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Abstract

We study the family An of sequences (a1, a2, . . . , an) where 0 ≤ ak ≤ k and
nonzero entries are distinct. We show that these sequences are in bĳection
with the set partitions of [n + 1]. These sequences have a natural poset
structure, and we analyze the maximal chains of this poset. Finally, we
explore various subfamilies ofAn, including sequences whose largest entry
is k and sequences missing the value k.
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Chapter 1

Introduction

Combinatorics is a branch of mathematics that focuses on counting sets and
their various constructions. We focus on the field of enumerative combina-
torics to investigate a family of integer sequences and their construction.

In this introductory chapter, we will introduce various combinatorial
families, including permutations, set partitions, partially ordered sets, and
binary triangles.

In Chapter 2, we will define and describe An, our family of sequences
highlighted in this project. We will show that An are in bĳection with set
partitions of [n+ 1].

In Chapter 3, we will explore the partially ordered set of An. This will
include our maximal and minimal elements, maximal chains, and coverings
of elements in the poset.

In Chapter 4, we look at three different subfamilies of An.

1.1 Combinatorial Families

We begin by offering definitions of combinatorial families that are relevant to
the main focus of this paper. This will include permutations, set partitions,
and binary triangles.

1.1.1 Permutations

Definition 1.1. A permutation is an ordering of n distinct elements such
that each element appears once.
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Table 1.1 depicts all the permutations of the set [4] = {1, 2, 3, 4}. There
are n! permutations for n elements since we can choose one of n elements
for the first spot, (n− 1) elements for the second spot, and so on.

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

Table 1.1 The 4! = 24 Permutations of [4]

1.1.2 Set Partitions

Definition 1.2. A set partition of the set S = {1, 2, 3, . . . , n} into k parts is
a collection of k disjoint subgroups, or blocks, such that the union of these
blocks is S.

4|3|2|1 4|3|21 4|31|2 41|3|2 4|32|1
42|3|1 43|2|1 43|21 42|31 41|32
432|1 431|2 421|3 4|321 4321

Table 1.2 Set Partitions of [4]

Table 1.2 depicts all the set partitions of [4]. We write our set partitions
in decreasing form, such that we have blocks

a0, a1, . . . , ai|b0, b1, . . . , bj | . . . |f0, f1, . . . , fk

where a0 > b0 > · · · > f0 and a0 > a1 > · · · > ai and likewise for all other
blocks. In other words,

• the elements within our blocks are arranged in decreasing order, and

• the blocks are arranged in decreasing order of maximum element.

The nth Bell number Bn counts all the ways to partition a set with n

elements. Here are the first few Bell numbers, starting with B0:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, . . .
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The Bell numbers can be generated from the recurrence relation

Bn+1 =

n∑
k=0

(
n

k

)
Bk.

1.1.3 Partially Ordered Sets

Definition 1.3. A partially ordered set, or poset (S,⪯), is a set S along with
a partial ordering ⪯ such that

1. s ⪯ s for all s ∈ S,

2. if s ⪯ t and t ⪯ s, then s = t, and

3. if r ⪯ s and s ⪯ t, then r ⪯ t.

When s ⪯ t, we say that s and t are comparable. We say that the set S
is partially ordered because not every element in S needs to be comparable.
There may be elements s, t ∈ S such that neither s ⪯ t nor t ⪯ s.

1.1.4 Binary Triangles

Definition 1.4. A binary triangle is a left-justified binary array T (i, j) for
1 ≤ j ≤ i ≤ n.

A binary triangle of sizenhasn rows andn columns, enumerated bottom
to top and left to right respectively. Binary triangles can be visualised as
in Figure 1.1 with filled and unfilled squares, corresponding to 1 and 0
respectively.
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Figure 1.1 Binary Triangles of Size 2

1.2 Bĳections

Definition 1.5. A bĳection is a function φ : A → B between two sets A an
B such that

1. For all b ∈ B, there exists a ∈ A such that φ(a) = b, and

2. If for a1, a2 ∈ A we have φ(a1) = φ(a2), then a1 = a2.

1.3 Approval Ballot Triangles

This project is preceded by research on approval ballot triangles (ABTs).
Approval ballot triangles (ABTs) are a family of triangular arrays that is in
bĳection with totally symmetric self-complimentary plane partitions (TSS-
CPPs). A TSSCPP of order n is a plane partition in a 2n× 2n× 2n box with
with maximum possible symmetry. Andrews [1] proved that the number
of TSSCPPs of order n is

n−1∏
k=0

(3k + 1)!

(n+ k)!
,

see OEIS A005130 [8]. See Bressoud [5] for a recounting of the history and
mathematical connections of this remarkable formula.

Beveridge and Calaway [4] recently introduced the family of approval
ballot triangles. ABTs are a binary encoding of a nest of lattice paths
obtained from the fundamental domain of a TSSCPP. This was proven in
[4], but equivalent encodings appear in [6] and [9].
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Definition 1.6. An approval ballot triangle (ABT) of order n is a binary tri-
angular array A(i, j) for 1 ≤ j ≤ i ≤ n − 1 satisfying the following row
condition

k∑
k=j

A(i, k) ≤
i+1∑
k=j

A(i+ 1, k) for 1 ≤ j ≤ i ≤ n− 2.

Note that an ABT of order n has n − 1 rows. Intuitively, a binary
triangle is an ABT when row i+1 ends with at least as many ones as row i.
Beveridge and Calaway show that ABTs encode an approval voting process
with n − 1 ballots in which candidate i never trails candidate j whenever
1 ≤ i < j ≤ n. This generalizes many known ballot problems, including
the famous Bertrand Ballot Problem for two candidates. See Barton and
Mallows [3], Takàcs [10], and Renault [7] for surveys of ballot problems.
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Figure 1.2 The 42 approval ballot triangles of order 4. The zero entries are
rendered blank for visual clarity. The blue arrays are the 15 staircase arrange-
ments of pillars with distinct height in a triangular array of size 3.

The 42 ABTs of order 4 are shown in Figure 1.2. Approval ballot triangles
have many natural subfamilies that are in bĳection with famous combinato-
rial families, including permutations, set partitions and Catalan numbers.
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See [2] for an extensive list of these subfamilies and their structures. The 15
blue triangles are staircase arrangements of pillars with distinct height in a
triangular array of size 3.



Chapter 2

Staircase Arrangements of
Pillars with Distinct Heights

2.1 Defining Our Main Family

Our primary focus in this paper is on the family An.

