 1 to mk = k.

Therefore for 3 ≤ k ≤ n, we cannot change mk before we have mk−1 =

k − 1. So the order of these changes is determined: we must increase m2 to
2, and then increase m3 to 3, and so on.
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It always takes 2 steps to increase m2 to 2. As noted above, this must
happen before we increase m3. In summary, these 2(n−1) steps must occur
in order.

Additionally, we still have the case where m1 = 0, which needs to be
changed to m1 = 1. Since this requires only one step and no prerequisites
from any mk, we can change m1 at any given time. There are 1+ 2(n− 1) =

2n− 1 different times that this can happen: it can be the first thing you do,
or it can happen after any of the 2(n− 1) other steps.

Therefore, we can conclude that there are 2n − 1 maximum chains of
minimum length of Mn.





Chapter 5

Adding Restrictions

In this chapter, we explore some subfamilies of Mn by adding additional
restrictions on the sequences.

5.1 Staircase Packings With Maximum Entry at most 2

The first subfamily we consider are sequences of Mn whose entries are at
most 2.

Definition 5.1. We use

Tn = {(t1, t2, . . . , tn) ∈ Mn : 0 ≤ ti ≤ 2}

to denote the staircase packings whose maximum entry at most 2. We then
define Tn = |Tn|.

The subfamilies T1, T2, and T3 are shown in Figure 5.1. We have T1 = 2,
T2 = 6 and T3 = 16.
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n Tn

1 (0) (1)

2 (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

3
(0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 2, 0) (0, 2, 2)

(1, 0, 0) (1, 0, 1) (1, 0, 2) (1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 2, 0) (1, 2, 2)

Figure 5.1 The staircase packings T1, T2 and T3.

Lemma 5.2. For n ≥ 3, we have

Tn = 3Tn−1 − Tn−2.

Proof. We partition
Tn = Tn,0 ∪ Tn,1 ∪ Tn,2,

where Tn,k is the set of sequences that end in k. We have Tn,0 = Tn−1

because we can append a zero to any sequence in Tn−1, and this mapping
is a bĳection. Similarly, Tn,2 = Tn−1 because we can always append a 2 to
any sequence in Tn−1.

We claim that Tn,1 = Tn−1 − Tn−2. Given a sequence t = (t1, . . . , tn) ∈
Tn,1, we have tn = 1 and therefore we cannot have tn−1 = 2. In other words,

Tn,1 = Tn−1 − Tn−1,2.

As observed in the previous case, we have Tn−1,2 = Tn−2. Therefore

Tn,1 = Tn−1 − Tn−2.

Finally, we have

Tn = Tn,0 + Tn,1 + Tn,2

= Tn−1 + (Tn−1 − Tn−2) + Tn−1

= 3Tn−1 − Tn−2.
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5.2 Subsets Ending In k

Next place restrictions on the final entry of the staircase packing

Definition 5.3. Let

E(n, k) = {(m1,m2, . . . ,mn) ∈ Mn : mn = k}

be the staircase packings of size n whose final entry is k. We use E(n, k) =

|E(n, k)| to denote the size of the corresponding set.

Figure 5.2 shows the families E(n, k) for 0 < k < n ≤ 3.

n k E(n, k)

1 0 (0)

1 1 (1)

2 0 (0, 0) (1, 0)

2 1 (0, 1) (1, 1)

2 2 (0, 2) (1, 2)

3 0 (0, 0, 0) (0, 1, 0) (0, 2, 0) (1, 0, 0) (1, 1, 0) (1, 2, 0)

3 1 (0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 1, 1)

3 2 (0, 0, 2) (0, 1, 2) (0, 2, 2) (1, 0, 2) (1, 1, 2) (1, 2, 2)

3 3 (0, 0, 3) (0, 1, 3) (0, 2, 3) (1, 0, 3) (1, 1, 3) (1, 2, 3)

Figure 5.2 Staircase packings in E(n, k) for 0 ≤ k < n ≤ 3.

