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Abstract

This paper focuses on the Brascamp-Lieb inequality and its applications
in analysis, fractal geometry, computer science, and more. It provides a
beginner-level introduction to the Brascamp-Lieb inequality alongside re-
lated inequalities in analysis and explores specific cases of extremizable,
simple, and equivalent Brascamp-Lieb data. Connections to computer sci-
ence and geometric measure theory are introduced and explained. Finally,
the Brascamp-Lieb constant is calculated for a chosen family of linear maps.
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Chapter 1

Introduction

The Brascamp-Lieb inequality was first published in 1976 by Herm Bras-
camp and Elliott Lieb. The inequality itself grew out of the Cauchy-Schwarz
inequality, and is a generalized form of both the Loomis-Whitney inequal-
ity and Hölder’s inequality. Since its publication, the inequality has had far-
reaching impacts across analysis, fractal geometry, Fourier analysis, com-
puter science, and more.

In very broad strokes, the Brascamp-Lieb inequality puts an upper bound
on the size of a function. It allows us to generally know how large the prod-
uct of functions is, even when we cannot directly–or at least not easily–
calculate the size. However, after this short explanation, we can no longer
talk in broad strokes. We must start asking what do we mean by size? What
kind of functions we are dealing with? And why does the inequality matter
overall? These questions (and hopefully many more) will be answered in
this paper.

To give a basic road map of what to expect, we will start with a brief
technical introduction to the Brascamp-Lieb inequality. Then, to strengthen
our understanding, we will go through some special cases of the Brascamp-
Lieb inequality namely the Cauchy-Schwarz, Hölder’s, and Loomis-Whitney
inequalities in Chapter 2. Then, in Chapter 3, we will dive back into the
Brascamp-Lieb inequality and go more in depth. This detailed return will
also highlight the rank-one case as well as different types of Brascamp-Lieb
data. After this extended introduction to the inequality we will move onto
applications and examples of the inequality in action: a computer science
example in Chapter 4 and a geometric example in Chapter 5. In the fol-
lowing chapter, we will go over my work calculating the Brascamp-Lieb
constant for a chosen family of linear maps. Then, in Chapter 7, we will



2 Introduction

wrap the whole exploration together and highlight the significance of the
inequality. So, let us dive in; first to a brief technical introduction to the
Brascamp-Lieb inequality.

1.1 What is a Brascamp-Lieb Inequality?

The Brascamp-Lieb inequality takes the form∫
Rn

m

∏
i=1

fi(Bix)ci ≤ C
m

∏
i=1

( ∫
Rni

fi

)ci

where each fi is a non-negative function and each Bi is a surjective linear
map from Rn → Rni . Furthermore n, m, and ni are positive integers and
ci is restricted to [0, 1]. Essentially, we are saying that the integral of the
product of positive functions raised to some powers c, across all of Rn will
be at most equal to some constant C times the product of the integrals of
those functions across Rni raised again to the power c.

The Brascamp-Lieb inequality itself is incredibly interesting, but is also
a generalized, zoomed-out view. Because it is a generalized form, it is hard
to pick apart and fully grasp on first (or even seventh) glance. In my own
initial understanding, it was incredibly helpful to look at some of the spe-
cial cases of the Brascamp-Lieb inequality, namely the Cauchy-Schwarz,
Hölder’s, and Loomis-Whitney inequalities.



Chapter 2

Related Inequalities

The Cauchy-Schwarz, Hölder’s, and Loomis-Whitney inequalities are spe-
cial cases of the Brascamp-Lieb inequality, but all predate the Brascamp-
Lieb inequality itself. In essence, these inequalities are nested underneath
the Brascamp-Lieb inequality family and were important starting points
for Brascamp and Lieb when making the generalized inequality. These are
easier introductions to the Brascamp-Lieb inequality.

For each inequality we will first go through its formal statement, then
go over any necessary definitions or possible points of confusion. Next we
will return to the formal statement and meaning of the inequality. We will
only prove the Cauchy-Schwarz inequality, as the proofs for the other two
are quite complex. However, before we dive into these inequalities, we
must introduce p-norms.

2.0.1 P-Norms

As the Brascamp-Lieb inequality puts a bound on the size of a function, we
must first discuss what we mean by size. Given the following two func-
tions, which is bigger?

1 2 3 4 5

1

2

3

f (x)

g(x)
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We can clearly see that, on the interval [0, 5] max |g| ≥ max | f |, but on the
same interval

∫
| f | ≥

∫
|g|. How can we make a definitive statement about

size when we can easily come up with an example where either function
could be larger? We have to use p-norms!

The formal definition of a p-norm is

|| f ||p = (
∫

| f |p)
1
p

where p is any positive real number. If we look at this for a second, we can
see that if p = 1, we have

|| f ||1 =
∫

| f |

that is, for positive functions, just the integral. Furthermore, through some
more complex math that we don’t need to go into specifically, we know

|| f ||∞ = lim
p→∞

(
∫

| f |p)
1
p = max | f |

So in general, p-norms are a comparable notion of size of a function across
many dimensions for ”sufficiently nice” (i.e. continuous) functions.

With this is mind, let’s return to the example using f and g on the inter-
val [0, 5]. If we set p = 1,

∫
f >

∫
g so f is larger; if we think about p → ∞,

max g > max f so g is larger. So we didn’t really have an issue determining
which function is larger, we had an issue determining what value of p, and
therefore what notion of size, to use.

2.1 Cauchy-Schwarz Inequality

In technical terms, the Cauchy-Schwarz inequality is as follows:
For all vectors u⃗ and v⃗ of an inner product space, it is true that

| < u⃗, v⃗ > |2 ≤< u⃗, u⃗ > · < v⃗, v⃗ >

where < ·, · > is the inner product. The norm ||u⃗|| :=
√
< u⃗, u⃗ >

is related to the inner product with the defining condition ||u⃗||2 =<
u⃗, u⃗ >. By taking the square root of both sides, it can be rewritten

| < u⃗, v⃗ > | ≤ ||u⃗||||⃗v||
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Now you probably have several questions: what is the inner product?
What is this saying? How can we use it? Upon my first reading of the
Cauchy-Schwarz inequality I had those same questions. Let us start by
taking this apart piece by piece. Since the Brascamp-Lieb inequality was
born from Cauchy-Schwarz, we want to make sure it is clear.

The inner product is a form of the dot product most commonly used
for functions. Either the dot product or the inner product can be used
for any number of or even infinite dimensions, and both provide a way
to multiply vectors or functions and return a scalar. Furthermore, the trian-
gle inequality–the notion that the length of a triangle’s hypotenuse will be
less than the sum of the lengths of the remaining sides–is a consequence of
Cauchy-Schwarz in any inner product space.

Now, let us take the formal statement apart. We start with any two
vectors u⃗ and v⃗. For simplicity’s sake, let’s think about this in 2D and with
the dot product. We already know by properties of vectors that

√
|u⃗ · v⃗|2

will be at most |u⃗ · v⃗|. Furthermore, we know that the magnitude–in this
proof called the norm–of a vector v⃗ is equal to

√
(⃗v · v⃗). Knowing these two

properties, we can derive that the absolute value of the dot product of our
two vectors (i.e. the distance between them) will be at most the product of
the vectors’ magnitudes. Interestingly, we can also prove that the two sides
will be equal if and only if u⃗ and v⃗ are linearly dependent, meaning that in
2D space it no longer forms a triangle but congruent line segments.