Definition 2.1. A sequence a = (a1, a2, . . . , an) is an element of An if

1. For 1 ≤ i ≤ n, we have 0 ≤ ai ≤ i , and

2. For 1 ≤ i < j ≤ n, if ai > 0 and aj > 0 then ai ̸= aj .

Sequences of An can also be represented as binary triangles where ai is
the number of ones in column i, placed from the bottom up. The number
of ones in a column must be different for all columns of a. These ones form
pillars of distinct heights that we arrange in the staircase template. Figure
2.1 depicts sequences of An for small n alongside their binary triangle
representations. For example, the sequence (1, 0, 2) ∈ A3 can be visualized
as a staircase arrangement with a pillar of height one in the first location
and a pillar of height two in the third location.

Throughout this project, it may be advantageous to think of elements of
An as both sequences and binary triangles, depending on the context.



8 Staircase Arrangements of Pillars with Distinct Heights

A1

1

(1) (0)

A2
1 1

1

(1, 2)

1

(1, 0)

1
1

(0, 2)

1

(0, 1) (0, 0)

A3

1 1
1

1
1
1

(1, 2, 3)

1 1
1

(1, 2, 0)

1 1
1
1

(1, 0, 3)

1 1
1

(1, 0, 2)

1

(1, 0, 0)

1
1

1
1
1

(0, 2, 3)

1
1

1

(0, 2, 1)

1
1

(0, 2, 0)

1 1
1
1

(0, 1, 3)

1 1
1

(0, 1, 2)

1

(0, 1, 0)

1
1
1

(0, 0, 3)

1
1

(0, 0, 2)

1

(0, 0, 1) (0, 0, 0)

Figure 2.1 Elements ofAn, represented as both sequences and binary trian-
gles.
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2.2 Bĳection to Set Partitions of [n+ 1]

2.2.1 Sequence to Set Partition

The set An is in bĳection with set partitions of [n + 1]. The mapping from
a ∈ An to a set partition of [n+ 1] is given by Algorithm 1.

Algorithm 1: Build-A-Partition
B ← {}
S ← {1, 2, . . . , n, n+ 1}
a← {a0 = 0, a1, . . . , an}
while S ̸= ∅ do
k ← maxS
B = ∅
while k > 0 do

add k to B
remove k from S
k ← ak−1

end while
add B to B

end while
return B

As we build the set partition, our main rule is that a block ends if
ak−1 = 0 and we add ak−1 to the block if ak−1 > 0.

We begin our set partitions with the greatest element that is not yet in a
block. There are 2 options for the next element in the block.

1. The next entry in the sequence is zero and the block is ended.

2. The next entry in the sequence is a nonzero k and k is added to the
block.

Figure 2.2 demonstrates this mapping from a 4-sequence to a set parti-
tion of [5]. Here is the mapping process in detail.

• Algorithm 1 elements:
B = {}
S = {5, 4, 3, 2, 1}
B = {}
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• Beginning with the sequence (1, 0, 2, 3), we start our first block of the
partition with 5, the greatest element of [5].
B = {}
S = {4, 3, 2, 1}
B = {5}

• We have a4 = 3, so we add 3 into the 5-block.
B = {}
S = {4, 2, 1}
B = {5, 3}

• Next, a2 = 0, so the block is ended.
B = {{5, 3}}
S = {4, 2, 1}
B = {}

• We start a new block with 4, the largest number in [n + 1] that is not
yet in a block.
B = {{5, 3}}
S = {2, 1}
B = {4}

• We have a3 = 2, so we add 2 into the 4-block.
B = {{5, 3}}
S = {1}
B = {4, 2}

• Next, a2 = 1, therefore, we add 1 into the 4-block as well.
B = {{5, 3}}
S = {}
B = {4, 2, 1}

• We have a0 = 0, so the block ends and is added to the set partition
B = {{5, 3}, {4, 2, 1}}
S = {}
B = {4, 2, 1}

• Finally, since S is empty, we have obtained our set partition: 53|421.
B = {{5, 3}, {4, 2, 1}}

Since this algorithm inspects every ak in the sequence a, we know that
we did not miss any entries during the mapping.
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1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 5

Step 0

1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 53

Step 1

1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 53|

Step 2

1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 53|4

Step 3

1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 53|42

Step 4

1 1
1

1
1
1

(1, 0, 2, 3)
Partition: 53|421

Step 5

Figure 2.2 Example of Build-A-Partition

2.2.2 Set Partition to Sequence

As we form a sequence a of An from a set partition, we arrange the
blocks of the partition in decreasing order and update terms of a according
to the entry following it in the block. Figure 2.3 depicts the steps of our
Algorithm 2 in the following way:

1. Begin with the set partition 542|31 and a sequence of four zeros.

2. Consider the first block 542. b1 = 5 and b2 = 4. Therefore, we update
a5−1 = a4 to 4.

3. Next we move to b2 = 4 and b3 = 2. We update a4−1 = a3 to 2.

4. The last element of the block is b3 = 2, so we do nothing and keep
a2−1 = a1 = 0. From this block, our sequence is a = (0, 0, 2, 4).

5. Consider the next block 31. b1 = 3 and b2 = 1; therefore, we update
a3−1 = a2 to 1.

6. The last element of this block is b2 = 1, so we do nothing.
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Algorithm 2: Build-A-Sequence
P ← {B1, B2, . . . , Bm}
P is a set partition where Bm = {b1, b2, . . . , bk} and bi > bi + 1
a← {a0 = 0, a1 = 0, . . . , an = 0}
for block Bi in P do

for element bj in Bi do
if bj+1 exists then

abj−1 ← bj+1

end if
end for

end for
return a

Since we have considered every block and every element of the set
partition and made the corresponding updates, our mapping from a set
partition of [5] to a sequence of An is complete. 542|31 maps to (0, 1, 2, 4).

(0, 0, 0, 0)
5 4 2 | 3 1

Step 0

(0, 0, 0, 4)
5 4 2 | 3 1

Step 1

(0, 0, 2, 4)
5 4 2 | 3 1

Step 2

(0, 0, 2, 4)
5 4 2 | 3 1

Step 3

(0, 1, 2, 4)
5 4 2 | 3 1

Step 4

Figure 2.3 Example of Build-A-Sequence

Theorem 2.2. Sequences of An are in bĳection with set partitions of [n+ 1].

Proof. Letφ be the mapping fromAn to set partitions of [n+1] by Algorithm
1. Additionally, let a be a sequence inAn and let s be a set partition of [n+1].
To show that φ is a bĳection, we need to show that it is one-to-one and onto.

