
Macalester College Macalester College

DigitalCommons@Macalester College DigitalCommons@Macalester College

Mathematics, Statistics, and Computer Science
Honors Projects Mathematics, Statistics, and Computer Science

Spring 2022

Passing Time and Syncing Secrets: Demonstrating Covert Passing Time and Syncing Secrets: Demonstrating Covert

Channel Vulnerabilities in Precision Time Protocol (PTP) Channel Vulnerabilities in Precision Time Protocol (PTP)

Aron J. Smith-Donovan
Macalester College, aronsmithdonovan@gmail.com

Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors

 Part of the Information Security Commons, OS and Networks Commons, and the Systems

Architecture Commons

Recommended Citation Recommended Citation
Smith-Donovan, Aron J., "Passing Time and Syncing Secrets: Demonstrating Covert Channel
Vulnerabilities in Precision Time Protocol (PTP)" (2022). Mathematics, Statistics, and Computer Science
Honors Projects. 65.
https://digitalcommons.macalester.edu/mathcs_honors/65

This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and
Computer Science at DigitalCommons@Macalester College. It has been accepted for inclusion in Mathematics,
Statistics, and Computer Science Honors Projects by an authorized administrator of DigitalCommons@Macalester
College. For more information, please contact scholarpub@macalester.edu.

https://digitalcommons.macalester.edu/
https://digitalcommons.macalester.edu/mathcs_honors
https://digitalcommons.macalester.edu/mathcs_honors
https://digitalcommons.macalester.edu/mathcs
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors/65?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Macalester College — Saint Paul, MN

Department of Mathematics, Statistics, and Computer Science

Honors Thesis, Spring 2022

Passing Time and Syncing Secrets:

Demonstrating Covert Channel Vulnerabilities
in Precision Time Protocol (PTP)

completed by: Aron Smith-Donovan

advised by: Prof. Dr. Abigail Marsh

honors committee members: Prof. Dr. Elizabeth Shoop
Prof. Paul Cantrell

Copyright © 2022 Aron Smith-Donovan

The author grants Macalester College the nonexclusive right to make this work available for

noncommercial, educational purposes, provided that this copyright statement appears on the

reproduced materials and notice is given that the copying is by permission of the author. To

disseminate otherwise or to republish requires written permission from the author.

i

Abstract

Covert channels use steganographic approaches to transfer secret digital communications;
when applied to network protocols, these strategies can facilitate undetectable data
exfiltration and insertion attacks. Because covert channel techniques are protocol- and
implementation-specific, individual case studies are necessary to assess for vulnerabilities
under different conditions. While several investigations have been published evaluating
covert channel potential in infrastructure- and manufacturing-based contexts, no existing
research explores Precision Time Protocol (PTP), a time synchronization protocol
commonly used in industrial control systems. This study aims to fill this gap by
demonstrating the feasibility of a covert channel-based attack on a PTP-enabled network.

ii

Table of contents page #

Abstract ii

Table of contents iii

List of figures v

List of tables v

1 Introduction 1

1.1 Investigation overview . 1

2 Related works 2

2.1 Early history of field . 2

2.2 Continued developments . 2

2.3 Classification schemes . 3

2.4 Control systems . 4

3 PTP fundamentals 5

3.1 Network architecture . 5

3.2 Protocol structure . 7

3.2.1 Header . 7

3.2.2 ANNOUNCE message . 8

3.2.3 SYNC message . 10

3.2.4 FOLLOW UP message . 10

3.2.5 DELAY REQ message . 11

3.2.6 DELAY RESP message . 11

3.3 Synchronization procedure . 12

4 Exploration 14

4.1 PTP-based covert channels . 14

4.1.1 Event/Element Interval Modulation - ET1 (RT1n) 14

4.1.2 Rate/Throughput Modulation - ET1.1 (RT1.1n) 15

4.1.3 Event Occurrence - ET2 (RT2n) . 15

4.1.4 Frame Corruption - RT2.1n . 15

4.1.5 Artificial Element-Loss - EN1 (RN1n) 15

4.1.6 Artificial (Forced) Reconnections Modulation - RN1.1n 16

4.1.7 Elements/Features Positioning - EN2 (RN2n) 16

4.1.8 Elements/Features Enumeration - EN3 (RN3n) 16

4.1.9 Artificial Retransmissions Modulation - RN3.1n 17

4.1.10 State/Value Modulation - EN4 (RN4n) 17

4.1.11 Reserved/Unused State/Value Modulation - EN4.1 (RN4.1n) 17

4.1.12 Random State/Value Modulation - EN4.2 (RN4.2n) 18

4.1.13 Blind State/Value Modulation - EN4.3 (RN4.3n) 18

4.1.14 Feature Structure Modulation - EN5 (RN5n) 18

iii

4.1.15 Size Feature Modulation - EN5.1 (N5.1n) 19
4.1.16 Character Feature Modulation - EN5.2 (RRN5.2n) 19

4.2 Summary of findings . 20

5 Experimentation 21
5.1 Methodology . 21

5.1.1 Technical specifications . 21
5.1.2 Determining channel targets . 21

5.2 Implementation . 25
5.3 Results . 26

5.3.1 Message type data . 26
5.3.2 Traffic data . 26

5.4 Analysis . 27

6 Discussion 27
6.1 Risk assessment . 28
6.2 Future work . 28
6.3 Limitations . 29

7 Conclusion 29

A Appendix 30
A.1 Payload encoding script . 30
A.2 Payload decoding script . 32

Bibliography 33

iv

List of figures page #

1 Generalized depiction of the BMCA-managed clock hierarchy. 6
2 A simplified, two-node clock hierarchy. 6
3 Diagram of a message header’s byte structure. 7
4 Diagram of an ANNOUNCE message’s byte structure. 9
5 Diagram of a SYNC message’s byte structure. 10
6 Diagram of a FOLLOW UP message’s byte structure. 10
7 Diagram of a DELAY REQ message’s byte structure. 11
8 Diagram of a DELAY RESP message’s byte structure. 12
9 Simplified diagram of PTP’s sync procedure. 13
10 Example of data allocation to encode the string "payload". 25

List of tables page #

1 Descriptions of a message header’s byte structure. 8
2 Descriptions of an ANNOUNCE message’s byte structure. 9
3 Descriptions of a SYNC message’s byte structure. 10
4 Descriptions of a FOLLOW UP message’s byte structure. 11
5 Descriptions of a DELAY REQ message’s byte structure. 11
6 Descriptions of a DELAY RESP message’s byte structure. 12
8 Evaluation of message fields as targets for the unused value covert channel. 22
9 Message type counts for legitimate PTP traffic. 26
10 Message type counts for encoded PTP traffic. 26
11 Results summary for legitimate PTP traffic. 26
12 Results summary for encoded PTP traffic 26

v

1 Introduction

The term ‘covert channels’ generally refers to a set of strategies which conceal the
existence of a digital information transfer. First defined as channels “not intended for
information transfer at all” [1] and alternatively as channels that “use entities not normally
viewed as data objects to transfer information” [2], they are distinct from legitimate channels
which make use of a system’s expected data mechanisms; the National Computer Security
Center (NCSC) would later describe them as “communication channel[s] that [allow] a
process to transfer information in a manner that violates the system’s security policy”
[3]. The key to these maneuvers is a straightforward one, though it can prove difficult to
implement: a system cannot audit or intervene in communications that it does not know
are occurring.

In a simple environment, such channels enable the breaking down of access control
structures as processes with different security classifications communicate unimpeded; in a
different setting, however, network covert channels between machines enable unrestricted,
untraceable traffic. This increased scope brings in additional implications of data transfer
at a far wider range, offering a potential avenue for existing threats—from information leaks
to viral infections—to become even harder to trace.

The success of a given covert channel technique is protocol- and implementation-specific,
meaning that both attack and remediation strategies require in-depth analyses of the context
they are intended for [4]. Therein lies our predicament: covert channel attacks are laborious
enough to pull off that assailants are likely to attempt an easier strategy whenever possible;
however, in the event of a real covert channel attack, not only would countermeasures be
slow to develop, but without targeted detection measures, it is possible the intrusion would
pass by entirely unnoticed.

1.1 Investigation overview

The primary goal of this report is to determine the risk posed by covert channels to
PTP-enabled networks. We begin with an overview of related works and the current state
of research in section 2, including a targeted discussion of existing classification schemes in
section 2.3. This is followed by an examination of Precision Time Protocol (PTP), covering
use cases, protocol structure, and operation, in section 3.