The dot product proof of the Cauchy-Schwarz inequality in n dimen-
sions is as follows. To start, let u⃗ and v⃗ be any arbitrary vectors and the
arbitrary function p(t) = ||t⃗v − u⃗|| where t is any scalar. Since p(t) is equal
to the length of this combination of vectors, it will be positive by the defi-
nition of vector length. Therefore, we can start with

p(t) = ||t⃗v − u⃗|| ≥ 0

Using the definition of vector magnitude and properties of the dot product,
we can transform this inequality like so

(t⃗v − u⃗) · (t⃗v − u⃗) ≥ 0
(t⃗v · t⃗v)− (u⃗ · t⃗v)− (u⃗ · t⃗v) + (u⃗ · u⃗) ≥ 0

t2(⃗v · v⃗)− 2t(u⃗ · v⃗) + (u⃗ · u⃗) ≥ 0

Now, for simplicity, let us define V = (⃗v · v⃗), U = (u⃗ · u⃗), and W = 2(u⃗ · v⃗).
This yields

t2V − tW + U ≥ 0
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Since t is any arbitrary scalar, let us set t = W
2V .

W2

4V
− W2

2V
+ U ≥ 0

W2 − 2W2

4V
+ U ≥ 0

U ≥ W2

4V
4UV ≥ W2

Now, we can substitute back in our definitions of V, U, and W and use the
definition of vector magnitude, which shows

4(⃗v · v⃗)(u⃗ · u⃗) ≥ 4(u⃗ · v⃗)2

||⃗v||||u⃗|| ≥ |u⃗ · v⃗|

Thus proving the Cauchy-Schwarz inequality. This relationship holds for
all values of t (but includes complex vector algebra). Nevertheless the rela-
tionship holds for any arbitrary value, so it suffices to prove one instance.

2.2 Hölder’s Inequality

In technical terms, Hölder’s inequality is as follows:
Let (S, Σ, µ) be a measure space and let p, q ∈ [1, ∞] with 1

p + 1
q = 1.

Then for all measurable real- or complex-valued functions f , g on S,

|| f g||1 ≤ || f ||p||g||q

Again, the technical statement of this inequality leaves us with ques-
tions. Let us start with measure space. Simply put, this is just saying we
have a space that is a collection of items which we will find the measure,
a generalized notion of volume. A measure space contains three elements:
the elements being measured, in this case the set S; a nonempty collection
of subsets of the overall set, represented above by Σ; and an idea of measure
being applied to the set, here noted as µ. Measure spaces fall into several
important classes, one being probability spaces. A probability space is a
measure space where the measure of the whole space is 1; for example, a
bell curve where 0.68 of the space is within one standard deviation of the
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mean, 0.95 within two, and 0.997 within three. Another example of a mea-
sure space is a cumulative distribution function, defined as

F(x) = P(X ≤ x) =
∫ x

−∞
f (t)dt

where f (t) is a probability density function. Using the formulation of a
measure space from Hölder’s inequality, f (t) is equivalent to f (µ). That is
to say, the probability of a value less than or equal to x is equal to the area
under a probability density function from −∞ to the point of interest x.

Now, the proof for Hölder’s inequality is, frankly, gnarly, and the mean-
ing is more significant. However it is important to note that Cauchy-Schwarz
is a special case of Hölder’s inequality where p = q = 2. The proof of the
Cauchy-Schwarz inequality is a simplified version of that of Hölder’s in-
equality given this condition.

So, now onto the all-important question: what does Hölder’s inequality
actually mean? With this understanding, we see that Hölder’s inequality
is really saying the p-norm of a product of functions will be less than the
product of the p-norms of each individual function, with constraints on the
values of p for each p-norm. More simply put, the size of the product of
functions will be less than the product of the sizes of the individual func-
tions.

This is eerily similar to the idea of a Brascamp-Lieb inequality: to put
a bound on the size of a function. This is because Hölder’s inequality is
in the Brascamp-Lieb family, as is the Cauchy-Schwarz inequality. Broadly,
Cauchy-Schwarz is a specific case of Hölder’s which is a specific case of
Brascamp-Lieb. Subsequently, Hölder’s inequality plays a crucial role in
solving a Brascamp-Lieb inequality and will be directly included in my
example.

2.3 Loomis-Whitney Inequality

In technical terms, the Loomis-Whitney inequality is as follows:
Fix a dimension, d ≥ 2, and consider the projections

πj : Rd → Rd−1

πj : x = (x1, ..., xd) 7→ x̂j = (x1, ..., xj−1, xj+1, ..., xd)
For each 1 ≤ j ≤ d, let

gj : Rd−1 → [0,+∞)

gj ∈ Ld−1(Rd−1)
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Then the Loomis-Whitney inequality holds

∫
Rd

d

∏
j=1

gj(πj(x))dx ≤
d

∏
j=1

||gj||Ld−1(Rd−1)

And equivalently
f j(x) = gj(x)d−1∫

Rd ∏d
j=1 f j(πj(x))

1
d−1 dx ≤ ∏d

j=1
( ∫

Rd−1 f j(x̂j)dx̂j
) 1

d−1

This may be the most complicated statement of this chapter, but the
overall outcome is one of the simplest: the Loomis-Whitney inequality al-
lows us to estimate the size of a d-dimensional set using the sizes of it’s
(d − 1)-dimenional projections.

To see how we arrived at that conclusion, we need to take this statement
apart piece by piece. First, we define πj as a function that maps from d-
dimensional space to (d − 1)-dimensional space by taking a series of x’s
as input and returning the same series just without the jth entry. To do
this we need a value of d that is at minimum 2, as starting with d = 1
would put us into 0-dimensional space. Next, we defined a function gj that
maps from (d− 1)-dimensional space to positive numbers and is contained
in the d − 1 Lebesgue space denoted Lp. Lebesgue spaces will show up a
few times throughout this paper and morally just denotes that we have a
set of functions whose domain is a defined dimensional space (in this case
d − 1 dimensions) such that the integral of each function to the p power
is finite. With functions defined as such, we can then proceed to the full
Loomis-Whitney inequality which states that the integral of product of the
(d − 1)-dimensional functions composed with linear projections will be at
most the product of the p-norm of the same functions. If we fully expand to
include the definition of p-norm, the Loomis-Whitney inequality allows us
to make broad statements about what happens when we change the order
of the integral and product while moving to one fewer dimension.

As with Hölder’s inequality, this is very similar to the Brascamp-Lieb
inequality. In fact, the Loomis-Whitney inequality is actually a special case
of the Brascamp-Lieb inequality using projections πj that by definition map
onto subspaces of the one fewer dimension.



Chapter 3

The Nitty Gritty

Now that we have seen more specific versions of the Brascamp-Lieb in-
equality, let us return to the generalized inequality itself. As we briefly
discussed previously, the Brascamp-Lieb inequality takes the form∫

Rn

m

∏
i=1

fi(Bix)ci ≤ C
m

∏
i=1

( ∫
Rni

fi

)ci
(3.1)

where each fi is a non-negative function, each Bi is a surjective linear map
from Rn → Rni , n and m and ni are positive integers, and ci ∈ [0, 1].
Morally, the inequality allows us to isolate the integrals of the functions
and then take their product, instead of taking the integral of the product of
functions, which vastly simplifies the calculations required. However this
is not the only formulation of the Brascamp-Lieb inequality. In fact, there
are two other forms of the inequality used in the literature.

We can equivalently say∫
Rn

m

∏
j=1

( f j ◦ Lj)
pj ≤ C

m

∏
j=1

( ∫
R

nj
f j

)pj
(3.2)

again requiring n and m to be positive integers, Lj : Rn → Rnj to be sur-
jective linear transformations, each pj to be a real number in [0, 1], and, for
each j ∈ 1, ..., m, nj ≤ n.