First we will show that φ is one-to-one. This means that if φ(a) = φ(b)

for a, b ∈ An then a = b. We will prove the contrapositive. Consider
φ(a) = s, φ(b) = t are different set partitions of [n + 1]. We can reverse φ

with Algorithm 2. Let ℓ ∈ [n + 1]. ℓ must appear in both s and t. We will
notate its position in s as si,j as ℓ is in the jth position of the ith block of s. ℓ
is also in t at the location tk,h, where it is in the hth position of the kth block.
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Since s ̸= t, there must be an ℓ such that si,j+1 ̸= tk,h+1 while si,j = tk,h = ℓ.
This means that the position of ℓ in s differs from the one in t. In this case,
we have aℓ = si,j+1 and bℓ = tk,h+1. Since we update the ℓth position of the
sequence to different entries, a and b must not be the same sequence since
φ(a) ̸= φ(b). Therefore, φ is one-to-one.

Now that we have shown φ is one-to-one, we will show that φ is onto.
This means that for every b in the set partitions of [n + 1], there exists an
a ∈ An such that φ(a) = b. We know from Algorithm 1 that there exists a
b in the set partitions of An so that φ(a) = b for all a ∈ An. We also know
from Algorithm 2 that there exists an a ∈ An such that φ(a) = b for all b in
the set partitions of [n+ 1]. Therefore, φ is an onto mapping.

Because φ is both one-to-one and onto, sequences of An are in bĳection
with set partitions of [n+ 1]

Next, we show that we can determine the number of blocks in the
corresponding set partition by counting the zero entries of a ∈ An.

Corollary 2.3. The number of zeros in A ∈ An is equivalent to one less than the
number of blocks in the corresponding set partition.

Proof. Let a ∈ An. When mapping to a set partition, a block is ended when
ai = 0. But since each element k in the set partitions corresponds to ak−1

in the sequence, element 1 will always be the least element in its block but
does not have a mapping in the sequence a. Therefore, all blocks except the
one containing 1 correspond to an ai = 0 element in the sequence. So if the
set partition has j blocks, a has j − 1 zero entries.





Chapter 3

Partial Orderings and Chains

3.1 Comparing Size of Elements

For elements a, b ∈ An, we say that a ⪯ b if and only if ai ≤ bi for all i ∈ n.
In Figure 3.1, a ⪯ c and b ⪯ c, but neither a ⪯ b nor b ⪯ a since a1 > b1
while a2 < b2. The elements a and b are not comparable.

Using the bĳection of Algorithm 1, the poset for An induces a poset on
the set partitions of [n + 1]. We explore the properties of this set partition
poset.

1

(1, 0)
a

1

(0, 1)
b

1
1
1

(1, 2)
c

Figure 3.1 Example of Comparable and Non-comparable Elements.

Figure 3.5 and Figure 3.6 show the posets for A3 and A4, respectively.

3.1.1 Comparing size of set partitions

We start by setting some notation. We write our set partitions so that each
element of a block is in decreasing order and the greatest elements of each
block are in decreasing order. In other words, the set partition A with k
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1 1
1
1

1
1

1
1
1
1

(0, 1, 0, 3, 2, 4)
Partition: 74|62|531

A

1 1
1
1

1
1
1
1

1
1

1
1
1
1
1
1

(0, 1, 3, 4, 2, 5)
Partition: 75431|62

B

1
1

1
1
1
1
1

1
1
1

(0, 2, 0, 0, 5, 3)
Partition: 732|65|4|1

C

Figure 3.2 Comparable and Non-comparable Elements

blocks is

A = A1

∣∣A2

∣∣ · · · ∣∣Ak

= a1,1a1,2 · · · a1,r1
∣∣a2,1a2,2 · · · a2,r2∣∣ · · · ∣∣ak,1ak,2 · · · ak,rk

where
a1,1 > a2,1 > · · · > ak,1

and
ai,1 > ai,2 > · · · > ai,ri for 1 ≤ i ≤ k.

We let |A| = k denote the number of blocks in the set partition. Finally, for
convenience, we will define

ai,ri+1 = 0 for 1 ≤ i ≤ k.

We will proceed with an example of comparable set partitions in this
induced ordering and then follow with classifying when A ≺ B for set
partitions A and B.

Consider Figure 3.2 for an example of comparable and non-comparable
elements. A ≻ B while A and C are not comparable. In order to compare
the sizes of these set partitions, we need to consider all ℓ ∈ [n] and do the
following:

1. Locate ℓ in A and B where ai,j = bk,h = ℓ.

2. Compare ai,j+1 and bk,h+1.

If ai,j+1 ≥ bk,h+1 for all ℓ ∈ [n], then A ⪯ B. If ai,j+1 ≤ bk,h+1 for all ℓ ∈ [n],
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ℓ (i, j) (k, h) ai,j+1 bk,h+1

7 (1, 1) (1, 1) 4 < 5
6 (2, 1) (2, 1) 2 = 2
5 (3, 1) (1, 2) 3 < 4
4 (1, 2) (1, 3) 0 < 3
3 (3, 2) (1, 4) 1 = 1
2 (2, 2) (2, 2) 0 = 0
1 (3, 3) (1, 5) 0 = 0

Table 3.1 Comparing Set Partitions. We find the location of ℓ in the induced
set partition for a and b and then evaluate the relationship between the ele-
ments following ℓ in the set partitions

then A ⪰ B. Finally, if there are some ℓ where ai,j+1 < bk,h+1 and some
where ai,j+1 > bk,h+1, then A and B are not comparable.

We record these relations between A and B from Figure 3.2 in Table 3.1.

1. Let us begin with ℓ = 7. a1,1 = 7 and b1,1 = 7. So we compare a1,2 = 4

with b1,2 = 5 and see that for ℓ = 7, a < b.

2. Let us consider ℓ = 3. a3,2 = 3 and b1,4 = 3. When we compare
a3,3 = 1 and b1,5 = 1, we find that for ℓ = 3, a = b.

After comparing all ℓ ∈ [n], we find that ai,j+1 ≤ bk,h+1 for all ℓ ∈ [n]

and since there is at least one ℓ where ai,j+1 < bk,h+1, we have A ≺ B.

Lemma 3.1. Let a, b ∈ An and let A,B be the corresponding set partitions. If
A ≺ B then |A| ≥ |B|.

Proof. We prove the contrapositive. Recall that a zero in sequence a signals
the end of a block in the corresponding set partition A. When set partition
A has more blocks than set partition B, the sequence a has more zeros
than sequence b. Therefore, if a and b are comparable, then we must have
a ≺ b.

Let
A = A1 | A2 | · · · | Ar

where Ai = ai,1ai,2 · · · ai,ri , and let

B = B1 | B2 | · · · | Bs
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where Bi = bi,1bi,2 · · · bi,si and r ≤ s. By the previous lemma, we either
have A ≻ B or these set partitions are not comparable. This leads us to the
following theorem.