In section 4, we conduct a systematic, theoretical evaluation of each pattern defined by
the taxonomy chosen in section 2.3. This evaluation considers a given strategy’s likelihood
of success in a PTP-based message exchange, before classifying according to the potential
throughput, detectability, and robustness of the channel. Of the sixteen approaches
assessed, we found eleven to be possible, three of which we determined to be feasible.

Following the theoretical investigation in section 4, we developed a prototype of the
strategy identified as the most auspicious; this implementation is described in section 5. We
then performed a practical evaluation of the channel, with a summary of results provided
in section 5.3 and our subsequent analysis in section 5.4. In the test environment, our
prototype achieved a high throughput of seven bytes per message (bpm), averaging 24.36
bytes per second (bps) overall, as well as relatively low detectability, causing neither explicit
errors nor blatant indicators of manipulation.

Given the results from our practical testing, we confirm that PTP-enabled networks are

1

vulnerable to covert channel-based attacks. Our comprehensive risk assessment, as well as
considerations for future work, are presented in section 6; the formal conclusion follows in
section 7.

2 Related works

The study of covert channels is a long-standing, but niche, endeavor, with many
attempts made at formal definitions and frameworks; presently, there exists a veritable
buffet of proposed methods for defining, categorizing, evaluating, and comparing covert
channels, with no single set of industry standards yet emerging. This section chronicles
these historical developments alongside the current state of the field; we ultimately
identify a single classification scheme best-suited for use in the present investigation and
the imperative gap in existing research that this study aims to fill.

2.1 Early history of field

Butler Lampson’s 1973 paper, “A note on the confinement problem”, is widely
considered to contain the first known use of the phrase ‘covert channel’ [1]. In the time
since, the notion of a steganographic payload exploit has percolated into a wide range of
research concerns, with numerous studies conducted to better characterize the issue. In
1983, the US DoD released the first edition of a standard called the Trusted Computer
System Evaluation Criteria (TCSEC) [5], commonly called the “Orange Book”, to establish
requirements for assessing system security controls. This publication not only referred to
Lampson’s definition and recommended targeted analysis of covert channels, it divided
relevant techniques into two categories still used today: storage channels, which
communicate by modifying stored values, and timing channels, which communicate by
modifying time intervals (both implicitly and explicitly).

In November 1993, a paper entitled “A Guide to Understanding Covert Channel Analysis
of Trusted Systems” was put out by the same office in an effort to clarify the previously-
provided covert channel recommendations [3]. This text collected existing definitions and
research and made a concerted effort to precisely describe, classify, and develop evaluation
metrics for covert channels; although this proposal informed many future endeavors, it did
not establish a common standard.

2.2 Continued developments

The problem with delineating what a covert channel precisely is comes from the in-
alienable nature of the concept—they are fundamentally a negation, a set of communication
methods that fall outside of what we agree to be legitimate [6]. Rather than pursue an
explicit, comprehensive definition, many related projects have instead put forth enormous
efforts to propose and catalog examples of covert channels as they are discovered through
focused analyses. An early study by C.G. Girling explored the potential for a channel
using packet delays between LAN-connected devices, serving as a precedent for later work
to simply attempt covert communications and judge their level of success in doing so [7].
This methodology is capable of producing an alternate implicit definition of covert channels,
illustrated by a corpus of examples.

2

The multitude of protocol-specific investigations in the last decade and a half have
continued this general structure, from higher-level, text-heavy cases like Internet messaging
protocols [8] and HTTP [9] to mid-level transport cases like TCP [10] and IPsec [11].
Performing these case-by-case analyses, however, has not eliminated the problem of a general
definition for covert channels, but merely transformed it: having hashed out the practical
bounds of what a covert channel can be, there remains the task of linking a wide assortment
of research under some common understanding [12]. The underlying dilemma is one of
relation: how can we consider these reports in conversation with each other? Given a
growing pool of case studies, prior endeavors towards comparative models have been
revisited with improved results, as addressed in section 2.3. This refinement of evaluation
metrics for covert channels is a major focus of present research, and may ultimately aid the
development of a universal definition.

2.3 Classification schemes

Myriad surveys to compile related covert channel techniques have been published as
case studies continue to be conducted, including a noteworthy paper by Zander et al. which
sorted many known attack and remediation strategies for network covert channels into a
finite set of categories [13]. A string of publications from Wendzel et al. has endeavored not
only to classify approaches, but to systematize them [14]; this renewed undertaking worked
to develop a generalized model of covert channels by first refining categories into ‘patterns’
differentiated by the encoding approach used, the type of data object being affected
(reminiscent of the initial storage/timing distinction [5]), and the possible usage contexts.
The crucial addendum that makes this sorting system worthy of specific recognition is
the sorting of the categories themselves: the patterns were arranged into a hierarchical
taxonomy to allow for comparison between classifications at different levels of granularity
as well as the option to continue to expand the pattern set in the face of new discoveries.

Effectively proving the elasticity of their model, Wendzel et al. went on to publish
expansions and edits to the pattern set as part of a collection on systems security [15] and as
a standalone paper entitled “A Revised Taxonomy of Steganography Embedding Patterns”
[16]. This latest addition also included changes to further abstract existing patterns such
that they could be applied to other steganographic domains, and, in a radical move towards
open access, the current model has been made freely available online1 [17]. The contents
of this taxonomy are explored in detail in section 4, with each pattern considered for its
potential in a PTP-targeted attack.

Wendzel et al.’s Information Hiding Patterns Project (IHPP) [12] furthermore has
posited a description and evaluation structure for consideration as a new industry
standard2 [18]. Most current research makes use of three primary assessment criteria:
capacity or throughput, which considers the amount of data able to be transmitted by a
channel, detectability, which considers the extent to which the channel resists both generic
and targeted detection measures, and robustness, which considers the extent to which the
channel can communicate despite possible disruptions (e.g. network firewalls) [9, 11, 8, 19,
20, 21, 22]. The proposed extension to these criteria is acknowledged for its thoroughness

1https://patterns.ztt.hs-worms.de/
2https://patterns.ztt.hs-worms.de/desrcovert/

3

https://patterns.ztt.hs-worms.de/
https://patterns.ztt.hs-worms.de/desrcovert/

and potential for standardizing the field of study; however, within the scope of this paper,
only the simplified set of three metrics will be explicitly named in the comparison between
covert channel techniques, with the remainder of the proposal from Wendzel et al. used to
inform the discussion.

2.4 Control systems

Following recent cases of infrastructure-focused cyberattacks, there has been an
increased emphasis on understanding and preventing potential vulnerabilities of industrial
control systems [23]. Such controllers are typically more straightforward than modern CPUs,
utilizing simplified logic to manage the operation and automation of industrial processes;
distributed control systems are used to coordinate processes at a larger scale, with more
sophisticated machines managing the controllers from centralized locations [24]. Both post-
incident investigations and controlled research have demonstrated that such controllers can
be compromised to the point of physical damage with relatively small viral scripts [23].

In discussion with covert channels, control systems face a multi-directional risk:
exfiltration of data from secure processes enables malicious actors to collect key operating
information to direct other attacks, and code insertion into secure processes enables
malicious actors to take down systems and potentially cause permanent damage to the
equipment. For protocols in use below the application level, there are relatively few case
studies for controller-specific protocols in comparison to case studies for Internet-specific
and IP-based contexts. The more eminent of these controller-based projects include a
study examining vulnerabilities in building automation protocols [19] and another looking at
industrial control systems and the potential for supply chain attacks [21]; other lower-level,
non-IP research includes a look at MQTT, the ping protocol for IoT devices [20], and a
compelling prototype for a covert channel-based keylogger device [25].

The intention of the current investigation is, in part, an effort to continue the project
of analyzing these controller protocols and documenting their demonstrable vulnerabilities.
Because covert channels are difficult to detect without dedicated measures, it is difficult
to say whether they have been used in real-world attacks, and there are typically easier
methods available to a malicious actor [26]; in any case, control system attacks are an area
of great concern with enormous potential for material consequences, and it is necessary
to engage in these studies as a precautionary measure in anticipation of the point where
the collected data becomes a crucial tool. This paper aims to contribute to this data
by addressing the prospect of covert channels within Precision Time Protocol (PTP), a
time synchronization protocol commonly implemented in control systems whose security
is, therefore, of paramount importance; given the chronic under-documentation of covert
channels in control systems, it is both alarming and unsurprising that there is not yet any
publication devoted to this particular aim. An in-depth discussion of PTP’s structure and
operation can be found in section 3 of the present report, with the consideration of covert
channels beginning in section 4.