The E(n, k) obey a triangular recurrence. Figure 5.3 shows the structure
of this triangle for the sets E(n, k). Figure 5.4 shows this triangular recur-
rence for the actual sizesE(n, k) for 0 ≤ k < n ≤ 5. Note that E(n, n+1) = ∅
(and therefore E(n, n+ 1) = 0), so these entries are not shown in these fig-
ures.
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E(0, 0)

E(1, 0) E(1, 1)

E(2, 0) E(2, 1) E(2, 2)

E(3, 0) E(3, 1) E(3, 2) E(3, 3)

E(4, 0) E(4, 1) E(4, 2) E(4, 3) E(4, 4)

E(5, 0) E(5, 1) E(5, 2) E(5, 3) E(5, 4) E(5, 5)

...

E(n, 0) E(n, 1) E(n, 2) E(n, 3) E(n, 4) E(n, 5) . . . E(n, n)

Figure 5.3 The triangular recurrence of E(n, k).
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1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

92 32 48 70 92 92

Figure 5.4 The triangular recurrence of E(n, k) for 0 ≤ n ≤ 5.

With these figures in mind, we will give the triangular recurrence for
the sizes E(n, k) and investigate further properties of the families E(n, k).

5.3 The Triangular Recurrence for E(n, k)

We will show that

E(n, k) = E(n− 1, k) + E(n, k − 1)

for 1 ≤ k ≤ n− 1.
We start by considering an example. We will show that E(3, 2) =

E(2, 2) + E(3, 1). Recall that E(3, 2) are the sequences of M3 that end
in 2, E(2, 2) are the sequences of M2 that end in 2 and E(3, 1) are the se-
quences of M3 that end in 1. Figure 5.5 highlights the triangular recurrence
E(3, 2) = E(2, 2) + E(3, 1).
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1

1 1

2 2 2

6 4 6 6

Figure 5.5 Triangular recurrence showing that E(3, 2) = E(2, 2) +E(3, 1).

We define an injection f from E(2, 2) into E(3, 2) by mapping (m1, 2) 7→
(m1, 2, 2). We define an injection g from E(3, 1) into E(3, 2) by mapping
(m1,m2, 1) 7→ (m1,m2, 2). Next we observe that the images of these map-
pings are disjoint: the image of f consists of sequences that end with (2, 2),
while the image of g consists of sequences that end with either (0, 2) or
(1, 2).

Figure 5.6 shows the injection f : E(2, 2) → E(3, 2) and the injection
g : E(3, 1) → E(3, 2). Observe that every sequence in E(3, 2) is mapped to
exactly once, and this proves that E(3, 2) = E(2, 2) + E(3, 1).

f : E(2, 2) 7→ E(3, 2)
(0, 2) 7→ (0, 2, 2) (1, 2) 7→ (1, 2, 2)

g : E(3, 1) 7→ E(3, 2)
(0, 0, 1) 7→ (0, 0, 2) (1, 0, 1) 7→ (1, 0, 2)

(0, 1, 1) 7→ (0, 1, 2) (1, 1, 1) 7→ (1, 1, 2)

Figure 5.6 The injection from E(2, 2) into E(3, 2) and the injection from
E(3, 1) into E(3, 2). Taken together, we have a bijection from E(2, 2) ∪ E(3, 1)
to E(3, 2).

We now prove that this triangular recurrence holds in general.

Lemma 5.4. For 1 ≤ k ≤ n−1, there is a bĳection from E(n−1, k)∪E(n, k−1)

to E(n, k). Therefore

E(n, k) = E(n− 1, k) + E(n, k − 1)
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Proof. Let f : E(n− 1, k) → E(3, 2) be the injection given by the mapping

f : (m1, . . . , ,mn−2, k) 7→ (m1, . . . , ,mn−2, k, k).

Let g : E(n, k − 1) into E(n, k − 1) be the injection given by the mapping

f : (m1, . . . , ,mn−1, k − 1) 7→ (m1, . . . ,mn−1, k).

We claim that the images of these mappings are disjoint. Indeed, the image
of f consists of sequences that end with (k, k), while the image of g consists
of sequences that end with (j, k) where 0 ≤ j ≤ k − 1.

Finally, it is clear that every sequence of E(n, k) is mapped to by either
f or g. Taken together,this composite mapping is a bĳection from E(n −
1, k) ∪ E(n, k − 1) to E(n, k). Therefore

E(n, k) = E(n− 1, k) + E(n, k − 1).

5.4 The First Entry is the Sum of the Previous Row

In this section, we prove that

E(n, 0) =
n−1∑
i=0

E(n− 1, i).