And, in another equivalent formulation of the inequality, we can say∫
Rn

m

∏
j=1

gj ◦ Lj ≤ C
m

∏
j=1

||gj||Lqj (R
nj ) (3.3)
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with the same constraints as the previous formulation, but additionally re-
quiring qj = p−1

j for all j.
We now have three different formulations of the same inequality, each

with their own slight differences, so let’s work through what these differ-
ences tell us. On the left side, all three formulations take the product of
functions composed of their linear maps–shown by fi(Bix) in 3.1, f j ◦ Lj in
3.2, and gj ◦ Lj 3.3. Now, in 3.1 and 3.2, these functions are exponentiated:
by ci in 3.1 and pj in 3.2. These exponents may raise concern as we have
said these three formulations are equivalent, but two include an exponent
the third does not. This is where the additional constraint, qj = p−1

j , is

incorporated. Essentially, we set gj = f
pj
j , which allowed us to move the

exponent and account for its move.
On the right side, we again have some slight differences. In 3.1 and

3.2, they look essentially the same, save a difference of i vs. j and c vs. p.
However, the right side of 3.3 looks vastly different: it uses p-norms. This
is again due to the fact that the left sides of 3.1 and 3.2 were exponentiated,
while that of 3.3 was not. Because 3.3 simply took the functions (not ex-
ponentiated functions), it is transformed into exponentiated functions (not
just functions). This formulation simply shifted the placement of the ex-
ponent. Furthermore, we would be remiss if we did not address the value
of p for this p-norm: Lqj(Rnj). This may look very complex, but again just
says we have a set of functions contained in nj dimensional space such that∫

f qj < ∞.
With the various formulations and their differences nailed down, we

can move to the two conditions necessary for finiteness in the Brascamp-
Lieb inequality: the scaling condition and the dimension condition. The
scaling condition,

m

∑
j=1

pjnj = n,

and the dimension condition,

dim(V) ≤
m

∑
j=1

pj dim(LjV),

must hold for all subspaces V ⊆ Rn. Now the scaling condition establishes
a required relationship for the exponents and the number of dimensions.
If we look back to the related inequalities, the scaling condition shows
up clearly in Hölder’s inequality and restricts the value of p for each p-
norm. The dimension condition is more subtle but in essence is a version
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of the scaling condition that must hold for every possible subspace. Di-
rectly checking the dimension condition would be painful, but luckily we
can often determine if the inequality holds by other means, such as shown
in Chapter 6.

3.1 The Formal Statement

Now that we have seen and worked through a few different formulations
of the Brascamp-Lieb inequality, let’s take a look at the formal statement.
The Brascamp-Lieb inequality is as follows:

Fix natural numbers m and n. For 1 ≤ i ≤ m, let ni ∈ N and let ci > 0
such that

m

∑
i=1

cini = n.

Choose non-negative, integrable functions

fi ∈ L1(Rni ; [0,+∞])

and surjective linear maps

Bi : Rn → Rni .

Then the following inequality holds:∫
Rn

m

∏
i=1

fi(Bix)ci dx ≤ D− 1
2

m

∏
i=1

( ∫
Rni

fi(y)dy
)ci (3.4)

where D is given by

D = inf{
det(∑m

i=1 ciB∗
i AiBi)

Πm
i=1(det Ai)ci

|Ai is a positive-definite ni × mi matrix}.

Here we see more information about the Brascamp-Lieb constant: a for-
mal definition of it. That constant is incredibly important, so let’s focus on
it a bit.

3.2 The Brascamp-Lieb Constant in Depth

In 3.4, the Brascamp-Lieb constant is defined to be

D = inf
(det(∑m

i=1 ciB∗
i AiBi)

Πm
i=1(det Ai)ci

)
(3.5)
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Just as with the inequality itself, the constant has multiple formulations of
the same definition. In (6), Elliot Lieb proved the best constant to be

BL(L, p) = sup
( ∏m

j=1(det Aj)
pj

det(∑m
j=1 pjL∗

j AjLj)

) 1
2
= D− 1

2 . (3.6)

In the paper, Lieb showed that the best constant is the same as the best con-
stant when we restrict input functions to centered Gaussians. Essentially
this means that in any instance of equality in the Brascamp-Lieb inequality,
the input functions are Gaussians. The specifics of this proof are beyond
the purview of this paper, but is an interesting avenue of further study for
anyone so inclined.

Again, since we have multiple formulations, let us work through the
differences to clarify any questions of equivalence. When 3.5 is put into
3.4, it is raised to a power of − 1

2 . Raising a infimum to a negative power is
equivalent to raising an supremum to the same positive power. After this
change, we are simply left with the same notional incongruities we have
seen previously: p for c and L for B.

While this definition is certainly more tangible, it is still incredibly diffi-
cult to work with. It requires us to take the product of exponentiated deter-
minants and divide by the determinant of an m × m matrix, then we must
take the supremum of this dividend, and finally square root the supremum.
In fact, it took another 15 years to determine when the constant is finite.

3.3 The Rank One Case

The rank one case is a special case of the Brascamp-Lieb inequality where
nj = 1, i.e. using functions that map from Rn to R1. In this case, each Bj
is given by Bj(x) = ⟨x, vj⟩ for a certain vector vj in Rn. Because we end in
one-dimensional space, this simplifies much of the calculations required to
find the Brascamp-Lieb constant. To start, let’s look at the inequality itself
when nj = 1: ∫

Rn

m

∏
j=1

( f j ◦ Lj)
pj ≤ C

m

∏
j=1

( ∫
R1

f j

)pj
(3.7)

This may not look visually simpler–in fact only one thing changes. Nev-
ertheless, knowing that we only need to take the integrals of our input
functions over one-dimensional space is vastly more simple. Furthermore,
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using inequality 3.3, we can transform it to be∫
Rn

m

∏
j=1

gj ◦ Lj ≤ C
m

∏
j=1

||gj||qj (3.8)

Furthermore, let us consider the scaling condition in the rank one case.
It becomes

m

∑
j=1

pj = n

which is much simpler than the previous, generalized form. This more
closely resembles the restriction on p and q in Hölder’s inequality.

Unsurprisingly, deciding that Rnj will be R1 simplifies the necessary
calculations. However, this is not an insignificant simplification and the
required calculations are still extensive. The rank one case allowed mathe-
maticians to expand their understanding of Brascamp-Lieb inequalities and
is integral to scholarship on higher rank cases. In chapter 6, we will work
through a rank one case for a chosen family of linear maps.

3.4 Types of Brascamp-Lieb Data

The Brascamp-Lieb datum, (L, p), has been further classified based on the
adherence of the subsequent constant, BL(L, p), to various conditions. This
allows us to further classify points of interest from the family of linear maps
and determine answers and ideas about their significance. The three types
we will explore are extremizable, simple, and equivalent. These are not ex-
clusive types, a Brascamp-Lieb datum can be multiples types at the same
time. Here, I offer some quick introductions, and these types will be ex-
plored with a specific datum in chapter 6.

3.4.1 Extremizable

The constant is extremizable if there exists an m-tuple of functions that
achieve equality between the two sides of the Brascamp-Lieb inequality
with the constant. That is to say, the constant is extremizable if the supre-
mum (or infimum) in the definition of the constant is a maximum (or a
minimum). In (6), Lieb proved that if the datum is extremizable, it is al-
ways possible to choose the functions to be Gaussians. Commonly in the
rank one case, the constant will be extremizable except values where a lin-
ear map would be repeated.
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3.4.2 Simple

The constant is said to be simple if the dimension condition holds with
strict inequality for all possible subspaces. That is,

dim(V) <
m

∑
j=1

pj dim(LjV)

for all V ⊂ Rn. Again in the rank one case, this typically holds for values
except those which would repeat a linear map.