Theorem 3.2. Let A,B be set partitions of [n + 1]. A = A1 | A2 | · · · | Ar

where each Ai = ai,1ai,2 · · · ai,ri , and B = B1 | B2 | · · · | Bs where each
Bi = bi,1bi,2 · · · bi,si . A ⪰ B if and only if ai,j+1 ≥ bk,h+1 for all ℓ ∈ [n + 1]

where ℓ = ai,j = bk,h.

Proof. We prove the forward direction first. From Theorem 2.2, we know
that set partitions of [n+1] are in bĳection withAn sequences. Therefore, let
a, b ∈ An be the induced sequences from the set partitionsA,B respectively.
Given that A ⪰ B, we also have that a ⪰ b and ai ≥ bi for all i ∈ [n]. Let
ℓ ∈ [n + 1]. From Algorithm 1, we know there exists i, j, k, h such that
ai,j = bk,h = ℓ. Because a ⪰ b, the mapping gives that ai,j+1 ≥ bk,h for all
ℓ ∈ [n+ 1]. This proves the forward direction.

Now assume that ai,j+1 ≥ bk,h+1 for all ℓ ∈ [n+ 1] where ℓ = ai,j = bk,h.
From Algorithm 2, we know that aℓ−1 ≥ bℓ−1 for all ℓ ∈ [n + 1]. Therefore
a ⪰ b and A ⪰ B by the bĳection. This proves the backward direction.

3.2 Covers of Elements

Definition 3.3. For elements a, b ∈ An, we can say that a covers b if a ≻ b

and there is no c ∈ An such that a ≻ c ≻ b.

Let Ji be the set of elements j such that j /∈ a and ai < j ≤ i. In other
words, these are the numbers that could be in ai to increase a. Beginning
with an element a ∈ An, its covers are constructed by doing one of the
following

1. Increasing ak to min(Jk) when ak > 0, or

2. Setting ak = min(Jk) when ak = 0.

Note that there may be instances in which either one of the options may
not be possible. We will look at a few examples of covers to clarify this
point. In Figure 3.3 we begin with the sequence a = (0, 0, 2), the sequences
above are the possible covers of a. Note that {1, 3} /∈ a. We can obtain
covers of a by doing one of the following:

1. For a1 = 0, J1 = {1}, therefore, we can set a1 = 1, achieving the cover
a = (1, 0, 2). This is an example of the second case where ai = 0.
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1 1
1

(1, 0, 2)
421|3

1 1
1

(0, 1, 2)
42|31

1
1
1

(0, 0, 3)
43|2|1

1
1

(0, 0, 2)
42|3|1

Figure 3.3 Covers of 002

2. For a2 = 0, we again have J2 = {1}, therefore, we can set a2 = 1 and
achieve the cover (0, 1, 2). This is also an example of the second case
where ai = 0.

3. Finally, for a3 = 2, we have J3 = {3}. We can set a3 = 3 and obtain
the cover (0, 0, 3). This is an example of the first case where ai > 0.

For an example of when it is not possible to increase an entry ai to achieve
a cover of a, consider the sequence (0, 1, 2). In this example, a1 = 0 and
J1 = ∅, so there are no ways to achieve a cover by increasing a1. Similarly,
we can not increase a2 = 1 since J2 = ∅. Therefore, the only cover for a is
(0, 1, 3) where we increase a3 = 2 to min J3 = min{3} = 3.

Lemma 3.4. An An sequence a has at most one covering from increasing a given
ai ∈ a.

Proof. Let a ∈ An. Consider achieving a cover with an arbitrary ai ∈ a. We
know the set Ji is the set of all j such that ai < j ≤ k and j /∈ a. Ji is either
the empty set of has at least one element.

Suppose Ji is empty. In this case, a has no achievable coverings from ai.
Now suppose ji is not empty. There is at least one element j that ai can be
increased to. Since coverings are achievable from min(Ji), there is only one
option for increasing ai. Therefore, a has at most one covering achieved by
increasing ai ∈ a.
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Theorem 3.5. The number of coveringsa′ for a sequencea ∈ An is equivalent to the
number of nonempty Ji for all 1 ≤ i ≤ n where Ji = {j : ai < j ≤ i and j /∈ a}.

Proof. From Lemma 3.4, we know that there is at most one way to achieve
a cover from any ai ∈ a. Additionally, covers are only achieved when
Ji ̸= ∅. Therefore, the total number of covers for a given sequence a will be
the number of entries ai that are able to increase, which is the number of
nonempty Ji.

3.2.1 Coverings with Set Partitions

From the mapping of An sequences to set partitions of [n + 1], we have
a natural ordering of these set partitions and can analyze the process of
coverings for set partitions. Recall that we write the set partition A with k

blocks as

A = A1

∣∣A2

∣∣ · · · ∣∣Ak

= a1,1a1,2 · · · a1,r1
∣∣a2,1a2,2 · · · a2,r2∣∣ · · · ∣∣ak,1ak,2 · · · ak,rk

where
a1,1 > a2,1 > · · · > ak,1

and
ai,1 > ai,2 > · · · > ai,ri for 1 ≤ i ≤ k.

As mentioned earlier, a covering a′ of a sequence a ∈ An can be achieved
by one of the following methods:

1. The cover changes ak = 0 to a′k > 0 where a′k /∈ a, or

2. The cover changes ak > 0 to a′k > ak where a′k /∈ a.

In the first case, two blocks of our set partition merge together. Consider
the partition 42|3|1 in Figure 3.3. We can do either of the following merges:

1. Block 42 merges with block 1 because 0 < 1 < 2 to achieve the top left
partition 421|3, or

2. Block 3 merges with block 1 to achieve the top middle partition 42|31.

Note that we can not merge 42 and 3 together because 2 < 3. Doing so
results in the partition 423|1, which we then reorder to be decreasing as
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432|1. This partition shows that we have increased a3 in the sequence to 3

as well as increased a2 to 2.
In the second case, we swap elements of blocks depending on their

relation to others. Consider the set partition 42|31 in Figure 3.3. We can
swap the block 31 in for element 2 in block 42 since 3 > 2. This results in
the partition 431|2.

Generally, merges and swaps are permitted if the following conditions
are met.

1. Block Ai can merge with block Aj when aj,1 = min(ak,1 : ak,1 < ai,ri).
In other words, this is when the greatest element in block Aj , or aj,1
is the minimum of all the blocks whose greatest element ak,1 is less
than the least element of block Ai, which is ai,ri .