4

3 PTP fundamentals

Precision Time Protocol (PTP) is a network protocol used to synchronize the internal
clocks of locally-connected computer systems. First officially defined in 2002, it was designed
as an alternative to an Internet-based time synchronization protocol called Network Time
Protocol (NTP) as well as other GPS-based tools [27]. PTP is able to achieve an extremely
high level of accuracy, reaching sub-nanosecond distinctions when properly configured, and
was specifically designed for use on local area networks (LANs) where the majority of the
linked systems are unable to communicate with an external time source, i.e. lacking the
hardware for satellite or Internet connectivity [28, 29]. Instead of these external sources,
devices synchronize to the internal clocks of other ‘benchmark’ devices on the same local
network; this organization is discussed further in section 3.1.

PTP is a ubiquitous protocol, incorporated into a wide variety of use cases ranging from
broadcast media systems [30] to IEEE’s Audio Video Bridging (AVB) standards [31] to
multiple IEC profiles for industrial automation [32, 33]; Wikipedia’s list of PTP
implementations has 138 entries as of January 2022 [34]. PTP is also being considered
for future projects, including a proposal for use in Wide Area Monitoring (WAM) for power
systems [35] and ongoing research by the Institute of Embedded Systems (InES) at the
ZHAW [36].

Providing crucial functionality, the majority of PTP implementations are incorporated
into other, more expansive frameworks; as such, standalone versions are less common. For
this project, we used the open-source implementation linuxptp [37] due to its availability
as a self-contained application of the PTP standard [28]. The following discussions of
PTP’s technical operation and structure are primarily based on and utilize examples from
linuxptp.

3.1 Network architecture

In an established PTP network, devices that cannot access an external time source set
their clocks based on one or more standard ‘leader’ clocks that are capable of such access,
thereby serving as a standard time source internal to the local network. When a clock
is first enabled, it broadcasts a series of ANNOUNCE messages containing information about
itself that is used to establish a branched hierarchy for synchronization; in the linuxptp

implementation, the clock is considered to be in the INITIALIZING state during this time,
followed by the LISTENING state once the structure has been determined. The organization
itself is handled by the Best Master Clock Algorithm (BMCA); the general grouping is
outlined in figure 1, however this algorithm and the establishment of clock priority fall
outside the scope of this paper and will not be explored in-depth.

It must be noted at this point that the official, established terminology for PTP and
other similar protocols refer to this as a ‘master-slave’ structure, with higher-priority devices
being the ‘masters’ and the lower-priority devices being the ‘slaves’. This is not only archaic,
but fails to accurately describe the relationship in question [38]. Despite efforts towards
change [39], this language is still widely used and often considered the industry standard,
and is written directly into the source code of linuxptp [37]. To the extent possible,
the higher-priority devices will henceforth be referred to as ‘leaders’ and the lower-priority
devices as ‘followers’.

5

For our purposes, the network architecture will be simplified to consider only two nodes,
as displayed in figure 2. In this setup, the sole follower clock syncs itself to the sole
leader clock, which, in turn, has access to an external time source. In order to successfully
synchronize, the follower clock must calculate the difference between its current time setting
and the time setting of the leader clock while considering the impact of transmission and
propagation delays; this process is described in section 3.3.

Figure 1: Generalized depiction of the BMCA-managed clock hierarchy.

Figure 2: A simplified, two-node clock hierarchy.

6

3.2 Protocol structure

The following discusses a subset of the message types included in linuxptp, including
their function and internal data structure. The message types not described here are the
MANAGEMENT message, which is used to directly read and write clock parameters and
typically disabled as a security practice, the SIGNALING message, which is used to transmit
miscellaneous communications between clocks and is not part of standard operation, and
the message variants specific to linuxptp’s peer-to-peer (P2P) mode; this study is only
considering linuxptp’s default end-to-end (E2E) mode, and all future references to
linuxptp’s behavior refer to this configuration unless explicitly specified otherwise. The
information in this section has been sourced from the PTP standard [28] as well as directly
from the linuxptp source and its associated documentation [37].

3.2.1 Header

Every linuxptp message includes a 34-byte message header; while the values written
into its fields will vary, the structure is identical across message types.

Figure 3: Diagram of a message header’s byte structure; each block represents
one byte, and the alternating white and grey sections indicate distinctions
between fields.

7

Table 1: Descriptions of a message header’s byte structure.

Field Data type Size Description

transportSpecific unsigned int nibble transport-specific field; shares a byte
with messageType

messageType unsigned int nibble current message type; shares a byte
with transportSpecific

reserved unsigned int nibble reserved field; shares a byte with
versionPTP

versionPTP unsigned int nibble current PTP version in use; shares a
byte with reserved

messageLength unsigned int 2 bytes total length of message (includes
header, body, and suffix)

domainNumber unsigned int byte identifies the domain (= a logical
grouping of clocks that synchronize
to e/o with PTP) that the current
message belongs to

reserved1 unsigned int byte reserved field

flagField[] unsigned int byte an array to hold status flags

correction int 8 bytes correction value in nanoseconds for
residence time within a transparent
clock (= stateless, intermediary node
that can exist between leader and
follower clocks)

reserved2 unsigned int 4 bytes reserved field

sourcePortIdentity custom struct 10 bytes the originating port for the current
message

sequenceId unsigned int 2 bytes contains a sequence number
for individual message types;
used to link associated sets of
SYNC, FOLLOW UP, DELAY REQ,
and DELAY RESP messages

control unsigned int byte historical field; value depends on
the message type; similar to the
messageType field, but with fewer
options

logMessageInterval int byte message interval field; value depends
on the message type

3.2.2 ANNOUNCE message

ANNOUNCE messages are continuously broadcast by all potential leader clocks to establish
the synchronization hierarchy; BMCA dynamically decides the best organization based on
the properties in this message. The default linuxptp behavior sends an ANNOUNCE message
every 2 seconds, beginning when a clock successfully connects to the local network.

8

Figure 4: Diagram of an ANNOUNCE message’s byte structure; each block
represents one byte, and the alternating white and grey sections indicate
distinctions between fields.

Table 2: Descriptions of an ANNOUNCE message’s byte structure.

Field Data type Size Description

originTimestamp custom struct 10 bytes approx. message timestamp at origin

currentUtcOffset int 2 bytes current UTC offset (timezone) at
origin

reserved unsigned int 1 byte reserved field

grandmasterPriority1 unsigned int 1 byte configurable clock priority (used for
BMCA)

grandmasterClockQuality custom struct 4 bytes configurable clock quality (used for
BMCA)

grandmasterPriority2 unsigned int 1 byte configurable second-order clock
priority (used for BMCA)

grandmasterIdentity custom struct 8 bytes configurable clock identity (used for
BMCA)

stepsRemoved unsigned int 2 bytes network hop count

timeSource unsigned int 1 byte type of time source

suffix[] unsigned int 1 byte used to store TLV info

9

3.2.3 SYNC message

SYNC messages are sent from leader to follower to measure the clock offset in the L→F
direction. Each message contains the approximate timestamp it was sent by the leader clock;
the leader clock stores the exact local send timestamp after transmitting the message, and
the follower clock stores the local timestamp that it received the message. The default
linuxptp behavior sends a SYNC message every second, beginning when a leader clock
successfully connects to the local network.

Figure 5: Diagram of a SYNC message’s byte structure; each block represents
one byte.

Table 3: Descriptions of a SYNC message’s byte structure.

Field Data type Size Description

originTimestamp custom struct 10 bytes approx. local send timestamp
for current message

3.2.4 FOLLOW UP message

FOLLOW UP messages3 are sent from leader to follower to relay the timestamp that an
associated SYNC message was sent. Each message contains the exact local send timestamp
recorded by the leader; the follower clock stores the timestamp contained in the message
and does not record any other values. The default linuxptp behavior sends a FOLLOW UP

message every second at a <0.01 second delay from the preceding SYNC message.

Figure 6: Diagram of a FOLLOW UP message’s byte structure; each block
represents one byte, and the alternating white and grey sections indicate
distinctions between fields.