Furthermore, a vector space is called critical if, for some V ⊂ Rn,

dim(V) =
m

∑
j=1

pj dim(LjV)

3.4.3 Equivalent

Two Brascamp-Lieb data are said to be equivalent if changing the variables
in one of the integrals superficially changes the inequality to the other with-
out changing the validity of the inequality. This is most easily thought of
as a situation where a change of variables could make it so that a family of
linear maps, L, could be transformed into another family of linear maps, L̃.



Chapter 4

A Computer Science Example

4.1 “Structural and Computational Aspects of Brascamp-
Lieb Inequalities,” Avi Wigderson

In (4), Garg, Gurvits, Oliveira, and Wigderson joined the computational,
geometric, and analytical aspects of Brascamp-Lieb inequalities. This was
achieved by associating each Brascamp-Lieb datum with an operator scal-
ing problem, which both created algorithmic versions of the known struc-
tural results of Brascamp-Lieb inequalities and made proofs more concise
than previous scholarship. In short, this paper allowed for the previously
separate computer science, geometric, and analytical scholarship on Bras-
camp-Lieb inequalities to meet and showed a method for concisely associ-
ating a Brascamp-Lieb datum to operator scaling. This algorithm also sim-
plified computation for the Brascamp-Lieb constant by reducing the num-
ber of matrices which need to be optimized.

In (8), Avi Wigderson gives an adapted lecture on the methodology
of the paper, most importantly on the connection from Brascamp-Lieb in-
equalities to operator scaling problems. The connection will be explained
later in this section, but first we will focus on the background portion of (8)
and the requirements of a geometric Brascamp-Lieb inequality. Finally, we
will explore the connection between the geometric and computer science
approaches.

Wigderson introduces Brascamp-Lieb inequalities by first giving an over-
view of the Cauchy-Schwarz inequality, Holder’s inequality, and the Loomis-
Whitney inequality-all of which we have already seen. Then Wigderson in-
troduces a simple definition of the upper bound for the area of a 2D shape
as the area of the smallest square that fully encompasses the shape. This
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same idea is then translated into 3D with the shape being fully encom-
passed by a cube. In generality, this is the essence of a Brascamp-Lieb in-
equality: finding an upper bound for the size (in this case area and volume
which have simple area and volume computations) of a function.

To define a Brascamp-Lieb inequality, Wigderson first defines the Brascamp-
Lieb datum, (B, p) in Rn as a list of linear maps or matrices Bj : Rn → Rnj

and a list of p’s where pj ≥ 0 for all j. With this datum, for all f j : Rnj → R+,
it is known ∫

x∈Rn

m

∏
j=1

( f j(Bjx))pj ≤ C
m

∏
j=1

( ∫
xi∈R

nj
f j(xj)dxj

)pj

where C is the Brascamp-Lieb constant. This is most similar to formulation
3.1 given above, save the notation f j(xj) and the inclusion of dxj. This does
not formally show the p-norm, but as we saw previously is equivalent to
formulations that do.

Furthermore, a geometric Brascamp-Lieb inequality must meet two con-
ditions (and here remember that the Bj’s are commonly matrices):

(1) The Projection Property: For all j, BjB∗
j = Inj

(2) The Isotropic Property: ∑ pjB∗
j Bj = In

To find an equivalent geometric Brascamp-Lieb inequality from a general
BL inequality, we must perform changes of variables such that these two
conditions are met. Broadly, this is done by finding the convergence of opti-
mal values of pj where both conditions are met. The first condition ensures
we are not breaking any foundational elements of matrices, and the second
ensures the scaling condition is met in this matrix formulation. To ensure
pj converges, the Brascamp-Lieb constant itself is used as progress measure
since the relationship between the constant and the basis is known even
though the value of the constant is not known definitively. This is done us-
ing an application of ϵ-neighborhoods, which define the set of points within
than any arbitrary distance ϵ from the point in question. From this we can
determine that BL(B, p) must be at least 1 and at most the largest enc

, which
comes from the Brascamp-Lieb datum itself. Here c is a numerator which
will be explored momentarily.

Finally, all of these elements are combined to show how to reduce Brascamp-
Lieb inequalities to operator scaling problems. Before diving into that,
let us first define operator scaling. Given any completely positive map
of matrices T = (A1, A2, ..., Am) where all matrices Ai are equal in size,
T(P) = ∑ A∗

i PAi where A∗
i represents the transpose of Ai. This sum will

be entirely positive when P ≥ 0. Here, the analog of the Brascamp-Lieb
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constant is the capacity of the map operator,

cap(T) = inf(
det(T(x))

det(x)
)

where x > 0. When cap(T) is positive, cap(T) ≥ e−nc
, which is the analog

of the upper bound found using the geometric approach. This analog of the
BL constant has fewer matrices to optimize and is computationally simpler,
but still encompasses all questions from the original BL setting.

The following algorithm shows us how to apply this idea to a tradi-
tional Brascamp-Lieb inequality. To start, we are given BL(B, p) where
B = {B1, B2, ...Bm} and p = {p1, p2, ..., pm}. Now, in order to make the
connection to capacitance and computer science, we must restrict the pi’s
to rational numbers as irrational numbers would not work. This restriction
will allow us to re-write the pi’s as { c1

d , c2
d , ..., cm

d } where d is a common de-
nominator. Furthermore, on the computer science side, the pi’s need to be
rational numbers (computers do not like irrational numbers). At this point,
we have a pile of matrices B which we will use to create a pile of matri-
ces A1, A2, ..., Am′ (and the difference between m and m′ will be addressed
later). It is important to note that A has been used as notation in various
and important places throughout this paper; here, each Ai is a newly cre-
ated matrix built from B.

To create the primary matrix A from which we will build A1, A2, ..., Am′ ,
we repeat each Bi the corresponding ci number of times. That is, A is com-
posed of the matrices B1, B2, ..., Bm repeated the corresponding number of
times as their numerator when represented as a fraction with common de-
nominator d, only possible because each pi is rational. This matrix will
have n columns coming from the original B matrices, however it will have
nd rows (since it is known ∑m

i=1 ni pi = n and each pi =
ci
d ). In general, the

matrix A will be as shown below.
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Figure 4.1.1. Matrix Template.

Once the matrix is divided in this manner, we can start to build A1, A2, ..., A′
m.

In essence, each Ai is the A matrix where a specific row is isolated and all
other rows are set equal to 0. As such, we are not simply creating m matri-
ces; instead, we are creating the same number of matrices as the number of
rows in A, which has been defined as m′ = ∑m

i=1 ci, the sum of all the nu-
merators c defined previously. The general form of each Ai is below and is
repeated such that each possible is isolated. Each matrix is again an n × nd
matrix, but isolates only a single iteration of a specific Bi.
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Figure 4.1.2 Transformed Aij Matrix.

Now that we have this newly transformed matrix, we can define the
operator to be the sum of matrix algebra across all the Ai’s. That is to say,
the operator,

T(x) =
m′

∑
i=1

A∗
j XAj

where X is Wigderson’s denotation of the A found in analysis notations of
BL(B, p). With this, the final operator will be an n × n matrix which can
be easily related to and solved for the Brascamp-Lieb constant using the
relationship

BL(B, p) =
1

cap(T(Bn, p)

1/2

Morally, Wigderson shows that an upper bound for the Brascamp-Lieb
constant, BL(B, p), found through a known geometric approach is analog
to the capacity of an operator scaling problem using the above template and
transformation. The analog is preferable because it requires fewer matrices
to be optimized. This created a bridge between capacitance, which is an
important notion in computer science, to the Brascamp-Lieb constant.