We start by proving that this is true for

E(3, 0) = E(2, 0) + E(2, 1) + E(2, 2).

Figure 5.7 highlights this recurrence: the first entry in row 3 is equal to the
sum of the entries in row 2.
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1

1 1

2 2 2

6 4 6 6

Figure 5.7 Triangular recurrence showing that E(3, 0) = E(2, 0)+ E(2, 1)+
E(2, 2).

The bĳection from E(2, 0) ∪ E(2, 1) ∪ E(2, 2) to E(3, 0) is very simple:
append a 0 to the sequence of length 2.

E(2, 0) 7→ E(3, 0)
(0, 0) 7→ (0, 0, 0) (1, 0) 7→ (1, 0, 0)

E(2, 1) 7→ E(3, 0)
(0, 1) 7→ (0, 1, 0) (1, 1) 7→ (1, 1, 0)

E(2, 2) 7→ E(3, 0)
(0, 2) 7→ (0, 2, 0) (1, 2) 7→ (1, 2, 0)

Figure 5.8 Injections showing that E(3, 0) = E(2, 0) + E(2, 1) + E(2, 2).

We prove the general case.
Lemma 5.5. We have

E(n, 0) =
n−1∑
i=0

E(n− 1, i).

Proof. First, we observe that

Mn−1 = E(n− 1, 0) ∪ E(n− 1, 1) ∪ · · · ∪ E(n− 1, n− 1).

Indeed, we are simply partitioning the set Mn−1 according to the value of
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the final entry of each sequence.
Next, it is clear that the mapping f : Mn−1 → E(n, 0) given by

f : (m1, . . . ,mn−1) 7→ (m1, . . . ,mn−1, 0)

is a bĳection from Mn−1 to E(n, 0).

5.5 Partial Row Sum Recurrence

Next, we prove that

E(n, k) =

k∑
i=0

E(n− 1, i).

The sum of the first k terms of row n− 1 gives us the kth term of row n. We
start with an instructive example: E(3, 1) = E(2, 0) + E(2, 1). Figure 5.10
highlights this recurrence in our triangle.

1

1 1

2 2 2

6 4 6 6

Figure 5.9 Triangular recurrence showing that E(3, 1) = E(2, 0) + E(2, 1).

The injection from E(2, 0)∪E(2, 1) to E(3, 1) is very intuitive: we simply
append a 1 to the given sequence. . Figure 5.10 shows how the mapping
creates all the subsets of E(3, 1).
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E(2, 0) 7→ E(3, 1)
(0, 0) 7→ (0, 0, 1) (1, 0) 7→ (1, 0, 1)

E(2, 1) 7→ E(3, 1)
(0, 1) 7→ (0, 1, 1) (1, 1) 7→ (1, 1, 1)

Figure 5.10 Bijections showing that E(3, 1) = E(2, 0) + E(2, 1).

We now prove the general case.

Lemma 5.6. We have

E(n, k) =

k∑
i=0

E(n− 1, i).

Proof. We define the mapping

f : E(n− 1, 0) ∪ E(n− 1, 1) ∪ · · · ∪ E(n− 1, k) → E(n, k)

by
f : (m1,m2, . . . ,mk) = (m1,m2, . . . ,mk, k).

The mapping is well-defined because 0 ≤ mk ≤ k. It is also clear that the
mapping is a bĳection.

5.6 Partial Column Sum Recurrence

Next we prove that

E(n, k) =
n∑

i=k

E(i, k − 1).

As always, we start with an example. This time, we show that E(3, 2) =

E(2, 1) + E(3, 1). Figure 5.11 highlights this recurrence in the triangle.
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1

1 1

2 2 2

6 4 6 6

Figure 5.11 Triangular recurrence showing that E(3, 2) = E(2, 1) + E(3, 1).

For each sequence in E(2, 1), we replace the last 1 with (2, 2), For each
sequence in E(3, 1), we change the last 1 to a 2. Figure 5.12 shows that taken
together, these injective mappings give a bĳection to E(3, 2).

E(2, 1) 7→ E(3, 2)
(0, 1) 7→ (0, 2, 2) (1, 1) 7→ (1, 2, 2)

E(3, 1) 7→ E(3, 2)
(0, 0, 1) 7→ (0, 0, 2) (1, 0, 1) 7→ (1, 0, 2)

(0, 1, 1) 7→ (0, 1, 2) (1, 1, 1) 7→ (1, 1, 2)

Figure 5.12 Bijections showing how E(3, 2) = E(2, 1) + E(3, 1).