3P2P variant: PDELAY RESP FUP

10

Table 4: Descriptions of a FOLLOW UP message’s byte structure.

Field Data type Size Description

preciseOriginTimestamp custom struct 10 bytes exact local send timestamp for
associated SYNC message

suffix[] unsigned int 1 byte used to store TLV info

3.2.5 DELAY REQ message

DELAY REQ (meaning ‘delay request’) messages4 are sent from follower to leader to mea-
sure the clock offset in the F→L direction. Each message contains the approximate times-
tamp it was sent by the follower clock; the follower clock stores the precise local send
timestamp after transmitting the message, and the leader clock stores the local timestamp
that it received the message. The default linuxptp behavior sends a DELAY REQ message
approx. 10 seconds after receiving the associated FOLLOW UP message.

Figure 7: Diagram of a DELAY REQ message’s byte structure; each block
represents one byte, and the alternating white and grey sections indicate
distinctions between fields.

Table 5: Descriptions of a DELAY REQ message’s byte structure.

Field Data type Size Description

originTimestamp custom struct 10 bytes approx. local send timestamp
for current message

suffix[] unsigned int 1 byte used to store TLV info

3.2.6 DELAY RESP message

DELAY RESP (meaning ‘delay response’) messages5 are sent from leader to follower to
relay the timestamp that an associated DELAY REQ message was received. Each message
contains the exact local receipt timestamp recorded by the leader; the follower clock stores
the timestamp contained in the message and does not record any other values. The default
linuxptp behavior sends a DELAY RESP message <1.0 second after receiving the associated
DELAY REQ message.

4P2P variant: PDELAY REQ
5P2P variant: PDELAY RESP

11

Figure 8: Diagram of a DELAY RESP message’s byte structure; each block
represents one byte, and the alternating white and grey sections indicate
distinctions between fields.

Table 6: Descriptions of a DELAY RESP message’s byte structure.

Field Data type Size Description

receiveTimestamp custom struct 10 bytes exact local receive timestamp for
associated DELAY REQ message

requestingPortIdentity custom struct 10 bytes port identity of the clock that sent
the associated DELAY REQ message

suffix[] unsigned int 1 byte used to store TLV info

3.3 Synchronization procedure

To correct its clock setting, the follower clock must calculate the clock offset between
itself and the leader clock while considering the impact of transmission and propagation
delays; to do this, multiple messages are transmitted between the clocks and their send and
receipt time recorded to provide the data needed for such a calculation, as shown in figure
9. This procedure can be described as follows:

1. A SYNC message is sent from leader to follower to measure the clock offset in the L→F
direction; the SYNC message contains the approximate timestamp it was sent by the
leader clock.

(a) The leader clock stores the exact local send timestamp t1 after transmitting the
SYNC message.

(b) The follower clock stores the local timestamp t2 that it received the SYNCmessage.

2. A FOLLOW UP message is sent from leader to follower to relay the timestamp that the
associated SYNC message was sent; the FOLLOW UP message contains the exact local
send timestamp t1 recorded by the leader.

(a) The follower clock stores the timestamp t1 contained in the FOLLOW UP message.

12

3. A DELAY REQ message is sent from follower to leader to measure the clock offset in the
F→L direction; the DELAY REQ message contains the approximate timestamp it was
sent by the follower clock.

(a) The follower clock stores the exact local send timestamp t3 after transmitting
the DELAY REQ message.

(b) The leader clock stores the local timestamp t4 that it received the DELAY REQ

message.

4. A DELAY RESP message is sent from leader to follower to relay the timestamp that
the associated DELAY REQ message was received; the DELAY RESP message contains the
exact local receipt timestamp t4 recorded by the leader.

(a) The follower clock stores the timestamp t4 contained in the DELAY RESP message.

Figure 9: Simplified diagram of PTP’s sync procedure.

13

After this message exchange, the follower clock has stored all four timestamp values
(t1, t2, t3, and t4) and can calculate its offset. When a follower clock is first enabled, this
exchange of messages is repeated to calculate multiple clock offsets with timestamps from
distinct message sets; in the linuxptp implementation, the clock is considered to be in
the UNCALIBRATED state during this time, with a default of 16 repetitions of the message
exchange described in figure 9. At this point, the follower makes a large adjustment to
its clock setting based on these offset values before entering the SLAVE state; in this state,
message sets are continuously sent at a predetermined interval, with the follower clock
calculating offset values to make small clock setting adjustments. The SLAVE state lasts
until the connection to the leader clock is interrupted. During both the UNCALIBRATED and
SLAVE states for the follower clock, the leader clock is considered to be in a MASTER state,
where it remains until it loses connection to all of its follower clocks (causing it to return
to the LISTENING state).

4 Exploration

For the theoretical phase of this study, each of the network covert channel patterns
cataloged and taxonomized by Wendzel et al. [17] were considered for their feasibility when
applied to a PTP-enabled setup. Potential channels were assessed by the amount of data
they are able to transmit (throughput), the extent to which they resist both generic and
targeted detection measures (detectability), and the extent to which they can communicate
despite potential disruptions (robustness). See section 2.3 for additional explanation of
these criteria.

The potential evaluation outcomes for each approach are ‘not possible’, designating
approaches that lack suitable target objects within PTP’s structure or operation, ‘possible,
but not feasible’, designating approaches that have suitable target objects but could not
establish covert communications for a meaningful duration (e.g. approaches that cause
terminal errors), and ‘feasible’, designating approaches that are capable of establishing
covert communications.

4.1 PTP-based covert channels

4.1.1 Event/Element Interval Modulation - ET1 (RT1n)

Pattern definition. Messages are encoded by modulating the gaps between events/elements,
e.g. modulating the inter-packet gap.

Assessment. PTP depends on consistent, symmetrical packet intervals and message
delays to perform the message exchanges needed to successfully calculate clock offsets and
synchronize connected devices; as such, modulating the intervals between elements is very
likely to impair function, and the explicit errors this would cause render the channel highly
detectable.

Evaluation. Possible, but not feasible.

14

4.1.2 Rate/Throughput Modulation - ET1.1 (RT1.1n)

Pattern definition. Messages are encoded by modulating the rate of events/elements; i.e.,
the message is not embedded into particular inter-event/element timings but in the overall
rate/throughput.

Assessment. PTP messages are transmitted at set intervals defined explicitly in the source
code, which thereby determines the overall transmission rates. These encoded interval
values are needed to successfully calculate clock offsets and synchronize connected devices;
as such, any modulation of message rates without manually adjusting the fields from within
the source is very likely to impair function, and the explicit errors this would cause render
the channel highly detectable.

Evaluation. Possible, but not feasible.

4.1.3 Event Occurrence - ET2 (RT2n)

Pattern definition. Messages are encoded in the temporal location of events; i.e., the rate
of events is not directly modulated, but events are triggered at specific moments in time.

Assessment. PTP does not include any events that can be triggered at a specific point
in time (with the exception of the connection/disconnection of devices, which falls under
pattern RN1.1n); as such, this channel has no potential throughput and is not considered
possible in a PTP context.

Evaluation. Not possible.

4.1.4 Frame Corruption - RT2.1n

Pattern definition. Messages are encoded by causing artificial frame collisions to signal the
information.

Assessment. The potential throughput of this channel is highly restricted, as causing frame
collisions at high rates is very likely to impair function, and the explicit errors this would
cause render the channel highly detectable.

Evaluation. Possible, but not feasible.

4.1.5 Artificial Element-Loss - EN1 (RN1n)

Pattern definition. Messages are encoded by modulating the artificial loss of elements, e.g.
dropping messages with an even sequence number.

Assessment. Sets of messages must contain all of their components in order to successfully
calculate clock offsets and synchronize connected devices; such messages are linked together
by the sequenceId field in the header, and while the artificial loss of an entire exchange
could be performed, we know from the sync procedure that this still results in incomplete

15

data. As such, the artificial loss of elements (whether individuals or groups) is very likely
to impair function, and the explicit errors this would cause render the channel highly
detectable.

Evaluation. Possible, but not feasible.

4.1.6 Artificial (Forced) Reconnections Modulation - RN1.1n

Pattern definition. Messages are encoded by causing artificial (forced) reconnections to
signal the information; the covert sender influences connections of third-party nodes in a
way that their connections to either a central element (e.g., an MQTT broker or a server)
or a peer (in a peer-to-peer network) are terminated and then established again (i.e., a
reconnect is performed).