2. Let ai,ℓ ∈ Ai. Elements ai,p ∈ Ai such that p > ℓ can swap with block
Aj when aj,1 = min(ak,1|ai,ℓ > ak,1 > ai,ℓ+1).

3.3 The Partially Ordered Set

Figure 3.4 depicts the partially ordered setA3 by connecting elements a, b ∈
An when a covers b.

3.3.1 Layers of the poset

Big elements

The maximum element of An is (1, 2, 3, . . . , n). These are the binary trian-
gles where all entries are 1. The corresponding set partition is the unique
partition with exactly one block.

This maximal element covers n elements of the An family. These are
the triangles that are completely full except for one empty column. The
corresponding set partitions have two blocks: one has n − 1 elements and
the other has one element.

There are exactly n · (n − 1) elements in the third highest layer of the
poset. This is because, starting with the maximum sequence, we pick one
of the n entries to make zero and then pick on of the remaining n−1 entries
to reduce. This row is actuallyAn,2, the subfamily explored in Chapter 4 of
An elements in which the maximum element is 2.

Counting the size of layers below the third highest layer is an open
problem.
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Small elements

The minimum element in An is the sequence of all zeroes. When given as
set partitions, these are partitions in which all n+1 elements are in separate
blocks.

There are n elements in the second layer from the bottom. These are the
sequences of all zeroes except for one ai = 1.

The third layer has n · (n−1) elements. These sequences come from first
choosing one of the n entries to make a 1. Then we choose from n−1 places
to place a 2. Note that it is possible that we select the same ai to place 1 and
then place 2 if i > 1. This is fine since it is equivalent to placing 1 in ai and
then increasing ai by 1.

Counting the size of layers above the third layer is an open problem.
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4|3|2|1

41|3|2 4|31|2 4|3|21

42|3|1 4|32|1

41|32 421|3 42|31 4|321

43|2|1

431|2 43|21

432|1

4321

Figure 3.4 Partially Ordered Set ofA3. Elements are given as both binary tri-
angles where the filled in blocks represent ones and their induced set partition
from our previously defined mapping.
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Figure 3.5 The poset forA3.
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Figure 3.6 The poset forA4.
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3.4 Chains

Now that we have formed a hierarchy of elements in the family An, we can
explore the relationships between them. In this section, we will look at
chains in the poset.

Definition 3.6. A chain is a set of elements {c0, c1, . . . , ci} such that we have
c0 ≺ c1 ≺ · · · ≺ ci where each element is a covers the one before it.

3.4.1 Maximal Chains

Definition 3.7. A maximal chain is not a subset of any other chain.

A maximal chain of An must start at the unique minimum element
(0, 0, . . . , 0) and end at the unique maximum element (1, 2, 3, . . . , n). Note
that there may be multiple maximal chains and they may be different
lengths. Figures 3.7 and 3.8 depict two different maximal chains for A3.

Theorem 3.8. The length of the longest maximal chain for An is

1 +
n∑

k=1

k = 1 +

(
n+ 1

2

)
.

Proof. Beginning with our minimum element a, we increase an by 1 until
an = n. This will taken steps. Then we increase an−1 by 1 until an−1 = n−1.
This will take n − 1 steps. We continue this pattern until we reach the
maximum element â. This takes n + (n − 1) + (n − 2) + · · · + 2 + 1 steps,
which is the number of elements used minus one. Therefore, the chain
consists of 1 +

∑n
k=1 k elements.

It is clear that this is the maximum number of possible steps in a chain:
we must increase each column by at least 1 at each step.

Figure 3.7 depicts a maximal chain of longest length for A3. For n ≥ 3,
there are multiple longest maximal chains. The number of maximal chains
for 1 ≤ n ≤ 6 is

1, 1, 2, 12, 286, 33592, . . .

These are the strict sense ballot numbers, see OEIS A003121 [8], and the
nth strict sense ballot number is(

n+ 1

2

)
!

∏n−1
k=1 k!∏n

k=1(2k − 1)!
,
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We will prove that the collection of longest maximal chains of An are in
bĳection with strict sense ballots with n candidates.

Definition 3.9. Consider an election with n candidates in which candidate
k receives exactly k votes. An ordering of these

(
n+1
2

)
votes is a strict-sense

ballot (SSB) when candidate k always leads candidate k − 1 for 2 ≤ k ≤ n

during the vote count.

For example, the 12 SSBs for four candidates are

4444333221 4444332321 4443433221 4443432321

4443343221 4443342321 4443324321 4434433221

4434432321 4434343221 4434342321 4434324321.

Each of these SSBs encodes a longest maximal chain of An. The values
indicate the entry that we increment at each step of the maximal chain. For
example, the SSB

4434342321

corresponds to the maximal chain
(0, 0, 0, 0)→ (0, 0, 0, 1)→ (0, 0, 0, 2)→ (0, 0, 1, 2)

→ (0, 0, 1, 3)→ (0, 0, 2, 3)→ (0, 0, 2, 4)→ (0, 1, 2, 4)

→ (0, 1, 3, 4)→ (0, 2, 3, 4)→ (1, 2, 3, 4).
We now show that this mapping is a bĳection.

Theorem 3.10. The longest maximal chains for An are in bĳection with strict
sense ballots of order n.

Proof. Let Ln denote the collection of longest maximal chains of An, and
let Bn to denote the collection of strict sense ballots for n candidates. We
construct a bĳective mapping f : Ln → Bn.

Let a = (a0, a1, . . . , an(n+1)/2) be a maximal chain of An. We construct
strict sense ballot b = f(a) where b = (b1, b2, . . . , bn(n+1)/2) by setting bk to
be the unique index whose entry is incremented by 1 when we move from
ak−1 to ak.

We claim that b ∈ Bn. In the maximal chain a, the value of entry k is
incremented k times, so the number k appears exactly k times in b. Next, we
show that for 1 ≤ m ≤ n(n+1)/2, each partial sequence bm = (b1, b2, . . . , bm)

contains at least as many k’s and (k − 1)’s. If not, then then consider the
smallest m such that bm = k−1 and the number of (k−1)’s in bm equals the
number of k’s in bm. In the corresponding maximal chain, the element am
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1
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1

1
1
1

1

1
1
1

1
1

1
1
1 1

1
1

1
1
1

Figure 3.7 A Longest Maximal Chain forA3. Reading from top to bottom and
left to right, we show how ones are added to the binary triangle one at a time.

would have amk−1 = amk , contradicting the fact that all the nonzero entries of
am are distinct.