Chapter 5

A Geometric Example

5.1 Multilinear Kakeya

Kakeya problems focus on the idea of dimension and specifically how the
mathematical definition of dimension aligns with a physical, human notion
of dimension. This all stems from Kakeya sets, a set of points in Euclidean
space that contains a line segment pointing in every direction. There has
been much conjecture about how small this set can be: for example, a
disk in 2D and a sphere in 3D. However, the connection to analysis and
specifically Brascamp-Lieb inequalities relates to the definition of dimen-
sion. Specifically, we are asking does a Kakeya set, which includes a line
segment pointing in every direction, have n dimensions?

Now you may be thinking this is pretty simple, of course it would have
n dimensions. If you put a pen on a table and spin it you create a set with
a line segment pointing in every direction that can fill all of 2D space. You
could also do the same with a pen in space: rotating the pen would again
create a set that contains a line segment pointing in every dimension that
covers all of 3D space. For 2D space, the pen example holds some water:
the Kakeya set has been proven to fill 2 dimensions. However, the 3D pen
example is elusive. The Kakeya set has not been proven to be 3D. This is be-
cause the definition of dimension used for fractals like a Kakeya set is more
of a measure of complexity than a representation of physical dimension.
Even though these sets are 2D and 3D in the linear algebra sense (where
the number of dimensions represents the number of coordinates needed to
identify a unique point in the space), the fact that the Kakeya set is a fractal
introduces fractal dimension and therefore an added level of complexity.

As an example of the dimension difficulties making the 2 dimension
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proof very complex and preventing the 3 dimensional proof, let us turn to
triangles and some basic geometry. First, take Figures 5.1.1 and 5.1.2 below.
On the left, Figure 5.1.1 shows a triangle with base b and height h. The area
of this triangle will be 1

2 bh. Now, Figure 5.1.2 shows a triangle with base
nb and height nh where n is any arbitrary positive scalar. The area of this
triangle will be 1

2 n2bh, that is n2∗ area of left triangle. Here, the power of 2
on the scalar is an indicator of 2 dimensional space.

Figure 5.1.1. (left) Triangle with base b and height h.
Figure 5.1.2. (right) Triangle with base nb and height nh (specifically showing n > 1).

Now that we have a clear example of dimension, the next logical step
is to move to a confusing example of dimension. Here, take the Sierpinski
Triangle on the left with base b and height h. We will call the area shaded
in blue A. On the right, we have a larger version of the fractal with base 2b
and height 2h. If the above pattern of dimension fit, the blue space in this
triangle would have area 22A. However, we have 3 copies of the smaller
triangle in the larger one, meaning the area of the larger triangle is actually
3A or 2log 3/ log 2A.

Figure 5.1.3. (left) Sierpinski Triangle with base b and height h.
Figure 5.1.4. (right) Sierpinski Triangle with base 2b and height 2h.

With this example, we find ourselves in log 3
log 2 dimensional space, i.e.

1.585 dimensional space... which doesn’t seem possible. This isn’t the
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typical definition of dimension that you might be thinking of. It is actu-
ally a fractal dimension, which is any positive real number, not necessar-
ily a whole number. To formalize this for other fractals, we look to cover
the fractal with boxes and count how many boxes are needed on different
scales. Put a bit more tangibly, we are essentially projecting a grid over the
fractal and counting how many boxes in that grid touch the fractal. When
we repeat this with a finer grid and compare the number of boxes from the
two iterations, they are related with the fractal dimension.

Now let us return to a Kakeya set but with the covering-with-boxes
methodology. Take for instance a Kakeya set that includes the graph of the
function

f (x) =

{
1 x ∈ [1, 2]
undefined else

We have a line segment at y = 1 from x = 1 to x = 2. In this instance, the
covering-with-boxes methodology will, as the same suggests, cover the line
with boxes of a given side length. In essence, this will fatten up the line,
draw a rectangle around it, and make its height equal to the side length of
the box. With various scalars, we can cover x ∈ [1, 2] for various values of y:
for example, with a side length of 0.5, we would cover the region x ∈ [1, 2]
and y ∈ [0.75, 1.25] with two boxes.

This can be done to all items in the Kakeya set, such that for the set
below on the left the set on the right would be created (for now, disregard
colors).

Figure 5.1.3. (left) A (small) subset of a Kakeya Set.
Figure 5.1.4. (right) The same subset of a Kakeya Set using cover-with-boxes methodology.

In 2D space we create rectangles; in 3D space, tubes. In either dimen-
sion, we want to find the area or volume contained in the rectangles or
tubes. However, we have created a new problem with the cover-with-boxes
method: if we calculated the area of each individual rectangle (regardless
of color) in the above subset of a Kakeya set and summed the areas, some
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places would be counted twice and the final sum would be inaccurate. We
will come back to this in a minute.

So far this chapter, we have talked about Kakeya sets and fractal di-
mension, but have neglected a crucial part of the chapter’s name: multi-
linear. Multilinear simply means that we are taking a function of multiple
functions which are linear in each variable, therefore making a multilin-
ear function. This is a slightly complex because both our input and output
will be functions. Ultimately, a multilinear function could look something
like T(a f1 + bg1, a f2 + bg2, ...) where f and g are functions used as input
variables. Using properties of linearity, we could expand this function to
be

aT( f1, f2, ...) + bT(g1, g2, ...).

Returning to Kakeya, to find the area contained within a multilinear
Kakeya set, we would expect to see something similar to∫

Rn

m

∏
j=1

f j

That is to say, finding the area of a multilinear Kakeya set requires the in-
tegral of a product. Larry Guth explores multilinear Kakeya inequalities in
depth in (5). Specifically Guth shows that multilinear Kakeya inequalities
reduce to a nearly axis-parallel case. This reduction vastly simplifies the
mathematics, but is still incredibly complex. Therefore, we will be focusing
on a further simplified case: the axis-parallel case.

For the axis-parallel case–a small subset of which are shaded in blue
in the above example–the inequality comes directly from Loomis-Whitney
(Section 2.3). Remember that Loomis-Whitney allows us to estimate the
size of a set in d dimensions from (d − 1) dimensional projections, mean-
ing that in the context of a 2 dimensional Kakeya set we can look at the pro-
jections in 1 dimension. Conceptually the application of Loomis-Whitney
makes sense because a line parallel to an axis cannot give useful informa-
tion in all of it’s dimensions. For instance, in 2D space the line x = 2 will
only meaningfully provide information in the y dimension.

In the axis-parallel case, we have a collection of line segments all paral-
lel to an axis. In the above example (again the segments shaded in blue) we
start to see the beginning of a grid. In fact, the axis-parallel case will make a
grid. Using the cover with boxes methodology and Loomis-Whitney logic
described above, if we project a sufficiently fine grid over the axis-parallel
case, all boxes in the grid will contain part of the set. Therefore, the axis-
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parallel case is a conceptually relatively intuitive (although mathematically
rigorous to prove) example of multilinear Kakeya inequalities.

Just as with the geometric example previously, now that we have a rel-
atively conceptually easy example of multilinear Kakeya inequalities, it is
only natural to turn to a complex example. The axis-parallel case is a won-
derful dream, applicable in very very few cases. The nearly axis-parallel
case expands the possibilities, but the majority of Kakeya sets will not in-
clude a nearly axis-parallel case and certainly not a true axis-parallel case.
This is where Brascamp-Lieb inequalities and the area/volume sum issue
raised a few paragraphs back come into play. The Brascamp-Lieb inequal-
ity allows us to isolate the spaces contained in multiple tubes and put an
upper bound on the area or volume (or any other metric of size) of the
fattened line segments.