Assessment. PTP-enabled clocks can be manually disconnected and reconnected,
prompting them to observably re-enter the INITIALIZING state. The initial synchronization
period after a clock connects to the network causes a delay that restricts the throughput
for this channel; in addition, communication is likely to be unidirectional, as disconnecting
and reconnecting leader clocks would cause repeated shifts in the BMCA-managed clock
hierarchy, thereby increasing the channel’s detectability (i.e. this channel is far more
feasible for communications originating at follower clocks). In general, this channel is not
likely to be detectable without targeted countermeasures, as disconnections are a normal
part of PTP operation and will not cause any explicit errors; however, depending on the
broader implementation, errors may be thrown by other monitoring policies.

Evaluation. Feasible.

4.1.7 Elements/Features Positioning - EN2 (RN2n)

Pattern definition. Messages are encoded by modulating the position of a predefined (set
of) element(s)/feature(s) in a sequence of elements/features, e.g. changing the position of
an IPv4 option in the list of options.

Assessment. PTP does not include any sequences of elements with configurable positions;
as such, this channel has no potential throughput and is not considered possible in a PTP
context.

Evaluation. Not possible.

4.1.8 Elements/Features Enumeration - EN3 (RN3n)

Pattern definition. Messages are encoded by altering the overall number of appearances of
elements/features in a sequence, e.g. fragmenting a network packet into a specific number
of fragments, modulating the number of people wearing a t-shirt in a specific color in an
image file.

16

Assessment. PTP does not include any sequences of elements with configurable numbers
of appearances; as such, this channel has no potential throughput and is not considered
possible in a PTP context.

Evaluation. Not possible.

4.1.9 Artificial Retransmissions Modulation - RN3.1n

Pattern definition. Messages are encoded by re-transmitting previously sent or received
PDUs.

Assessment. Sending previously received messages is very likely to impair function because
of the call-and-response message pattern, and the explicit errors this would cause render the
channel highly detectable. PTP messages that are not used in calculations are already sent
at regular intervals with no requirement to modify their contents and can be re-transmitted
without error, e.g. ANNOUNCE messages and MANAGEMENT messages (when enabled). PTP
messages used in calculations are linked together by the sequenceId field in the header and
can also be re-transmitted without error, as the contents of these messages will only ever
be used together with the contents from the other messages in the set. The throughput for
this channel is restricted by the amount of new traffic that could be introduced into the
network before being easily noticeable by non-targeted countermeasures.

Evaluation. Feasible.

4.1.10 State/Value Modulation - EN4 (RN4n)

Pattern definition. Messages are encoded by modulating the states or values of features,
e.g. changing values of the network packet header fields.

Assessment. Because of the function that PTP provides, the vast majority of message
contents are metadata pertaining to the clocks on the network; while it is unlikely that
a person will view the contents of any given message, the contents still cannot readily be
modified without causing rampant calculation errors. As such, overwriting values is very
likely to impair function, and the explicit errors this would cause render the channel highly
detectable.

Evaluation. Possible, but not feasible.

4.1.11 Reserved/Unused State/Value Modulation - EN4.1 (RN4.1n)

Pattern definition. Messages are encoded by modulating reserved/unused states/values,
e.g. overwriting the IPv4 reserved field.

Assessment. PTP contains several ‘reserved’ fields in both the message header and in the
body of certain message types, as well as fields intended for bitwise values that do not
fill their allocated space; such fields can be overwritten without error. The throughput of

17

this channel is restricted by the amount of unused space in a given message type and the
established rate of message transmission. In addition, this channel may be detectable by
non-targeted countermeasures (e.g. data validation) and is likely to be robust against most
barriers (e.g. firewalls) that do not directly modify message values, although it is not likely
to be robust against scenarios involving data loss.

Evaluation. Feasible.

4.1.12 Random State/Value Modulation - EN4.2 (RN4.2n)

Pattern definition. Messages are encoded by replacing a (pseudo-)random value or (pseudo-)
random state with a secret message (that is also following a pseudo-random appearance),
e.g. replacing the pseudo-random content of a network header field with encrypted covert
content.

Assessment. PTP does not include any random or pseudo-random elements; as such, this
channel has no potential throughput and is not considered possible in a PTP context.

Evaluation. Not possible.

4.1.13 Blind State/Value Modulation - EN4.3 (RN4.3n)

Pattern definition. Messages are encoded by blindly corrupting of data, e.g. blindly
overwriting a checksum to either corrupt a packet or not.

Assessment. Because of the function that PTP provides, the vast majority of message
contents are metadata pertaining to the clocks on the network; while it is unlikely that
a person will view the contents of any given message, the contents still cannot readily be
modified without causing rampant calculation errors. As such, blind overwriting is very
likely to impair function, and the explicit errors this would cause render the channel highly
detectable.

Evaluation. Possible, but not feasible.

4.1.14 Feature Structure Modulation - EN5 (RN5n)

Pattern definition. Comprises all hiding techniques that encode messages by modulating the
structural properties of a feature (but not states/values (EN4), positions (EN2) or number
of appearances (EN3)), e.g. increasing/decreasing the size of succeeding network packets.

Assessment. PTP message sizes are defined explicitly in the source code. These encoded
size metrics are used to extract the values needed to successfully calculate clock offsets and
synchronize connected devices; as such, any modulation of structural properties without
manually adjusting the fields from within the source is very likely to impair function, and
the explicit errors this would cause render the channel highly detectable.

Evaluation. Possible, but not feasible.

18

4.1.15 Size Feature Modulation - EN5.1 (N5.1n)

Pattern definition. Messages are encoded by modulating the size of an element, e.g. create
additional (unused) space in network packets for embedding hidden data.

Assessment. All PTP elements are of a set size defined explicitly in the source code. Theses
encoded size metrics are used to extract the values needed to successfully calculate clock
offsets and synchronize connected devices; as such, any modulation of feature sizes without
manually adjusting the fields from within the source is very likely to impair function, and
the explicit errors this would cause render the channel highly detectable.

Evaluation. Possible, but not feasible.

4.1.16 Character Feature Modulation - EN5.2 (RRN5.2n)

Pattern definition. Messages are encoded by modulating different features in characters,
such as color, size (scale), font, position or size of different parts in some letters, e.g. using
upper- or lowercase letters.

Assessment. PTP does not include any text-based elements; as such, this channel has no
potential throughput and is not considered possible in a PTP context.

Evaluation. Not possible.

19

4.2 Summary of findings

Pattern name Evaluation Reason

Event/Element Interval
Modulation

possible, but not feasible likely to impair function and/or
throw errors → high detectability

Rate/Throughput
Modulation

possible, but not feasible likely to impair function and/or
throw errors → high detectability

Event Occurrence not possible no suitable target objects

Frame Corruption possible, but not feasible viable throughput conditions
likely to impair function and/or
throw errors → high detectability

Artificial Element-Loss possible, but not feasible likely to impair function and/or
throw errors → high detectability

Artificial (Forced)
Reconnections
Modulation

feasible not likely to throw errors;
throughput limited by network
configuration; false-positive rate
high

Elements/Features
Positioning

not possible no suitable target objects

Elements/Features
Enumeration

not possible no suitable target objects

Artificial
Retransmissions
Modulation

feasible not likely to throw errors;
increased throughput conditions
also increase detectability

State/Value Modulation possible, but not feasible likely to impair function and/or
throw errors → high detectability

Reserved/Unused
State/Value Modulation

feasible not likely to throw errors;
throughput limited by
established message rates;
false-positive rate low

Random State/Value
Modulation

not possible no suitable target objects

Blind State/Value
Modulation

possible, but not feasible likely to impair function and/or
throw errors → high detectability

Feature Structure
Modulation

possible, but not feasible likely to impair function and/or
throw errors → high detectability

Size Feature Modulation possible, but not feasible likely to impair function and/or
throw errors → high detectability

Character Feature
Modulation

not possible no suitable target objects

20

5 Experimentation

Given the three patterns identified as feasible in section 4, ‘Reserved/Unused State/
Value Modulation’ has the greatest likelihood of success as a vehicle for a covert channel
attack of a PTP-enabled network due to its high throughput potential and low propensity
to cause errors or false-positives. This approach is hereafter interchangeably referred to as
‘unused value modulation’ and ‘unused value’. This section discusses the development of a
prototype implementation for this pattern and its experimental evaluation; section 6 will
cover these practical findings in conversation with those from section 4.