Next, we prove that this mapping is a bĳection by creating a mapping g :

Bn → Ln that is the inverse of f . Given SSB b = (b1, . . . , bn(n+1)/2), we define
g(b) = a = (a0, a1, . . . , an(n+1)/2) where a0 is the all-zero sequence of length
n, and for 1 ≤ m ≤ n(n+ 1)/2, we set am to be the sequence (a1, a, . . . , an)

where ak is the number of times that k appears in the subsequence bm =

(b1, . . . , bm). It is straight-forward to confirm that g ◦ f is the identity map
on Ln and that f ◦ g is the identity map on Bn.

Theorem 3.11. There is a unique shortest maximal chain, which has length n+1.

Proof. Let a ∈ An be the minimum sequence of all zero entries. We describe
our candidate maximal chain C of minimal length. First we will change a1
from 0 to 1.

Next we move to the second column where we can changer a2 from 0 to
2, since a1 = 1. Continuing this way, we can change ak directly from 0 to k

by induction for 1 ≤ k ≤ n. This takes n steps to move from (0, 0, . . . , 0) to
(1, 2, 3, . . . , n).

This is the smallest possible length for a maximal chain. We must
change each entry at least once, and this change reaches the maximum
entry in exactly n steps.

Furthermore, this is the unique maximal chain of minimum length.
Considering any other maximal chain C ′, consider the first step where it
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1 1
1
1 1

1
1

1
1
1

Figure 3.8 Shortest Maximal Chain for A3. Reading from left to right, we
show how entire pillars of ones are added to the binary triangle.

differs from chain C. Let k be the index of the entry that change at this step.
The value goes from 0 to 1 the value at index k − 1 is zero.





Chapter 4

Subfamilies of Staircase
Arrangements

We now investigate three subfamilies of staircase arrangements An. These
families are:

• arrangements with maximum element k,

• arrangements with maximum element at most k,

• arrangements missing element k.

The first two families appear to be new combinatorial sequences: they do
not appear in the OEIS. The last family does appear in the OEIS, and we
give a new interpretation for this sequence.

4.1 Maximum Element Exactly k

Let An,k ⊂ An be the sequences in which the maximum element is exactly
k. Let A(n, k) = |An,k| be the size of this set. The values for A(n, k) for small
n are shown in Table 4.1. These are staircase arrangements of pillars with
distinct heights where the pillar of height k appears in the arrangement
and is the tallest. Since An are in bĳection with set partitions of [n + 1],
we can also describe An,k as set partitions of [n+ 1]. An,k are set partitions
A = a1,1, a1,2, . . . , a1,r1 |a2,1, a2,2, . . . , a2,r2 | . . . |ab,1, ab,2, . . . , ab,rb whereAhas
b blocks such that the following are true:

• there exists i for each j > k such that ai,1 = j, and
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• ai,1 ̸= k for all i ∈ [b]

In other words, integers greater than k must begin a block and element
k must not start a block.

In this section, we prove the recursive relationship for setsAn,k and pro-
vide a general formula for A(n, k). We are a bit excited that this triangular
sequence does not appear in the OEIS, but we still found an explicit formula
for these numbers.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 1 1 1
n = 2 1 2 2
n = 3 1 3 6 5
n = 4 1 4 12 20 15
n = 5 1 5 20 51 74 52
n = 6 1 6 30 104 231 302 203
n = 7 1 7 42 185 564 1116 1348 877

Table 4.1 Values for A(n, k)

Lemma 4.1. There are (n− k + 1) ways to place element k in an An sequence.

Proof. Recall that 0 ≤ ai ≤ i for 1 ≤ i ≤ n. Therefore the first (k − 1)

entries cannot take on value k. So there are n− (k− 1) = n− k+1 possible
placements of k.

Theorem 4.2. The sets An,k have the following recursive relationship:

A(n, 0) = 1,

A(n, k) = (n− k + 1)

k−1∑
i=0

A(n− 1, i) for 1 ≤ k ≤ n.

Proof. Clearly A(n, 0) = 1 because the only sequence in An,0 is the all-zero
sequence. So consider 1 ≤ k ≤ n. The left hand side A(n, k) is the number
of An sequences where the maximum entry is exactly k.

Let An,k,ℓ be the sequences in An whose largest element is k and whose
second largest element is 0 ≤ ℓ ≤ k− 1. These sets are disjoint and we have

An,k =

k−1⋃
ℓ=0

An,k,ℓ.
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We claim that
|An,k,ℓ| = (n− k + 1)A(n− 1, i)

Indeed, let a = (a1, a2, . . . , an) ∈ An,k,ℓ. There are n − k + 1 options for
the location of k in this sequence. Removing this value from a results in a
sequence of length n− 1 whose largest value is ℓ. By Lemma 4.1, removing
k from the sequence is a (n− k+1)-to-1 mapping fromAn,k,ℓ to A(n− 1, i),
and the claim is proven.

Finally, we have

A(n, k) = |An,k| =

∣∣∣∣∣
k−1⋃
ℓ=0

An,k,ℓ

∣∣∣∣∣
=

k−1∑
ℓ=0

|An,k,ℓ| =
k−1∑
ℓ=0

(n− k + 1)A(n− 1, i)

= (n− k + 1)

k−1∑
i=0

A(n− 1, i).

Using the recurrence relation of Theorem 4.2, we obtain the following
formulas for A(n, k) for 0 ≤ k ≤ 4.

A(n, 0) = 1,

A(n, 1) = n,

A(n, 2) = (n− 1)n,

A(n, 3) = (n− 2)2(n− 1) + (n− 2)n,

A(n, 4) = (n− 3)3(n− 2) + (n− 3)2(n− 1) + (n− 3)(n− 2)(n− 1) + (n− 3)n.

Next, we give a general formula forA(n, k). We prove two lemmas along
the way.

Lemma 4.3. The number of ways to make an An sequence with i nonzero entries
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1 ≤ c1 < c2 < · · · < ci = k is

i∏
j=1

(n− cj + 1− (i− j)).

Proof. We want to make a sequence a ∈ An with i nonzero entries 1 ≤ c1 <

c2 < · · · < ci = k.
We place elements these from largest to smallest. First, we place element

ci = k. From Lemma 4.1, there are n− ci + 1 possible locations for ci.
Next, we place ci−1. Since ci has been placed, we can treat the available

locations as a sequence of length (n−1). There are (n−1)−ci−1+1 possible
locations for ci−1.

Continuing in this pattern, when placing cj , we have aleady placed
cj+1, . . . , ci. There are (n − (i − j) empty spots in our sequence since i − j

elements have been placed. Therefore, from Lemma 4.1, there are ((n− (i−
j)− cj + 1) possible locations for cj .