We now prove the general case.

Lemma 5.7. We have E(n, k) =
∑n

i=k E(i, k − 1).

Proof. We define a series of injective mappings

fi : E(i, k − 1) → E(n, k)

for k ≤ i ≤ n. These mappings are

fi : (m1, . . . ,mi−1, k − 1) 7→ (m1, . . . ,mi−1, k, k, . . . , k︸ ︷︷ ︸
n−i+1 times

).

The resulting sequence is a valid sequence in E(n, k), and it ends in exactly
n− i+ 1 entries equal to k. This is because mi ≤ k − 1.
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The images of these injective mappings are disjoint. Furthermore, every
element of E(n, k) is mapped to exactly once: its preimage is determined by
the length of the ultimate sequence of k’s.

5.7 Entrywise Bĳection Between the Triangles

There is a lovely correspondence between the sets M(n− 1, k̃kr) and (most
of) the sets E(n, j). Figure 5.13 summarizes this mapping for the sets
M(3, k̃kr) and the sets E(4, j).

1

1 2

2 4 6

6 10 16 22

7−→

1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

111

1̃11 22

1̃1 2̃2 0

1̃ 2̃ 0̃ M3

7−→

E(0, 0)

E(1, 0) E(1, 1)

E(2, 0) E(2, 1) E(2, 2)

E(3, 0) E(3, 1) E(3, 2) E(3, 3)

E(4, 0) E(4, 1) E(4, 2) E(4, 3) E(4, 4)

Figure 5.13 The set-by-set bijections between the sets M(3, k̃kr) and the
sets E(4, j).

We prove each of the results shown.
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5.7.1 Bĳection between Mn and E(n+ 1, n)

We prove that Mn = E(n+1, n). Let’s start with an example: M3 = E(4, 3).
Figure 5.14 highlights what this looks like in the respective triangles.

1

1 2

2 4 6

6 10 16 22

7−→

1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

Figure 5.14 Triangular recurrence highlighting the bijection between M3

and E(4, 3).

Recall that that E(4, 3) is the set of staircase packings (m1,m2,m3, 3) of
size 4 that end with 3, and that M3 is equal to all the staircase packings
(m1,m2,m3) of size 3. The bĳection from E(4, 3) to M3 is

(m1,m2,m3) 7→ (m1,m2,m3, 3).

Figure 5.15 explicitly shows this mapping.
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E(4, 3) 7→ M3

(0, 0, 0, 3) 7→ (0, 0, 0) (0, 0, 1, 3) 7→ (0, 0, 1)
(0, 0, 2, 3) 7→ (0, 0, 2) (0, 0, 3, 3) 7→ (0, 0, 3)
(0, 1, 0, 3) 7→ (0, 1, 0) (0, 1, 1, 3) 7→ (0, 1, 1)
(0, 1, 2, 3) 7→ (0, 1, 2) (0, 1, 3, 3) 7→ (0, 1, 3)
(0, 2, 0, 3) 7→ (0, 2, 0) (0, 2, 2, 3) 7→ (0, 2, 2)
(0, 2, 3, 3) 7→ (0, 2, 3) (1, 0, 0, 3) 7→ (1, 0, 0)
(1, 0, 1, 3) 7→ (1, 0, 1) (1, 0, 2, 3) 7→ (1, 0, 2)
(1, 0, 3, 3) 7→ (1, 0, 3) (1, 1, 0, 3) 7→ (1, 1, 0)
(1, 1, 1, 3) 7→ (1, 1, 1) (1, 1, 2, 3) 7→ (1, 1, 2)
(1, 1, 3, 3) 7→ (1, 1, 3) (1, 2, 0, 3) 7→ (1, 2, 0)
(1, 2, 2, 3) 7→ (1, 2, 2) (1, 2, 3, 3) 7→ (1, 2, 3)

Figure 5.15 Bijection from E(4, 3) to M3

We prove the general case.

Lemma 5.8. There is a bĳection from E(n+1, n) to Mn. Therefore E(n+1, n) =

Mn.