5.1 Methodology

5.1.1 Technical specifications

The unused value modulation channel was realized using a fork of the open-source PTP
implementation linuxptp6 [37] on a network testbed comprised of two NVIDIA® Jetson
Nano™ 2GB machines7 communicating over Ethernet. Both devices are identically equipped
with 128-core NVIDIA Maxwell™ GPUs, Quad-core ARM® Cortex-A57 CPUs, 2GB 64-
bit LPDDR4 SDRAM, 64GB microSD internal storage, and 802.11ac wireless Internet
connectivity; in addition, both were configured with Ubuntu 18.04.6 LTS from a device
image provided by NVIDIA8 in a headless setup, with root access from the external
computer over Ethernet. These test machines were able to successfully synchronize their
clocks with linuxptp, and all recorded traffic is genuine; for both legitimate and encoded
messages, data was captured using the open-source, packet-monitoring software Wireshark9

v2.6.10, with filters configured to log only PTP messages.

5.1.2 Determining channel targets

The linuxptp message structures contain several reserved fields, as described in section
3.2, but naming conventions alone cannot reliably authenticate whether a given field is
unused. To confirm potential targets for the chosen covert channel, we assessed each message
field to determine if its value is written and/or read during standard operation; table 8
includes the evaluation of each field along with a brief justification. Through this analysis,
we identify six unused fields, one of which is in the body of the ANNOUNCE message structure,
with the remaining five found in the message header. While ANNOUNCE messages are sent
at regular intervals during standard operation, their reserved field provides one byte of
capacity per message where the header fields collectively provide seven. In the interest of
the present prototype, the channel targets consist of only the unused fields located in the
message header.

6https://github.com/aronsmithdonovan/linuxptp-CC
7https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
8https://developer.nvidia.com/jetson-nano-2gb-sd-card-image
9https://www.wireshark.org/

21

https://github.com/aronsmithdonovan/linuxptp-CC
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/jetson-nano-2gb-sd-card-image
https://www.wireshark.org/

T
ab

le
8:

E
va
lu
at
io
n
of

m
es
sa
ge

fi
el
d
s
as

ta
rg
et
s
fo
r
th
e
u
n
u
se
d
va
lu
e
co
ve
rt

ch
an

n
el
.

P
ar
en
t
st
ru
ct
u
re

F
ie
ld

n
am

e
S
iz
e

U
n
u
se
d
?
←

H
ow

d
o
w
e
k
n
ow

?

m
es
sa
ge

h
ea
d
er

t
r
a
n
s
p
o
r
t
S
p
e
c
i
f
i
c

n
ib
b
le

N
O

fi
el
d
co
n
si
st
en

tl
y
em

p
ty

o
n
in
it
ia
l
o
b
se
rv
a
ti
o
n
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g
va
lu
e
a
n
d
cl
o
ck

sy
n
c
fa
il
ed

m
es
sa
ge

h
ea
d
er

m
e
s
s
a
g
e
T
y
p
e

n
ib
b
le

N
O

va
lu
e
is

o
ft
en

re
fe
re
n
ce
d
fo
r
u
se

in
sw

it
ch

st
a
te
m
en
ts

a
n
d

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
;
o
n
ly

u
se
s
th
e
d
ec
im

a
l
va
lu
es

0
,
1
,
2
,

3
,
8
,
9
,
1
0
,
1
1
,
1
2
,
1
3
,
b
u
t
b
ec
a
u
se

it
is

a
lw
ay

s
re
a
d
a
s
a

d
ec
im

a
l
va
lu
e,

th
er
e
a
re

n
o
u
n
u
se
d
b
it
s
th
a
t
d
a
ta

co
u
ld

b
e

w
ri
tt
en

in
to

m
es
sa
ge

h
ea
d
er

r
e
s
e
r
v
e
d

n
ib
b
le

Y
E
S

fi
el
d
co
n
si
st
en

tl
y
em

p
ty

o
n
in
it
ia
l
o
b
se
rv
a
ti
o
n
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g
va
lu
e
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

m
es
sa
ge

h
ea
d
er

v
e
r
s
i
o
n
P
T
P

n
ib
b
le

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
h
a
rd
-s
et

to
2
in

m
u
lt
ip
le

fi
le
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

m
es
sa
ge

h
ea
d
er

m
e
s
s
a
g
e
L
e
n
g
t
h

2
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

m
es
sa
ge

h
ea
d
er

d
o
m
a
i
n
N
u
m
b
e
r

1
b
y
te

N
O

cl
o
ck

d
o
m
a
in
s
a
re

co
m
p
le
te
ly

se
p
a
ra
te
d
fr
o
m

ea
ch

o
th
er

a
n
d
fu
n
ct
io
n
a
s
d
is
ti
n
ct

v
ir
tu
a
l
n
et
w
o
rk
s;

m
o
d
if
y
in
g
th
is

fi
el
d
p
re
v
en
ts

cl
o
ck

sy
n
c
fr
o
m

su
cc
ee
d
in
g
,
th
er
ef
o
re

n
o
t

su
it
a
b
le

m
es
sa
ge

h
ea
d
er

r
e
s
e
r
v
e
d
1

1
b
y
te

Y
E
S

fi
el
d
co
n
si
st
en

tl
y
em

p
ty

o
n
in
it
ia
l
o
b
se
rv
a
ti
o
n
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g
va
lu
e
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

m
es
sa
ge

h
ea
d
er

f
l
a
g
F
i
e
l
d
[
0
]

1
b
y
te

(n
ib
b
le

u
n
u
se
d
)

Y
E
S

fi
el
d
co
n
ta
in
s
fl
a
g
s
th
a
t
tr
ig
g
er

b
eh

av
io
ra
l
ch
a
n
g
es

w
h
en

se
t,

h
ow

ev
er

o
n
ly

th
e
la
st

th
re
e
b
it
s
a
re

u
se
d
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

a
ss
ig
n
in
g
a
va
lu
e
to

th
e
fi
rs
t
fi
v
e
b
it
s
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

m
es
sa
ge

h
ea
d
er

f
l
a
g
F
i
e
l
d
[
1
]

1
b
y
te

N
O

fi
el
d
co
n
ta
in
s
fl
a
g
s
th
a
t
tr
ig
g
er

b
eh

av
io
ra
l
ch
a
n
g
es

w
h
en

se
t,

h
ow

ev
er

o
n
ly

th
e
la
st

se
v
en

b
it
s
a
re

u
se
d
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

a
ss
ig
n
in
g
a
va
lu
e
to

th
e
fi
rs
t
b
it

a
n
d
cl
o
ck

sy
n
c

su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs
,
b
u
t
b
ec
a
u
se

o
f
it
s
ex
ce
ed

in
g
ly

lo
w

ca
p
a
ci
ty
,
th
is

fi
el
d
is

re
m
ov
ed

fr
o
m

co
n
si
d
er
a
ti
o
n

m
es
sa
ge

h
ea
d
er

c
o
r
r
e
c
t
i
o
n

8
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

C
o
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e.

22

P
ar
en
t
st
ru
ct
u
re

F
ie
ld

n
am

e
S
iz
e

U
n
u
se
d
?
←

H
ow

d
o
w
e
k
n
ow

?