It would take several pages to fully explain the application of Brascamp-
Lieb inequalities in this setting. As such, we will go through the main alter-
ations needed to use one, but will not be going through the math directly.
In general, moving from the axis-parallel case to a general case requires un-
derstanding how the Brascamp-Lieb constant depends on the linear maps,
which is explored for a specific family in Chapter 6. For more information
on the math specifically, please refer to (5) and (9).

The most important difference in multilinear Kakeya applications is
that, while previously we had seen Brascamp-Lieb inequalities with the
general form ∫

∏
i

fi ≤ C ∏
i

∫
fi

to find a bound for the area of these Kakeya sets we must transform the
input of the Brascamp-Lieb inequality to generally be of the form∫

∏
i

(
∑

j
fij
)

Where j is the set of tubes that point in a similar direction. The sum over j is
performed so that the spaces included within multiple tubes is not counted
multiple times.

Now you may be asking, what does ‘the set of tubes that point in a sim-
ilar direction’ mean? Let us again return to figure 5.1.4. Each j would be
a general direction of the line segment, here shown by color. Blue is axis
parallel segments, pink is generally vertical segments, and green is gener-
ally horizontal segments. In a more complex example there would be more
categories with formally definitions, but the general idea is the same. We
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categorize the segments so we can sum over each general direction while
accounting for the areas included in multiple tubes.

Now, the changes we have made to the Brascamp-Lieb inequality may
look big; including a sum when we are already taking the integral of a
product is complex. However, in reality we are only repeating the work of
a Brascamp-Lieb inequality multiple times and accounting for that repeti-
tion.



Chapter 6

My Example

Now that we have seen uses of the Brascamp-Lieb inequality in both com-
puter science and fractal geometry, we will turn to an analysis example.
Where the previous sections have had a more zoomed-out focus looking at
broad applications and important innovations, this section will be specifi-
cally working through finding the best constant for the Brascamp-Lieb in-
equality for a chosen family of linear maps, which will require us to use
other inequalities in the Brascamp-Lieb family. Furthermore, while previ-
ous sections have summarized the work of others, this example is the main
deliverable from this project and was chosen as a progression of Professor
Flock’s previous examples. Here, we will dive into the following family of
linear maps:

B1(x) = x ·
[

1
0

]
B2(x) = x ·

[
0
1

]
B3(x) = x ·

[
1

−1

]
B4(x) = x ·

[
1
−a

]
B5(x) = x ·

[
b
1

]
The general overview of this process is to start by composing functions

from these linear maps. To compose a function from a linear map, you can
think of the top number in the map as a coefficient on x and the bottom
number as a coefficient on y. Then these two terms are added to create the
function input. Therefore, B1(x) would be the function f (x), B2(x) g(y),
B3(x) h(x − y), B4(x) k(x − ay), and B5(x) l(bx + y). Instead of keeping the
Bi notation, we will switch to f , g, h, k, and l to avoid possible mistakes.
Now, we can put these functions into the left side of the Brascamp-Lieb
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inequality (using equation 3.3) like so:∫ ∫
f (x)g(y)h(x − y)k(x − ay)l(bx + y)dydx.

From here, we will split the functions into 2 groups of three functions each
(with one function repeated in both groups) using the Cauchy-Schwarz in-
equality, which will yield∫ ∫

f (x)g(y)h(x − y)k(x − ay)l(bx + y)dydx ≤( ∫ ∫
| f (x)g(y)l(bx + y)

1
2 |2dydx

) 1
2

( ∫ ∫
|h(x − y)k(x − ay)l(bx + y)

1
2 |2dydx

) 1
2 .

However, this is only one possible way to split our functions. We will have
to use the same methodology for all possible function splits and plot the
calculated constants for each. As we move through these possible splits,
the third and final function in each group of three will be the split function
and will therefore be raised to the 1

2 power.
Now that we have our functions split into two groups of three, again

with one function repeated in both groups, we will have to perform changes
of variables in order to be able to use Young’s Convolution inequality. Through
the changes of variables, we will try to remove a and b when possible, but
in some cases will not be able to. For these cases, we will apply a, b, or
some combination of the two to the entire function input unilaterally. This
will put us into a separate function space, where a and b act as constants
on the entire function input, but will allow us to use Young’s Convolution
inequality to find the relationship in terms of p-norms, still with a and b
acting as constants on the entire function input. After using Young’s Con-
volution, we will again perform changes of variables to move the a’s and b’s
from inside the functions to outside the functions, returning us to our orig-
inal function space. Clearly, we will need to start by introducing Young’s
Convolution inequality.

6.1 Young’s Convolution Inequality

As you can probably guess from the name, Young’s convolution inequality
hinges on convolution. Convolution is a mathematical operation that takes
two functions as input and produces a third function which shows one
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way the shape of a function can be modified by another function. It can
be thought of as a graphical representation of the integral of the product
of the two functions where one function is reversed and shifted, evaluated
for all possible values of shift. Since this is a little abstract to understand
simply from reading on a page, please refer to the following image for a
visual representation.

Figure 6.1.1. ”Comparison convoultion correlation” by Cmglee on
Wikipedia is licensed under CC BY-SA 3.0.

Now that we have a shared understanding of convolution, let us turn
to the formal statement of the inequality using ∗ to denote convolution:

Suppose f is in Lp(Rd) and g is in Lq(Rd) and 1
p + 1

q = 1
r + 1 with

1 ≤ p, q, r ≤ ∞, then

|| f ∗ g||r ≤
( ∫

Rd
| f |p

) 1
p
( ∫

Rd
|g|q

) 1
q = || f ||p||g||q

Through duality and an application of Hölder’s inequality, the two
function version implies a three function version and vice versa. There-
fore, we can say, if p, q, r ≥ 1 and 1

p +
1
q +

1
r = 2,∫

Rd

∫
Rd

f (x)g(y)h(x − y)dxdy ≤ A
( ∫

Rd
| f |p

) 1
p
( ∫

Rd
|g|q

) 1
q
( ∫

Rd
|h|r

) 1
r

where A = Ap Aq Ar and, given 1 − 1
p = 1

p′ , Ap = p1/p

p′1/p′ .

In essence, Young’s convolution inequality allows us to go from the in-
tegral of the product of functions to the product of the functions’ p-norms,
given one function takes a difference of the two variables as input, and is

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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such another example of a Brascamp-Lieb inequality. This is used in the
following example after our five linear maps are split into two groups of
three (again with one function included in both) using the Cauchy-Schwarz
inequality. After using a change of variables transformation, we will use
Young’s convolution to find the relationship in terms of p-norms and cal-
culate the constant.

6.2 Calculating the Brascamp-Lieb Constant

The family of linear maps used in this example,

B1(x) = x ·
[

1
0

]
B2(x) = x ·

[
0
1

]
B3(x) = x ·

[
1

−1

]

B4(x) = x ·
[

1
−a

]
B5(x) = x ·

[
b
1

]
has n = 2, m = 5, nj = 1 for j ∈ 1, 2, 3, 4, 5, and (using the Brascamp-Lieb
formulation in 3.3) qj =

5
2 in compliance with the scaling condition as n = 2

and we have 5 functions of equal weight.
When directly put into the left side of the Brascamp-Lieb inequality, this

family of linear maps yields∫ ∫
f (x)g(y)h(x − y)k(x − ay)l(bx + y)dxdy (6.1)

In order to work with this and calculate the Brascamp-Lieb constant, we
will have to use Cauchy-Schwarz to split the functions into 2 groups, a
changes of variables to superficially change the functions, and Young’s con-
volution to find the relationship in term of p-norms. Since we split our 5
total functions in 2 groups, we will have many different combinations to
work with. We will fully work through two of these combinations to show
the process, and the remaining combinations will be listed with their re-
spective changes of variables and constants at the end of this section.