Proof. Recall thatE(n+1, n) is the set of staircase packings (m1,m2, . . . ,mn, n)

of sizen+1 that end withn, and thatMn is equal to all the staircase packings
(m1,m2, . . . ,mn) of size n. The bĳection from E(n+ 1, n) to Mn is

(m1,m2, . . . ,mn, n) 7→ (m1,m2, . . . ,mn).

5.7.2 The Penultimate Columns

Next, we give a bĳection between M0
n = M(n, 0̃) ∪ M(n, 0) and E(n, n −

1) ∪ E(n+ 1, n− 1). Therefore

M(n, 0) = E(n, n− 1) + E(n+ 1, n− 1) = E(n+ 1, n)

by Lemma 5.4.
We start with an example. Figure 5.14 highlights the sets M(3, 0̃),

M(3, 0) and E(3, 2), E(4, 2).
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1

1 2

2 4 6

6 10 16 22

7−→

1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

Figure 5.16 Triangular recurrence showing the bijections between
M0

3, E(3, 2) and E(4, 2).

We describe a bĳection f : E(3, 2) → M(3, 0) and a bĳection g : E(4, 2) →
M(3, 0̃). The bĳection from E(3, 2) to M(3, 0) changes the last entry from a
2 to a 0:

(m1,m2, 2) → (m1,m2, 0).

The bĳection from E(4, 2) to M(3, 0̃) has two cases. If the sequence in
E(4, 2) ends in (0, 2) then we replace these two entries with the single entry
3. Otherwise, we just remove the final 2 of the sequence. In other words

f : (m1,m2, 0, 2) → (m1,m2, 3),

g : (m1,m2,m3, 2) → (m1,m2,m3) when m3 ̸= 0.

Figure 5.17 shows the bĳection f : E(3, 2) → M(3, 0) and the bĳection
g : E(4, 2) → M(3, 0̃).
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f : E(3, 2) 7→ M(3, 0)
(0, 0, 2) 7→ (0, 0, 0) (1, 0, 2) 7→ (1, 0, 0)
(0, 1, 2) 7→ (0, 1, 0) (1, 1, 2) 7→ (1, 1, 0)
(0, 2, 2) 7→ (0, 2, 0) (1, 2, 2) 7→ (1, 2, 0))

g : E(4, 2) 7→ M(3, 0̃)
(0, 0, 1, 2) 7→ (0, 0, 1) (1, 0, 1, 2) 7→ (1, 0, 1)
(0, 0, 2, 2) 7→ (0, 0, 2) ((1, 0, 2, 2) 7→ (1, 0, 2)
(0, 0, 0, 2) 7→ (0, 0, 3) (1, 0, 0, 2) 7→ (1, 0, 3)
(0, 1, 1, 2) 7→ (0, 1, 1) (1, 1, 1, 2) 7→ (1, 1, 1)
(0, 1, 2, 2) 7→ (0, 1, 2) (1, 1, 2, 2) 7→ (1, 1, 2)
(0, 1, 0, 2) 7→ (0, 1, 3) (1, 1, 0, 2) 7→ (1, 1, 3)
(0, 2, 2, 2) 7→ (0, 2, 2) (1, 2, 2, 2) 7→ (1, 2, 2)
(0, 2, 0, 2) 7→ (0, 2, 3) (1, 2, 0, 2) 7→ (1, 2, 3)

Figure 5.17 The bijections showing how f : E(3, 2) → M(3, 0) and g :
E(4, 2) → M(3, 0̃).

We prove the general case.

Lemma 5.9. There are bĳections f : E(n, n−1) → M(n, 0) and g : E(n+1, n−
1) → M(n, 0̃). Therefore

M(n, 0) = E(n, n− 1) and M(n, 0̃) = E(n+ 1, n− 1).

Proof. We describe a bĳection f : E(n, n − 1) → M(n, 0) and a bĳection
g : E(n+ 2, n− 1) → M(n, 0̃).

The bĳection from E(n, n − 1) to M(n, 0) changes the last entry from
n− 1 to a 0:

(m1, . . . ,mn−1, n− 1) → (m1, . . . ,mn−1, 0).