m
es
sa
ge

h
ea
d
er

r
e
s
e
r
v
e
d
2

4
b
y
te
s

Y
E
S

fi
el
d
co
n
si
st
en

tl
y
em

p
ty

o
n
in
it
ia
l
o
b
se
rv
a
ti
o
n
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g
va
lu
e
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

m
es
sa
ge

h
ea
d
er

s
o
u
r
c
e
P
o
r
t
I
d
e
n
t
i
t
y

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
,
th
er
ef
o
re

n
o
t
su
it
a
b
le

m
es
sa
ge

h
ea
d
er

s
e
q
u
e
n
c
e
I
d

2
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

m
es
sa
ge

h
ea
d
er

c
o
n
t
r
o
l

1
b
y
te

Y
E
S

in
th
e
l
i
n
u
x
p
t
p
d
o
cu

m
en

ta
ti
o
n
,
th
is

is
d
es
cr
ib
ed

a
s
a

re
d
u
n
d
a
n
t
fi
el
d
fo
r
m
e
s
s
a
g
e
T
y
p
e
;
it
s
p
o
ss
ib
le

va
lu
es

a
re

en
u
m
er
a
te
d
in

th
e
m
s
g
.
h
fi
le
,
b
u
t
th
e
fi
el
d
is

n
o
t
re
a
d

a
n
y
w
h
er
e
in

th
e
so
u
rc
e;

a
tt
em

p
te
d
a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g

va
lu
e
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

m
es
sa
ge

h
ea
d
er

l
o
g
M
e
s
s
a
g
e
I
n
t
e
r
v
a
l

1
b
y
te

N
O

fi
el
d
h
a
n
d
le
s
m
es
sa
g
e
in
te
rv
a
ls

a
n
d
is

cr
u
ci
a
l
fo
r
o
p
er
a
ti
o
n
,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

o
r
i
g
i
n
T
i
m
e
s
t
a
m
p

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

c
u
r
r
e
n
t
U
t
c
O
f
f
s
e
t

2
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le
;
a
lw
ay

s
re
a
d
a
s
a

d
ec
im

a
l
va
lu
e,

th
er
e
a
re

n
o
u
n
u
se
d
b
it
s
th
a
t
d
a
ta

co
u
ld

b
e

w
ri
tt
en

in
to

A
N
N
O
U
N
C
E

r
e
s
e
r
v
e
d

1
b
y
te

Y
E
S

fi
el
d
co
n
si
st
en

tl
y
em

p
ty

o
n
in
it
ia
l
o
b
se
rv
a
ti
o
n
;
a
tt
em

p
te
d

a
rb
it
ra
ri
ly

ov
er
w
ri
ti
n
g
va
lu
e
a
n
d
cl
o
ck

sy
n
c
su
cc
ee
d
ed

w
it
h
o
u
t
er
ro
rs

A
N
N
O
U
N
C
E

g
r
a
n
d
m
a
s
t
e
r
P
r
i
o
r
i
t
y
1

1
b
y
te

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
q
u
ir
ed

fo
r
B
M
C
A

ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

g
r
a
n
d
m
a
s
t
e
r
C
l
o
c
k
Q
u
a
l
i
t
y
4
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
q
u
ir
ed

fo
r
B
M
C
A

ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

g
r
a
n
d
m
a
s
t
e
r
P
r
i
o
r
i
t
y
2

1
b
y
te

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
q
u
ir
ed

fo
r
B
M
C
A

ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

g
r
a
n
d
m
a
s
t
e
r
I
d
e
n
t
i
t
y

8
b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
q
u
ir
ed

fo
r
B
M
C
A

ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

s
t
e
p
s
R
e
m
o
v
e
d

2
b
y
te
s

N
O

fi
el
d
is

re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t

su
it
a
b
le

C
o
n
ti
n
u
ed

o
n
n
ex
t
p
a
g
e.

23

P
ar
en
t
st
ru
ct
u
re

F
ie
ld

n
am

e
S
iz
e

U
n
u
se
d
?
←

H
ow

d
o
w
e
k
n
ow

?

A
N
N
O
U
N
C
E

t
i
m
e
S
o
u
r
c
e

1
b
y
te

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

A
N
N
O
U
N
C
E

s
u
f
f
i
x
[
]

1
b
y
te

N
O

fi
el
d
is

ch
ec
k
ed

u
p
o
n
re
ce
p
ti
o
n
o
f
ev
er
y
m
es
sa
g
e
a
n
d

th
ro
w
s
a
n
er
ro
r
fo
r
a
n
y
u
n
ex
p
ec
te
d
va
lu
es
,
th
er
ef
o
re

n
o
t

su
it
a
b
le

S
Y
N
C

o
r
i
g
i
n
T
i
m
e
s
t
a
m
p

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

D
E
L
A
Y
R
E
Q

o
r
i
g
i
n
T
i
m
e
s
t
a
m
p

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

D
E
L
A
Y
R
E
Q

s
u
f
f
i
x
[
]

1
b
y
te

N
O

fi
el
d
is

ch
ec
k
ed

u
p
o
n
re
ce
p
ti
o
n
o
f
ev
er
y
m
es
sa
g
e
a
n
d

th
ro
w
s
a
n
er
ro
r
fo
r
a
n
y
u
n
ex
p
ec
te
d
va
lu
es
,
th
er
ef
o
re

n
o
t

su
it
a
b
le

F
O
L
L
O
W
U
P

p
r
e
c
i
s
e
O
r
i
g
i
n
T
i
m
e
s
t
a
m
p

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

F
O
L
L
O
W
U
P

s
u
f
f
i
x
[
]

1
b
y
te

N
O

fi
el
d
is

ch
ec
k
ed

u
p
o
n
re
ce
p
ti
o
n
o
f
ev
er
y
m
es
sa
g
e
a
n
d

th
ro
w
s
a
n
er
ro
r
fo
r
a
n
y
u
n
ex
p
ec
te
d
va
lu
es
,
th
er
ef
o
re

n
o
t

su
it
a
b
le

D
E
L
A
Y
R
E
S
P

r
e
c
e
i
v
e
T
i
m
e
s
t
a
m
p

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
a
n
d
re
fe
re
n
ce
d
fo
r
u
se

in
ca
lc
u
la
ti
o
n
s,

th
er
ef
o
re

n
o
t
su
it
a
b
le

D
E
L
A
Y
R
E
S
P

r
e
q
u
e
s
t
i
n
g
P
o
r
t
I
d
e
n
t
i
t
y

1
0

b
y
te
s

N
O

fi
el
d
is

cr
u
ci
a
l
to

o
p
er
a
ti
o
n
,
th
er
ef
o
re

n
o
t
su
it
a
b
le

D
E
L
A
Y
R
E
S
P

s
u
f
f
i
x
[
]

1
b
y
te

N
O

fi
el
d
is

ch
ec
k
ed

u
p
o
n
re
ce
p
ti
o
n
o
f
ev
er
y
m
es
sa
g
e
a
n
d

th
ro
w
s
a
n
er
ro
r
fo
r
a
n
y
u
n
ex
p
ec
te
d
va
lu
es
,
th
er
ef
o
re

n
o
t

su
it
a
b
le

E
n
d
o
f
ta
b
le
.

24

5.2 Implementation

To demonstrate the unused value channel in the message header for linuxptp, we chose
to create a proof-of-concept implementation that hides a text payload in the target fields
identified in section 5.1.2. This example is sufficient for the experimental evaluation and
subsequent discussion of the channel, as the basic mechanism of writing and reading bitwise
values in the header operates identically for other payload formats.

The chosen targets allow us to encode seven bytes in every PTP message transmitted by
either clock type; crucially, this space is non-contiguous and accepts only numerical values.
To comply with the latter restriction, each character of the text payload is encoded as its
8-bit ASCII value, but addressing the former requires some additional consideration: while
the total throughput is a whole number of bytes, this includes two 4-bit segments, thereby
necessitating the splitting of individual ASCII values across multiple fields.

Our final encoding method pulls seven characters of the payload text at a time, saves each
of their ASCII values as two separate, 4-bit values, and inserts these pieces into the target
fields as they fit. For example, the payload string "payload" contains seven characters
and can be encoded into a single message: the intact hexadecimal ASCII values for these
characters are {0x70, 0x61, 0x79, 0x6C, 0x6F, 0x61, 0x64} and the split 4-bit binary
values are {0111, 0000, 0110, 0001, 0111, 1001, 0110, 1100, 0110, 1111, 0110,

0001, 0110, 0100}, with the allocation of this sample data shown in figure 10.

Figure 10: Example of data allocation to encode the string "payload"; each
block represents one byte, and the grey sections indicate unused fields.

The described encoding scheme is implemented in the hdr pre send function within
the msg.c file of our linuxptp fork.10 In its unmodified state, hdr pre send performs
final validation of the message header fields before transmission, and is called within the
msg pre send function; this existing component was not modified or removed to construct
the prototype channel. We have integrated the encoding directly into the source to better
demonstrate the relationship between the unused linuxptp header fields and the actual
encoding process, and a similar script to the one we have developed could serve the same
function without access to the source code by referencing the physical locations rather
than the variable names. The modified hdr pre send function containing the encoding
implementation is provided in its entirety in section A.1.