Because we follow a pattern of placing some cj ∈ c and then placing
cj−1, we need to multiply all these numbers together to obtain the total
number of sequences whose nonzero elements are c1, . . . , ci. This results in

i∏
j=1

(n− cj + 1− (i− j))

sequences.

Lemma 4.4. The number of An sequences with i nonzero entries and greatest
element equal to k is

∑
r∈R(i,k)

i∏
j=1

(n− rj + 1− (i− j))

where R(i, k) = {r1, r2, . . . , ri : 1 ≤ r1 < r2 < · · · < ri = k}.

Proof. Observe that

R(i, k) = {r1, r2, . . . , ri|1 ≤ r1 < r2 < · · · < ri = k}

is the set of all sequences of length i where entries are nonzero, distinct, and
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increasing to k. Since these cases are distinct, we will add up the possible
ways to form An sequences from Lemma 4.3. This is

∑
r∈R(i,k)

i∏
j=1

(n− rj + 1− (i− j)).

Theorem 4.5. The number of An sequences with greatest element equal to k,
A(n, k) is given by the following

A(n, k) =
k∑

i=1

∑
r∈R(i,k)

i∏
j=1

(n− rj + 1− (i− j))

where R(i, k) = {r1, r2, . . . , ri|1 ≤ r1 < r2 < · · · < ri = k}.

Proof. From Lemma 4.4, we know the number of ways to construct all An

sequences that have i nonzero entries and maximum element k is

∑
r∈R(i,k)

i∏
j=1

(n− rj + 1− (i− j))

where R(i, k) = {r1, r2, . . . , ri|1 ≤ r1 < r2 < · · · < ri = k}.
The number of nonzero entries can range from 1 (where the only nonzero

entry is k) or all the way to k (where all values 1, 2, . . . , k are in the se-
quence). We add all these possibilities together to achieve the total number
of sequences with maximum element k:

A(n, k) =

k∑
i=1

∑
r∈R(i,k)

i∏
j=1

(n− rj + 1− (i− j)).

4.2 Maximum Element at Most k

Let B(n, k) be the number ofAn sequences in which the maximum element
is at most k. These are the staircase arrangements of pillars with distinct
heights where no pillars taller than k are in the arrangement. The values for
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 1 1 2
n = 2 1 3 5
n = 3 1 4 10 15
n = 4 1 5 17 37 52
n = 5 1 6 26 77 151 203
n = 6 1 7 37 141 372 674 877
n = 7 1 8 50 235 799 1915 3263 4140

Table 4.2 Values of B(n, k)

B(n, k) for 1 ≤ k ≤ n ≤ 7 are shown in Table 4.2. This triangular sequence
does not appear in the OEIS.

Just as elements of An,k can be described as set partitions of [n + 1],
so too can elements of Bn,k. These are set partitions of [n + 1] elements
A = a1,1, a1,2, . . . , a1,r1 |a2,1, a2,2, . . . , a2,r2 | . . . |ab,1, ab,2, . . . , ab,rb whereAhas
b blocks such that the following are true:

• there exists i for each j > k such that ai,1 = j.

In other words, integers greater than k must begin their own blocks. Bn,k
differs from An,k since k need not be in the sequence. This means that k
could be the largest element in a block for a set partition from Bn,k.

Theorem 4.6. Elements of B(n, k) have the following recurrence relation:

B(n, k) = B(n, k − 1) + (n− k + 1)B(n− 1, k − 1).

Proof. On the left, B(n, k) is the number of An sequences that have no
elements greater than k. We can divide these into two different cases.
Either an element of B(n, k) has k in it, or it does not. The number of
An sequences that do not have element k or greater is the number of An

sequences that have maximum element at most (k− 1). Therefore, our first
case is B(n, k − 1).

Alternatively, consider the family of sequences in B(n, k) that include
k. We can construct these sequences by beginning with those that make
up B(n − 1, k − 1) and adding element k into the sequence. There are
(n − k + 1) ways to place element k in a sequence, so this means there are
(n − k + 1) · B(n − 1, k − 1) sequences that have maximum element equal
to k.
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We add these two possibilities together since they are separate cases and
achieve that

B(n, k) = B(n, k − 1) + (n− k + 1)B(n− 1, k − 1).

Lemma 4.7. We have the following relationship between An sequences with max-
imum element exactly k and An sequences with maximum element at most k:

A(n, k) = (n− k + 1) ·B(n− 1, k − 1)

Proof. Let Bn,k ⊂ An be sequences in which no elements are greater than k.
On the left side of the relationship,A(n, k) is the number ofAn sequences

in which the maximum entry is exactly k. We claim

A(n, k) = (n− k + 1) · |Bn−1,k−1|

Let a ∈ Bn−1,k−1. Clearly a /∈ An,k since there is no element k. We will place
k in a, for which Lemma 4.1 tells us there are n− k + 1 possible positions.

Therefore,

A(n, k) = (n− k + 1) · |Bn−1,k−1|
= (n− k + 1) ·B(n− 1, k − 1)

Theorem 4.8. B(n, k) can be defined entirely by the values B(n − 1, j) in row
n− 1 via the following recurrence relationship

B(n, k) = 1 +

k∑
i=1

(n− i+ 1) ·B(n− 1, i− 1).

Proof. Clearly

B(n, k) =

k∑
i=0

A(n, i) for 1 ≤ k ≤ n.
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and so we have

B(n, k) = A(n, 0) +
k∑

i=1

A(n, i)

B(n, k) = 1 +
k∑

i=1

(n− i+ 1) ·B(n− 1, i− 1)

because A(n, 0) = 1 and A(n, i) = (n − i + 1) · B(n − 1, i − 1) by Lemma
4.7.

4.3 Missing Element k

Let Cn,k ⊂ An be the sequences in which the element k does not ap-
pear. These are staircase arrangements of pillars with distinct heights
where the pillar of height k does not appear. When given as the in-
duced set partitions, these are set partitions of [n + 1] elements A =

a1,1, a1,2, . . . , a1,r1 |a2,1, a2,2, . . . , a2,r2 | . . . |ab,1, ab,2, . . . , ab,rb whereAhas bblocks
such that the following are true:

• there exists i such that ai,1 = k.

In other words, k must begin its own block/be the greatest element in its
block.

We denote the number of these sequences asC(n, k) = |Cn,k|. The values
of C(n, k) for small n are given in Table 4.3. This triangular array is known
as Aitken’s array, which is sequence A011971 in [8].