This mapping is clearly a bĳection.
The bĳection from E(n + 1, n − 1) to M(n, 0̃) has two cases. If the

sequence in E(n + 1, n − 1) ends in (0, n − 1) then we replace these two
entries with the single entry n. Otherwise, we just remove the final n− 1 of
the sequence. In other words

f : (m1, . . .mn−1, 0, n− 1) → (m1, . . . ,mn−1, n),

g : (m1, . . . ,mn, n− 1) → (m1, , . . . ,mn) when mn ̸= 0.
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It is straight forward to check that this mapping is a bĳection.

5.7.3 The First Columns

Next we describe bĳections fn,k : E(k, 0) → M(n, 1̃ 11 · · · 1︸ ︷︷ ︸
n−k

) which maps

between the first columns of the triangles.

1

1 2

2 4 6

6 10 16 22

7−→

1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

Figure 5.18 The bijection between M1
3 and E(0, 0), E(1, 0), E(2, 0), and

E(3, 0).

We describe bĳections:

• f3,3 : E(3, 0) → M(3, 1̃),

• f2,3 : E(2, 0) → M(3, 1̃1),

• f1,3 : E(1, 0) → M(3, 1̃11),

• f0,3 : E(0, 0) → M(3, 111).

Our mappings are

f3,3 : (m1,m2, 0) 7→ (m1,m2, 3)

f2,3 : (m1, 0) 7→ (m1, 0, 1)

f1,3 : (0) 7→ (0, 1, 1)

f0,3 : ∅ 7→ (1, 1, 1).

We remind the reader that M(3, 1̃) is the set of all sequences that end in 3.
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Figure 5.19 shows these bĳections.

f0,3 : E(0, 0) 7→ M(3, 111)
∅ 7→ (1, 1, 1)

f1,3 : E(1, 0) 7→ M(3, 1̃11)
(0) 7→ (0, 1, 1)

f2,3 : E(2, 0) 7→ M(3, 1̃1)
(0, 0) 7→ (0, 0, 1) (1, 0) 7→ (1, 0, 1)

f3,3 : E(3, 0) 7→ M(3, 1̃)
(0, 0, 0) 7→ (0, 0, 3) (1, 0, 0) 7→ (1, 0, 3)
(0, 1, 0) 7→ (0, 1, 3) (1, 1, 0) 7→ (1, 1, 3)
(0, 2, 0) 7→ (0, 2, 3) (1, 2, 0) 7→ (1, 2, 3)

Figure 5.19 Bijections showing the mappings between the first columns of
our two triangles.

We now prove the general result.

Lemma 5.10. For 0 ≤ k ≤ n, let fk,n : E(k, i− 1) → M(n, 1̃ 11 · · · 1︸ ︷︷ ︸
n−k

) where

f0,n : ∅ → (1, 1, · · · , 1)

and
f1,n : (0) → (0, 1, · · · , 1)

and for 2 ≤ k ≤ n− 1

fk,n : (m1, . . . ,mk−1, 0) → (m1, . . . ,mk−1, 0, 1, · · · , 1︸ ︷︷ ︸
n−k

)

and
fn,n : (m1, . . . ,mn−1, 0) → (m1, . . . ,mn−1, 3).

Then each of these mappings is a bĳection.

Proof. It is clear that each of these mappings is a bĳection. We just remind
the reader of two definitions. First, the sequences in M(n, 1̃) must end in
n. Second, sequences in M(n, 1̃ 11 · · · 1︸ ︷︷ ︸

r

) must end in (0, 1, 1, · · · , 1︸ ︷︷ ︸
r

).
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5.7.4 Mapping the kth Columns

We now consider the general case. We describe bĳections

fk,n : E(k, ℓ− 1) → M(n, ℓ̃ ℓℓ · · · ℓ︸ ︷︷ ︸
n+1−k

)

which maps between the kth columns of the triangles.
As always, we start with an example. We describe bĳections:

• f4,3 : E(4, 1) → M(3, 2̃),

• f3,3 : E(3, 1) → M(3, 2̃2),

• f2,3 : E(2, 1) → M(3, 2̃22).

Figure 5.20 highlights these mapping in our triangles.

1

1 2

2 4 6

6 10 16 22

7−→

1

1 1

2 2 2

6 4 6 6

22 10 16 22 22

Figure 5.20 The bijection between M2
3 and E(2, 1), E(3, 1), and E(4, 1).

