Macalester Journal of Philosophy

Volume S

Issue 1 Spring 1994 Article 4

2-17-2011

The Halting Problem

Tracy D. Banitt
Macalester College

Follow this and additional works at: http://digitalcommons.macalester.edu/philo

Recommended Citation

Banitt, Tracy D. (2010) "The Halting Problem," Macalester Journal of Philosophy: Vol. S: Iss. 1, Article 4.
Available at: http://digitalcommons.macalester.edu/philo/volS/iss1/4

This Article is brought to you for free and open access by the Philosophy Department at Digital Commons@Macalester College. It has been accepted
for inclusion in Macalester Journal of Philosophy by an authorized administrator of Digital Commons@Macalester College. For more information,

please contact scholarpub@macalester.edu.

http://digitalcommons.macalester.edu/philo?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/philo/vol5?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/philo/vol5/iss1?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/philo/vol5/iss1/4?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/philo?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.macalester.edu/philo/vol5/iss1/4?utm_source=digitalcommons.macalester.edu%2Fphilo%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Tracy D. Banitt
"The Halting Problem"

Since Turing's Thesis was defined in the mid-1930s, many interesting questions
have been asked about Turing machines and their applications. One of these
questions is the halting problem. In this paper I will give a brief explanation of
Turing Machines and Turing's Thesis. I will also define and prove that the halting
problem is undecidable. Lastly, this paper will show some applications of the results
from the halting problem.

Turing's Thesis

If the reader is to understand the halting problem and its applications, an
explanation of Turing Machines and the history of Turing's Thesis is helpful. This
section of the paper will start off by giving some background information on Turing
and explaining what the thesis states. Next, this section will briefly define what a
Turing Machine is and how it can be used.

Alan Turing was born in Great Britain in June, 1912. He was raised with a
traditional British upper-middle-class education and later attended King's College at
Cambridge University. He graduated with distinction in mathematics in 1934 and was
elected to a Fellowship of King's College in the following year.

In 1935 Turing attended a course in mathematics which introduced him to the
Entscheidungsproblem, which was unsolved at the time. Turing was attracted to the
problem and in April, 1936, submitted a paper entitled "On Computable Numbers,
with an Application to the Entscheidungsproblem." In this paper Turing introduced
the idea of the Turing machine; his thesis was soon to follow.

Turing's Thesis is extremely simple, and states that any computation that can be
carried out by mechanical means can be performed by some Turing Machine. It is
important to remember that Turing's Thesis is only a thesis. No one has proven
Turing's Thesis to be correct because to do so we would have to define what is meant
by "mechanical means." Yet if we regard the thesis as a definition and assume that the
definition is sufficient enough to cover everything computers can do now and will
ever be able to do, then the thesis is acceptable.

Now that Turing's Thesis has been explained, a brief definition of what a Turing
Machine looks like can be given. Although there are infinitely many Turing
Machines, this paper will describe a general Turing Machine. A Turing Machine can
be thought of as a black box which has a read-write head that points at a tape. The
tape is infinite in both directions and is divided into cells, each of which is capable of
holding one symbol. The tape holds the input for the Turing Machine, and the Turing
Machine is allowed to read information from the tape and write information to the
tape.

The black box is the actual Turing Machine and is expressed as a tuple, TM = {Q,
E, G, s, q0, b, F}. Q is the finite set of internal states that the Turing Machine can be
in. The symbol E represents the finite set of symbols the Turing Machine recognizes
as input, called the input alphabet. The set of all symbols which are allowed to be on
the tape is represented by the symbol G. S is the transition function which causes the
Turing Machine to 'move'. The state the Turing Machine starts in is q0. The symbol

- 12 -

b represents a special tape symbol called "the blank.” Lastly, F is the finite set of all
final states; in other words, F is the set of all states that cause the Turing Machine to
halt.

A "move" on a Turing Machine is defined using the S transition function and is
written thus: S(qi, G) = (qj, G, {L or R}). This transition statement says that a Turing
Machine M, in state gi looking at a particular tape symbol in G, will change its state
to gj and replace the symbol on the tape with the new symbol from G. The {L or R}
represents the direction the read-write head is to move when the operation is complete
(L means left and R means right). Some Turing Machines will have a stay option, s,
which allows the Turing Machine to not move the read-write head on a specific
transition. This feature is not necessary since it adds no power to the Turing
Machine.