In this section, we prove the recursive relation for the sets Cn,k.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

n = 1 1 1 2
n = 2 1 2 3 5
n = 3 1 5 7 10 15
n = 4 1 15 20 27 37 52
n = 5 1 52 67 87 114 151 203
n = 6 1 203 255 322 409 523 674 877
n = 7 1 877 1080 1335 1657 2066 2589 3263 4140

Table 4.3 Values of C(n, k)
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Lemma 4.9. |Cn,k| = |An| for k > n

Proof. Elements of An are characterized by 0 ≤ ai ≤ i. So there are no se-
quences with an element greater than n. Therefore the number of sequence
that contain k > n is always zero, which means that |Cn,k| = |An| when
k > n.

Theorem 4.10. The sets Cn,k have the following recursive relationship:

C(n, 0) = 1,

C(1, 1) = 1,

C(n, k) = C(n, k − 1) + C(n− 1, k − 1) for 2 ≤ k ≤ n+ 1.

Proof. We have C(n, 0) = 1. Since every element is distinct and nonzero,
we have

Cn,0 = {(1, 2, 3, . . . , n)}.

It is also clear that C(1, 1) = 1 because C1,1 = {(0)}.
Considering the recurrence relation, the left side is the number of An

sequences that do not contain element k. On the right side, we have the
number ofAn sequences that do not contain element k− 1 and the number
of An−1 sequences that do not contain element k − 1.

We partition Cn,k into three subsets.

• Let C′n,k be the An sequences that do not contain k and also do not
contain k − 1.

• Let C′′n,k be theAn sequences that do not contain k and have ai = k− 1

for some i ≥ k.

• Finally, let C′′′n,k be the An sequences that do not contain k and where
ak−1 = k − 1.

These are disjoint sets, so

C(n, k) = |C′n,k|+ |C′′n,k|+ |C′′′n,k|.

Let us partition Cn,k−1 into two sets. Let X ⊂ Cn,k−1 be sequences that
contain neither k nor k− 1. Let Y be the sequence that do not contain k− 1

but do contain k. Clearly C′n,k = X , by definition.
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Next, we create a bĳective mapping fromC′′n,k toY . Givena = (a1, a2, ..., an) ∈
C′′n,k, we map a to a′ ∈ Y by increasing ai = k−1 to k: this increase is possible
because i ≥ k. This mapping is clearly a bĳection.

Taken together, we have

|C′n,k|+ |C′′n,k| = C(n, k − 1).

Finally, we will show that

|C′′′n,k| = C(n− 1, k − 1)

by creating a bĳection from C′′′n,k to Cn−1,k−1.
Let a ∈ C′′′n,k. We will turn a into a′ ∈ Cn−1,k−1 by deleting entry ak−1 and

then decrementing every entry of a that is larger than k. More explicitly,
this mapping is

1. Set a′i = ai for 1 ≤ k − 2.

2. For k ≤ i ≤ n, set a′i−1 = ai if ai < k− 1 and set a′i−1 = ai− 1 if ai > k.

The result is a sequence a′ ∈ Cn−1,k−1.
We show that this is a bĳection by giving the reverse mapping. Given

b ∈ Cn−1,k−1, we map to b′ ∈ C′′′n,k as follows:

1. Set b′i = bi for 1 ≤ k − 2.

2. Set b′k−1 = k − 1

3. For k − 1 ≤ i ≤ n− 1, set a′i−1 = ai if ai < k − 1 and set a′i−1 = ai + 1

if ai ≥ k.

The result is indeed a sequence b′ with b′k−1 = k− 1 and missing k, and it is
clear that this mapping is the inverse of the process above.

Finally, we conclude

C(n, k) = |Cn,k|
= |C′n,k|+ |C′′n,k|+ |C′′′n,k|
= |Cn,k−1|+ |Cn−1,k−1|
= C(n, k − 1) + C(n− 1, k − 1).
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In this section, we will provide and prove the explicit equation for
C(n, k). As previously mentioned, the values for C(n, k) where 1 ≤ k ≤ n

are equivalent to Aitken’s array given by OEIS A011971, which gives us the
following formula.

Theorem 4.11. The number ofAn sequences withoutk, orC(n, k), when1 ≤ k ≤ n

are given by the following

C(n, k) =
k−1∑
i=0

(
k − 1

i

)
Bn−i

where Bm is the mth Bell number.

Proof. Recall that C(n, k) = |Cn,k|. Also note that since our sequences do
not contain element k, k must be the largest element in its block of the
induced set partition. Let us construct all the values of Cn,k by forming their
corresponding set partitions of [n+ 1] where k is the largest in its block.

First, we pick the number of elements that will be in a block with k. This
can range from 0 where k is in its own block all the way to k − 1 where all
the integers [k − 1] are in a block with k. This gives us

(
k−1
i

)
where i is the

number of elements we pick to be in a block with k.
Once we have placed k and the i other elements into a block, we have

n− i elements left to place into blocks. We know that these are counted by
the Bell numbers. Therefore, we multiply

(
k−1
i

)
with Bn−i.

Since the number of elements that can be in a block with k range from
0 to k − 1, we sum

(
k−1
i

)
Bn−i from i = 0 to i = k − 1.

So we have our definition

C(n, k) =
k−1∑
i=0

(
k − 1

i

)
Bn−i.

The description for Aitken’s array is as follows:

a(n, k) is the number of equivalence relations on {0, ..., n} such
that k is not equivalent to n, k+1 is not equivalent to n, ..., n− 1

is not equivalent to n.

In this definition, "equivalent" means that the integers are in different blocks.
This leads us to the following open question: what is the mapping between
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(a) set partitions where k + 1 is not in the same block as n + 1 and (b) set
partitions where k + 1 is the largest element in its block?



Chapter 5

Conclusion

Throughout this research project, we explored various features of the se-
quences in An. We began by showing that they are in bĳection with set
partitions of [n + 1]. We then gave a natural method of ordering the ele-
ments to induce a partially ordered set. With these orderings and covers,
we analyzed how covers are achieved through the bĳective set partitions.
We also considered the lengths of longest and shortest maximal chains of
An as well as chains between nearly identical elements. Finally, we explored
various subfamilies of An, including those with greatest element exactly k,
all elements at most k and sequences in which there is no element k. We
proved recursive relationships for all of these and also provided an explicit
definition for A(n, k).

Next steps in this research would include the following:

• Count the number of maximal chains for An. We were able to count
the number of longest maximal chains, but not the total number of
maximal chains.

• Further examine the length of the longest and shortest chains between
comparable elements.

• Count the number of elements at least k steps away from the maximal
element ofAn. We were able to count the number of elements exactly
2 steps away from the maximal element but not more than that.
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