Our mappings are

f4,3 :

{
(m1,m2, 0, 1) 7→ (m1,m2, 3)

(m1,m2,m3, 1) 7→ (m1,m2,m3) for m3 ̸= 0

f3,3 : (m1,m2, 1) 7→ (m1,m2, 2)

f2,3 : (m1, 1) 7→ (m1, 2, 2)
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We remind the reader that M(3, 2̃) is the set of all sequences that end in 1
or 3. Figure 5.21 shows these bĳections.

f2,3 : E(2, 1) 7→ M(3, 22)
(0, 1) 7→ (0, 2, 2) (1, 1) 7→ (1, 2, 2)

f3,3 : E(3, 1) 7→ M(3, 2̃2)
(0, 0, 1) 7→ (0, 0, 2) (1, 0, 1) 7→ (1, 0, 2)
(0, 1, 1) 7→ (0, 1, 2) (1, 1, 1) 7→ (1, 1, 2)

f4,3 : E(4, 1) 7→ M(3, 2̃)
(0, 0, 1, 1) 7→ (0, 0, 1) (1, 0, 1, 1) 7→ (1, 0, 1)
(0, 0, 0, 1) 7→ (0, 0, 3) (1, 0, 0, 1) 7→ (1, 0, 3)
(0, 1, 1, 1) 7→ (0, 1, 1) (1, 1, 1, 1) 7→ (1, 1, 1)
(0, 1, 0, 1) 7→ (0, 1, 3) (1, 1, 0, 1) 7→ (1, 1, 3)
(0, 2, 0, 1) 7→ (0, 2, 3) (1, 2, 0, 1) 7→ (1, 2, 3)

Figure 5.21 Bijections showing how M2
3 = E(2, 1) + E(3, 1) + E(4, 1).

We now prove the general case.

Lemma 5.11. For ℓ ≤ k ≤ n+ 1, let fk,n : E(k, ℓ− 1) → M(n, ℓ̃ ℓℓ · · · ℓ︸ ︷︷ ︸
n+1−k

) where

fn+1,n :

{
(m1, . . . ,mn−1, 0, 1) 7→ (m1, . . . ,mn−1, n)

(m1, . . . ,mn−1,mn, 1) 7→ (m1, . . . ,mn−1,mn) for 0 < m3 < ℓ

fk,n : (m1, . . .mk−1, ℓ− 1) 7→ (m1, . . .mk−1, ℓ, ℓ, . . . , ℓ︸ ︷︷ ︸
n+1−k

) for ℓ ≤ k ≤ n

Then each of these mappings is a bĳection.

Proof. It is clear that each of these mappings is a bĳection. We just remind
the reader of two definitions. First, the sequences in M(n, ℓ̃) is the set of all
sequences that end in n or in 1 ≤ k < ℓ. Second, sequences inM(n, ℓ̃ ℓℓ · · · ℓ︸ ︷︷ ︸

r

)

must end in (j, ℓ, ℓ, · · · , ℓ︸ ︷︷ ︸
r

) where 0 ≤ j ≤ ℓ− 1.
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Conclusion

This paper explored the family of stacked integer partitionsMn. We started
by introducing terms used throughout the paper as well as describing pre-
vious works that have informed the work in this paper.

Next, we introduced the Bell-Like numbers, and made our claim that
Mn is enumerated by the Bell-Like numbers, and also stated that Mn is
the interpretation for the triangular recurrence created by the Bell-Like
numbers. Therefore, we were able to show that Mn is the combinatorial
family counted by this sequence.

We then gave some background about Bell Numbers and how they relate
to Bell-Like numbers. We further explored our Bell-Like numbers and the
triangular recurrence used to generate the sequence. As well as giving
the Mn interpretation some notation to easily talk about it throughout the
paper.

From Chapters 3, 4, and 5 contained various proofs relating to Mn and
its subfamilies. In Chapter 3 we focused on the bĳections formed within
the interpretation of Mn. Chapter 4, focused on the poset structure of Mn

and explored the minimum and maximum length of maximal chains of
Mn. Finally, in Chapter 5 we saw some more bĳections when we added
restrictions to the subsets of Mn and created subsets Tn, the subsets of Mn

that have a max of 2 in its subsets, and E(n, k), the subsets of Mn that are
of size n, ending in k.

The next steps in this research are further investigating the different
properties within the family of Mn. Something interesting that can be
done is seeing if any new subfamilies appear if more restrictions are placed
on Mn.
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