A Turing Machine contains many transition functions. Everything a Turing
Machine can do is defined by these transition functions. If a Turing Machine
encounters a situation on the tape where it is looking at an unknown symbol to its
specific state, it is said to "blow up.” This is my own little term, since a Turing
Machine could not actually "blow up." It is important to note that a Turing Machine
does not halt when it blows up. The Turing Machine simply is stuck and doesn't know
what to do. It has not halted because it is not in a final state. A Turing Machine halts
when it does not know what to do next and has reached a final state.

Now that Turing's Thesis and Turing Machines have been briefly defined, we are
ready to attack the halting problem.

Halting Problem

This section of the paper will define the halting problem and prove that it is
undecidable. There are two different proofs in this section, each using proof by
contradiction. The first is straightforward and the second uses the notion of
recursively enumerable languages. First, a definition of the halting problem is
needed.

The halting problem asks, given the description of a Turing Machine M and an
input w, does M starting in the start state q0 perform a computation that eventually
halts? In other words, will M eventually stop in a final state? The answer to this
question is no. The following proof is straightforward and clear, I hope.

We start by assuming that the halting problem is decidable. This is our
assumption that will be negated at the end when a contradiction arises. If the halting
problem is decidable, we can then create a Turing Machine that will be able to solve
the halting problem. Call this Turing Machine H. We will further define H to be the
Turing Machine that takes as input the description of M and the input string w and
halts in state qy if M halts on w, or halts in state qn if M does not halt on input w.

From H we build a new Turing Machine H' which acts exactly like H except when
H goes into state qy, H' is going to go into an infinite loop. This is very easy to do;
we simply add three transition functions and two new states o H. The first sends H to
state qa if H is in state qy. The second sends H to gb if H is in qa. The last sends H to
qa if H is in gb. These three transition statements do not care what symbol the read-
write head is looking at. (See Figures A and B.)

w13 =

Figure A

M w
Tnpuc

It is easy to see that H' is not that different from H. With input M and w, the
Turing Machine H' will go into an infinite loop if M halts on w; or if M does not halt
on w, H' will halt in state qn. Now, from H' we create another new Turing Machine H"
which takes as input the description of a Turing Machine, copies that description, and
then behaves exactly like H'. The reason that H" copies the description of the Turing
Machine is because we need to get the input into the form; description of M and an
input string w, H" copies the description so that the input is now of the form:
description of M description of M, where the second description of M is treated as if it
were w. In summary, H" takes as input a description of Turing Machine M; it goes
into an infinite loop if M halts with a description of itself as input, and goes to state
gn if M does not halt with itself as input.

The final step in this proof is the contradiction. Since H" is also a Turing
Machine, we can take a description of it and send it through H". This means that H"
will halt in state gn if H" does not halt, and H" will not halt if H" halts. This is
obviously nonsense, and we can now negate our assumption, which means there does
not exist a Turing Machine which can solve the halting problem. Therefore, the
halting problem is undecidable.

The second proof uses recursively enumerable languages. The proof starts out
by saying that if the halting problem is decidable, then every recursively enumerable
language would be recursive. This is not true, and thus the halting problem is not
decidable. The proof is as follows.

First, we let L be a recursively enumerable language. We also say that M is a
Turing Machine that accepts the language L. That is, whenever a string of characters
is in the language L, M will halt in some state qy, and if the string of characters does
not belong to the language L, M will not halt at all.

=14 =

Next, we again assume that H is a Turing Machine that solves the halting
problem. We apply the description of M and the string w to H; if H says M does not
halt on string w, then w is not in L. If H says yes, then w is in L, so then apply w to
M. But we know that M must halt, so M will eventually tell us whether w is or is not
in L. This means we have a membership algorithm, if we have a membership
algorithm L recursive. Yet there are recursively enumerable languages that are not
recursive. Therefore, we have a contradiction and can negate our assumption that
there exists a Turing Machine that can solve the halting problem. Once again the
halting problem is proven undecidable.