Furthermore, although we start with constant values of qj, and there-
fore constant values of pj, the Cauchy-Schwarz split changes some of the
values. Since we have 5 functions, we have to repeat one function–raised to
the 1

2 power–on both sides of the split. For continuity the repeated function
is always listed third, meaning it always has the p3 value for its p-norm.
Therefore, we know that while p1 and p2 remain unchanged at 5

4 , p3 be-
comes 5

2 . Nevertheless, knowing these set values of each pj, the value of Ap
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is constant and calculated to be

Ap = Ap1 Ap2 Ap3

=
( ( 5

4 )
4
5

5
1
5

) 1
2
( ( 5

4 )
4
5

5
1
5

) 1
2
( ( 5

2 )
2
5

( 5
3 )

3
5

) 1
2

=
3

3
10 5

1
2

2
9
5

≈ 0.893

6.2.1 One Example Combination

The first combination is comparatively straight forward and chosen as the
resulting constant is relatively simple. Using Cauchy-Schwarz,∫ ∫

f (x)g(y)h(x − y)k(x − ay)l(bx + y)dxdy

≤
( ∫ ∫

|k(x − ay)h(x − y) f (x)
1
2 |2dxdy

) 1
2

( ∫ ∫
|l(bx + y)g(y) f (x)

1
2 |2dxdy

) 1
2

Now that we have chosen our split, we must use changes of variables to
transform each side before moving on to Young’s Convolution. We need
each side to be in the form f (x)g(y)h(x − y). The 1

2 power on the third
function does not need to be changed as it will be reflected in the value of
p later. Furthermore, due to the nature of these functions we will have to
use a scaling trick in our changes of variables. Essentially, we will not be
able to remove all instances of a and b, but we can transform the functions
so that a, b, and/or some combination of the two are unilaterally applied to
the entire function input, not just one variable. This trick is shown below

k(x − ay)h(x − y) f (x)dxdy
Let z = x − y
dx = dz

= k(z + y − ay)h(z) f (z + y)dzdy
Let aw = z + y − ay

dy = | a
1 − a

|dw

= k(aw)h(z) f (
−a

1 − a
(z − w))| a

1 − a
|dzdw
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and

l(bx + y)g(y) f (x)dxdy
Let − z = bx

dx = |1
b
|dz

= l(−(z − y))g(y) f (
−1
b
(z))|1

b
|dzdy

When we put this into our previous inequality (and changing all re-
maining y’s to be w’s for continuity), we have

≤| a
1 − a

||1
b
|
( ∫ ∫

|k(aw)h(z) f (
−a

1 − a
(z − w))

1
2 |2dzdw

) 1
2

( ∫ ∫
|l(−(z − w))g(w) f (

−1
b
(z))

1
2 |2dzdw

) 1
2 .

We have used Cauchy-Schwarz and a change of variables to transform our
inequality, enabling us to now use Young’s convolution inequality. This
yields

≤
(

Ap|
a

1 − a
|||k(aw)||p1 ||h||p2 || f (

−a
1 − a

(z − w))||p3

)
(

Ap|
1
b
|||l(−(z − w))||p1 ||g||p2 || f (

−1
b
(z))||p3

)
again with p1 = p2 = 5

4 and p3 = 5
2 . Now, the change of variables trick to

apply a, b, or some combination of the two to the entire function is clearly
seen. We can now use another change of variables to remove the constant
from the inside of the p-norm, but still keep its effect, using the definition
of p-norm.

||k(aw)||p1 = (
∫

k(aw)p1 dw)
1

p1

aw = y dw = |1
a
|dy

= (
∫

k(y)p1 |1
a
|dy)

1
p1

= |1
a
|

1
p1 (

∫
k(y)p1 dy)

1
p1 = |1

a
|

1
p1 ||k||p1 .
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We then do the same for all other p-norms such that the input for each
function is just the variable. For the functions with input x − y or z − w, the
function input is treated as one unit. This results in

≤ A2
p|

a
1 − a

||1
b
||1

a
|

1
p1 |1 − a

−a
|

1
p3 |b|

1
p3 ||k||p1 ||h||p2 || f ||p3 ||l||p1 ||g||p2 || f ||p3

, which can be simplified to

≤ A2
p|

1
a
| 1

5 | 1
1 − a

| 3
5 |1

b
| 3

5 |k||p1 ||h||p2 || f ||p3 ||l||p1 ||g||p2 || f ||p3

.
Here are the calculations put concisely in sequence:∫ ∫

f (x)g(y)h(x − y)k(x − ay)l(bx + y)dxdy

≤
( ∫ ∫

|k(x − ay)h(x − y) f (x)
1
2 |2dxdy

) 1
2

( ∫ ∫
|l(bx + y)g(y) f (x)

1
2 |2dxdy

) 1
2

≤ | a
1 − a

||1
b
|
( ∫ ∫

|k(aw)h(z) f (
−a

1 − a
(z − w))

1
2 |2dzdw

) 1
2

( ∫ ∫
|l(−(z − w))g(w) f (

−1
b
(z))

1
2 |2dzdw

) 1
2

≤ A2
p|

a
1 − a

||1
b
|||k(aw)||p1 ||h||p2 || f (

−a
1 − a

(z − w))||p3

||l(−(z − w))||p1 ||g||p2 || f (
−1
b
(z))||p3

≤ A2
p|

a
1 − a

||1
b
||1

a
|

1
p1 |1 − a

−a
|

1
p3 |b|

1
p3

||k||p1 ||h||p2 || f ||p3 ||l||p1 ||g||p2 || f ||p3

≤ A2
p|

1
a
| 1

5 | 1
1 − a

| 3
5 |1

b
| 3

5 ||k||p1 ||h||p2 || f ||p3 ||l||p1 ||g||p2 || f ||p3

At long last, we have calculated one possibility for the Brascamp-Lieb
constant, A2

p| 1
a |

1
5 | 1

1−a |
3
5 | 1

b |
3
5 . In order to fully determine the constant, we

have to calculate this for all other combinations and plot the minimum of
these calculated constants. Let us explore one more combination before
moving on to this plot.
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6.2.2 A Second Example Combination

The previous example combination was chosen for its relative simplicity,
and this combination is chosen for the opposite reason: this is the most
complex calculation. However, there is no difference in the methodology.
We will still split using Cauchy-Schwarz, transform with a change of vari-
ables, use Young’s convolution, again use changes of variables, and finally
simplify a combination of a’s and b’s.