These two proofs clearly show that the halting problem is undecidable. The
next section of this paper will show how we can use these results to answer questions
about other problems' decidability.

Applications

Using the results from the halting problem, we can prove many other
undecidable problems by reducing them to the halting problem. I will call this
method of proof the reduction method. Reducing one problem to the halting problem
is another way of saying we are going to use the logical rule MTT. We start by saying
that if problem A is decidable, then the halting problem is decidable. Since we know
the halting problem is undecidable, we can negate our assumption that problem A is
decidable. This means that A is undecidable.

A good example of the reduction proof method is the blank tape halting
problem. This problem asks, given a Turing Machine M and a blank tape, can we
determine if M will ever halt using the blank tape as input? It looks as if we could
prove this problem to be undecidable in the same way we proved the original halting
problem (and actually we could), but it is a good example to introduce the reduction
method. The proof that the blank tape halting problem is undecidable follows.

First we assume we have a Turing Machine M' which can solve the blank tape
halting problem. Next, take any arbitrary Turing Machine M and any input string w.
Construct from M a new Turing Machine M'. M' will start with the blank tape, write
the string w on the tape, and then position the read-write head at the beginning of
string w. M' will then change its state to the start state qO and act just like M would on
w. Clearly, M' will halt on a blank tape if and only if M will halt on the input string
w. But if we can decide whether M will halt on input string w, we have answered the
halting problem. We already know that the halting problem is undecidable, so we
have a contradiction and can negate our assumption. The conclusion is that the blank
tape halting problem is undecidable.

Another example of the reduction method is the state entry problem. This
problem asks if, given a Turing Machine M and an input string w, will M ever enter
the specific state gi during the computation process? This problem can also be
proven undecidable by reducing it to the halting problem. The proof is as follows.

First, we assume the state entry problem is decidable. We modify the original
machine M to get a Turing Machine M', which acts exactly as M does except if M
halts on the string w then M' will halt in the state gi, and if M does not halt on w,
then M' will halt in the state qn. Again we see that if we had a way of deciding the
state entry problem, we would also have a way of deciding the halting problem. Since

- 15 -

we know that the halting problem is undecidable, we can conclude that the state entry
problem is also undecidable.

These two examples help show the usefulness of the halting problem. Proving
that these two problems are undecidable would be much more difficult if we could not
simply reduce them to the halting problem.

In a broader picture, proving the halting problem is undecidable answers many
larger questions. For example, if the halting problem was proven decidable, then
someone would no doubt try to create a Turing Machine that could solve the halting
problem. With a Turing Machine that can solve the halting problem, it is not hard to
imagine a computer program that can decide whether any given computer program
will stop on a specific input. The next step after this is writing a program that can
decide if a specific computer program is correct for a certain task. After this, the next
logical step is to create a computer program which can generate correct computer
programs for a specific problem. This would not go over well, since many computer
programmers would be out of jobs. Yet, since the halting problem is undecidable,
this does not seem a possibility. If artificial intelligence is considered, then this last
statement seems false. This issue is definitely worthy of further study, but since this
paper is about the halting problem and Turing Machines, I will not go into this topic.

In conclusion, proving the halting problem is undecidable has many different
applications in the world. The two problems discussed in this paper are part of a large
set of problems that the halting problem has helped to solve. I doubt if Alan Turing
knew what the consequences of his paper would be when he wrote it in 1936, but I'm
sure he is pleased with the results. Turing's Thesis has given the computer science
world a great tool for solving problems.

Bibliography

Cohen, Daniel LLA., Introduction to Computer Theory. New York: Wiley, 1986.

Davis, Martin, Computability, Complexity, and Languages. New York: Academic
Press, 1983.

Herken, Rolf, The Universal Turing Machine. New York: Oxford Univ. Press, 1988.

Hodges, Andrew, Alan Turing: The Enigma. New York: Simon & Schuster, 1983.

Linz, Peter, An Introduction to Formal Languages and Automata. Lexington, MA:
D.C. Heath, 1990.

- 16 =

	Macalester Journal of Philosophy
	2-17-2011

	The Halting Problem
	Tracy D. Banitt
	Recommended Citation