Using Cauchy-Schwarz, we know∫ ∫
f (x)g(y)h(x − y)k(x − ay)l(bx + y)dxdy

≤
( ∫ ∫

|k(x − ay)l(bx + y)h(x − y)
1
2 |2dxdy

) 1
2

( ∫ ∫
| f (x)g(y)h(x − y)

1
2 |2dxdy

) 1
2

However, we are now faced with simultaneously a very difficult change of
variables–as k, l, and h are together–and no need for a change of variables–
as f , g, and h are already together. For k, l, and h, we will have to use
multiple changes of variables, and, to visually simplify this process, we
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will define α = a−1
b+1 .

k(x − ay)l(bx + y)h(x − y)dxdy
Let z = x − y
dx = dz

= k(z + y − ay)l(bz + by + y)h(z)dzdy
Let w = by + y

dy = | 1
b + 1

|dw

= k(z +
w

b + 1
− aw

b + 1
)l(bz + w)h(z)dzdw| 1

b + 1
|

= k(z − αw)l(bz + w)h(z)dzdw| 1
b + 1

|

Let m = bz + w
dw = dm

= k(z − αm − αbz)l(m)h(z)dzdm| 1
b + 1

|

Let n = z − αbz

dz = | 1
1 − αb

|dn

= k(n − αm)l(m)h(
1

1 − αb
n)dndm| 1

b + 1
|| 1

1 − αb
|

Let s = αm

dm = |1
α
|ds

= k(n − s)l(
1
α

s)h(
1

1 − αb
n)dnds| 1

b + 1
|| 1

1 − αb
||1

α
|

Which, substituting in x = n and y = s, results in

k(x − y)l(
1
α

y)h(
1

1 − αb
x)dxdy| 1

b + 1
|| 1

1 − αb
||1

α
|.

Now, we can use Young’s convolution to find

≤
(

Ap|
1

b + 1
|| 1

1 − αb
||1

α
|||k||p1 ||l(

1
α
)y||p2 ||h(

1
1 − αb

)x||p3

)
(Ap|| f ||p1 ||g||p2 ||h||p3).
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Again perform the change of variables within each p-norm to yield

≤ A2
p|

1
b + 1

|| 1
1 − αb

||1
α
||α|

1
p2 |1 − αb|

1
p3

||k||p1 ||l||p2 ||h||p3 || f ||p1 ||g||p2 ||h||p3 ,

which can be simplified to

≤ A2
p|

1
b + 1

||1
α
| 1

5 | 1
1 − αb

| 1
5 ||k||p1 ||l||p2 ||h||p3 || f ||p1 ||g||p2 ||h||p3 .

Let’s again look at these transformations concisely:∫ ∫
f (x)g(y)h(x − y)k(x − ay)l(bx + y)dxdy

≤
( ∫ ∫

|k(x − ay)l(bx + y)h(x − y)
1
2 |2dxdy

) 1
2

( ∫ ∫
| f (x)g(y)h(x − y)

1
2 |2dxdy

) 1
2

≤ | 1
b + 1

|| 1
1 + αb

||1
α
|
( ∫ ∫

|k(x − y)l(
1
α

y)h(
1

1 + αb
x)

1
2 |2dxdy

) 1
2

( ∫ ∫
| f (x)g(y)h(x − y)

1
2 |2dxdy

) 1
2

≤ | 1
b + 1

|| 1
1 + αb

||1
α
|(Ap||k||p1 ||l(

1
α
)y||p2 ||h(

1
1 + αb

)x||p3

)
(Ap|| f ||p1 ||g||p2 ||h||p3)

≤ A2
p|

1
b + 1

|| 1
1 + αb

||1
α
||α|

1
p2 |1 + αb|

1
p3

||k||p1 ||l||p2 ||h||p3 || f ||p1 ||g||p2 ||h||p3

≤ A2
p|

1
b + 1

||1
α
| 1

5 | 1
1 − αb

| 1
5 ||k||p1 ||l||p2 ||h||p3 || f ||p1 ||g||p2 ||h||p3 .

Again, we end with another possible value of the Brascamp-Lieb con-
stant: A2

p| 1
b+1 ||

1
α |

1
5 | 1

1−αb |
1
5 . Now that we have worked through two possible

combinations at varying levels of difficulty, we can move on.

6.2.3 All Function Combinations

The following table shows different splits of our 5 functions and their re-
spective constants. The minimum of all of these constants is graphed in the
next section.
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6.3 The Brascamp-Lieb Constant Visually

Visually, the minimum of the constants listed above takes the shape

Figure 6.4.1. Various Angles of the Graphed Minimum Constant.

This graph has several interesting features. Firstly, a spike where −1 ≤
b ≤ −0.5 along a = 1. Thus it is not differentiable at (a, b) pairs (1,−1) and
(1,−0.5). This is because when a = 1, B4 would be equal to B3, causing the
spike. Additionally, we see ridged going up to this spike approximately
along a = 0.5 and b = −0.5. These ridges appear because, with these
values, B4 and B5 would be identical. The remaining smaller ridges also
appear at values of a and b where linear maps would be identical.
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6.4 Types of Brascamp-Lieb Data

Returning to the types of Brascamp-Lieb Data discussed in Chapter 3 Sec-
tion 4, we can determine where the datum graphed above is each type.
This datum is extremizable except when a = 0, 1 and b = 0,−1, −1

a . It is
also simple for the same range. There are numerous possible equivalent
Brascamp-Lieb data that could be created with changes of variables.





Chapter 7

Conclusion

So, we’ve been introduced to the Brascamp-Lieb inequality–both broad
strokes and details–as well as other inequalities in the Brascamp-Lieb fam-
ily. We explored an application in computer science as well as fractal ge-
ometry. We even calculated the constant for a chosen family of linear maps.
The only thing left is to talk about the inequality’s significance.

The information in this paper does not translate well to real-world uses.
The easiest real-world application would be likening the span of the Kakeya
set to moving a pen in space or moving a large log around a forest. Even
these examples are lackluster and specific. So does the Brascamp-Lieb in-
equality have real world applications? Perhaps not, at least not ones that
are direct and tangible. The concepts and inequalities covered in this paper
tough the laws of math and statistics. However, lacking direct and tangible
applications does not make the inequality unimportant.

If you can indulge my Classics minor for a second, I would like to bring
us to the earliest studies of mathematics: a branch of philosophy. Pythago-
ras is yes famous for the Pythagorean Theorem, but also is known for es-
tablishing a functionally monastic school where members lived a largely
ascetic life, shared their possessions, and had communal meals. Pythago-
ras was viewed as a divine figure, sent by the gods for the benefit of hu-
mankind. While we may be several millennia from Pythagoras (and I will
admit, I have never viewed Brascamp or Lieb as god-sends), we can still
view mathematics as more than just complex problems begetting more
complex problems. Mathematics is an exploration of the limits of human
thought, and Brascamp-Lieb inequalities a piece of this expanse.



44 Conclusion

7.1 Acknowledgements

There are several people I would like to thank, first of all you, for reading
to this point. This thesis is the culmination of more than a year’s work and
I am grateful for each an every reader.

Next, I would like to thank my committee members: Lisa Naples and
Vittorio Addona. Thank you for your help and support throughout this
project, wether that was more direct math help (Lisa) or telling me I’m awe-
some (Victor). Your time, mentorship, and compassion have made my last
years at Macalester the best.

Most importantly, I would like to thank my advisor Taryn Flock. Taryn,
if not for your enthusiasm and dedication in Real Analysis I would never
have considered an honors thesis in the field. Thank you for your sharing
your expertise and passion with me. I always planned for this to be my last
foray into analysis, and it will forever be a special interest near and dear to
my heart.

Finally, I would like to thank my family and friends for their support.
Thank you for listening every time I came to you and asked (forced) you
to listen to some cool math thing I wanted to talk about. Thank you for
doing your best to understand Brascamp-Lieb inequalities. Additionally,
thank you to all the coffee shops in the Twin Cities (special consideration
for Claddaugh, Yellowbird, Caffetto, and Groundswell) for being the only
places I could get work done.



Bibliography

[1] Stephen Abbott. 2016. Understanding Analysis, Second Edition. Under-
graduate Texts in Mathematics. Springer.

[2] Anthony Carbery. 2006. “The Brascamp-Lieb inequalities: recent de-
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