Our decoding method performs these same steps in reverse, pulling the separated ASCII
values out of the headers of received messages and reassembling them before writing the
associated characters to a local file. This is implemented in the hdr post recv function
within the msg.c file of our linuxptp fork.11 Similarly to hdr pre send, in its unmodified
state, hdr post recv performs initial processing of the message header fields immediately

10https://github.com/aronsmithdonovan/linuxptp-CC
11https://github.com/aronsmithdonovan/linuxptp-CC

25

https://github.com/aronsmithdonovan/linuxptp-CC
https://github.com/aronsmithdonovan/linuxptp-CC

after reception, and this component was not modified or removed to construct the prototype
channel. The modified hdr post recv function containing the decoding script is provided
in its entirety in section A.2.

5.3 Results

To evaluate the channel implementation described in section 5.2, we recorded both
legitimate linuxptp traffic (i.e. without the covert channel enabled) and encoded linuxptp

traffic (i.e. with the covert channel enabled) between our test machines with Wireshark, as
described in section 5.1.1. Each sample was collected over a ten-minute period beginning
with the initialization for both devices and including the entire sync procedure as described
in section 3.3. For the encoded messages, the payload was transmitted in both directions,
with each machine performing the encoding of sent messages and the decoding of received
messages; throughput calculations for this case assume seven bytes per message.

5.3.1 Message type data

Table 9: Message type counts for legitimate
PTP traffic, given over an approx. 612.83-
second period.

Message type Count/612.83 seconds

ANNOUNCE 307 messages

SYNC 612 messages

FOLLOW UP 612 messages

DELAY REQ 602 messages

DELAY RESP 602 messages

Table 10: Message type counts for encoded
PTP traffic, given over an approx. 607.52-
second period.

Message type Count/607.52 seconds

ANNOUNCE 304 messages

SYNC 607 messages

FOLLOW UP 607 messages

DELAY REQ 597 messages

DELAY RESP 597 messages

5.3.2 Traffic data

Table 11: Results summary for legitimate PTP traffic; decimal values have been truncated.

Value
Metric Legitimate leader Legitimate follower Legitimate overall

time connected 612.83 seconds 604.03 seconds 612.83 seconds

total transmitted 2133 messages 602 messages 2735 messages

transmission rate 3.48 messages/second 0.99 messages/second 4.46 messages/second

Table 12: Results summary for encoded PTP traffic; decimal values have been truncated.

Value
Metric Encoded leader Encoded follower Encoded overall

time connected 607.52 seconds 600.81 seconds 607.52 seconds

total transmitted 2115 messages 597 messages 2712 messages

transmission rate 3.48 messages/second 0.99 messages/second 4.46 messages/second

channel throughput 24.36 bytes/second 6.95 bytes/second 24.36 bytes/second

26

5.4 Analysis

The message rate data immediately reinforces the asymmetrical activity implied by the
sync procedure described in section 3.3, i.e. significantly more messages are sent by leader
clocks than follower clocks, resulting in an uneven throughput. We conclude from this that
leader clocks are at a higher risk in the event of an exfiltration attack than they are in
the event of an insertion attack, and follower clocks are at a higher risk in the event of an
insertion attack than they are in the event of an exfiltration attack. Despite this discrepancy
between the clock types, our prototype channel exhibited a relatively high throughput in
either direction, with approx. 24.3 bytes per second (bps) from the leader and approx. 6.9
bps from the follower.

Another significant finding from this data is the lack of a detectable change in message
rates: the values for the legitimate and encoded cases are remarkably close, and are
considered equivalent within a margin of error of ±0.01 seconds. As discussed in section 3.3
and section 4.1, PTP depends on consistent message intervals to calculate clock offsets, and
any behavior that modifies message timing is very likely to impair function. Our channel
prototype did not cause explicit errors at any point during testing, and given the level of
timing consistency, it is highly unlikely that a network controller would detect any change
in transmission; as such, we conclude the channel to have a relatively low detectability with
non-targeted countermeasures.

It is possible, however, that the unused values channel could be detectable with targeted
remediation strategies. For example, the linuxptp implementation lacks data validation
for its historical and reserved fields, allowing our implemented channel to pass by without
errors; if data validation were present in a network monitor or within linuxptp itself,
the channel would cause errors and therefore become highly detectable. An exhaustive
review of countermeasure strategies falls outside the scope of this study, and potential
future endeavors are described in section 6.2.

Due to equipment limitations, the robustness of this channel has not been thoroughly
explored. It is worth noting at this point that the encoded messages passed through an
Ethernet network switch without issue, and that the payload text was continuously,
repeatedly transmitted for extended connected sessions without any observed error on the
receiving end. Again, potential future investigations are discussed in section 6.2.

6 Discussion

The prototype described in section 5 confirms the feasibility of a covert channel attack
targeting PTP-enabled networks. In testing, the unused value modulation approach
displayed a bidirectional throughput of seven bytes per message (bpm), with approx. 24.3
bytes per second (bps) transmitted from leader clock to follower clock and approx. 6.9 bps
transmitted from follower clock to leader clock; no behaviors detectable by untargeted
measures were observed. It is possible that more complex PTP integrations could be capable
of detecting the channel, however these cases warrant their own dedicated investigations
and are, along with the development of targeted countermeasures, beyond the scope of this
paper.

Where the implemented strategy stores covert communications directly in data objects,
the two covert channel patterns determined to be feasible in section 4 that were not used

27

for the prototype in section 5 are both indirect channels, meaning information is instead
encoded in behavioral changes. If they were to be implemented, both approaches are
predicted to have very high detectability due to this observable modification of network
events, as well as a throughput of <1 bit per message.

Considering the ongoing difficulty of generalizing covert channel studies as described in
section 2.2 and section 2.3, a broad claim of a given attack’s performance would likely be
unsubstantiated. Within the assessed linuxptp context, the unused value channel proved to
be not only feasible, but highly successful. The implications of these findings are considered
in section 6.1.

6.1 Risk assessment

As described in section 2.4, PTP is a common protocol in industrial and manufacturing
settings using local network setups; the explicit requirement described in section 3.1 that
at least one locally connected device have a second, external network connection provides
a potential entry point for a malicious actor. Due to the access level required to establish a
covert channel, they are generally more advantageous, and therefore more likely to appear,
as data transfer tools within larger attack scenarios; their risk potential has been assessed
accordingly.

Outgoing covert channels facilitate the exfiltration of data from a secure system to an
insecure one; in a PTP setup, potentially vulnerable information can include specifications
and schedules for controllers and equipment. While unauthorized access to such details may
not be inherently harmful, knowledge of the intended target can inform future attacks; for
example, device specifications can be used to develop malware, and equipment schedules
are helpful in planning physical access or (D)DoS attacks. Incoming covert channels, on
the other hand, introduce the potential for insertion- and injection-based exploits. PTP’s
hierarchical network structure, discussed in section 3.1, renders systems highly susceptible to
self-propagating malware (worms), and simpler logic controllers are vulnerable to disruption
by relatively small viral scripts [23].

The execution of a covert channel-based attack requires highly detailed knowledge of
the target, presenting a level of difficulty that makes a malicious actor more likely to
pursue an easier exploit strategy [13]. In addition, because these attacks are designed to be
undetectable, real-world incidence data is nearly nonexistent—this scarcity is
exacerbated by security clearance policies, which typically consider attempted attacks to
be at a higher level than the targeted resource(s), further limiting the availability of this
information [26]. Knowing this, any evaluation of risk can only be made in consideration
of the potential damage if an attack were carried out, with the likelihood of such an attack
still unidentified.

6.2 Future work

Given the dilemma of accurately predicting the risk of a covert channel attack discussed
in section 6.1, it is often challenging to justify research on prevention measures. However,
because covert channels can only reliably be detected with targeted remediation
strategies [13], such investigations are vital to understanding the actual incidence rates

28

of these attacks; it is ultimately inadvisable to delay securing systems until we are sure
these weaknesses are actively being exploited.

Many potential directions for future work remain; continued study into the PTP
vulnerabilities described in this report, as well as into developing, evaluating, and
implementing countermeasures, is recommended at this point. Additional testing is needed
on the robustness of the implemented linuxptp channel against non-ideal circumstances
(e.g. firewalls). Lastly, other PTP implementations, both standalone and those
incorporated into larger frameworks, require their own separate case studies in a similar
convention to this paper’s study of linuxptp.

6.3 Limitations

This study faced restrictions caused by available data and equipment capabilities. The
body of existing work on covert channels is not cohesive, and the lack of established industry
standards hinders the generalization of results; this is explored in section 2. There is
relatively little research on covert channels in control systems and no existing studies on
covert channels in PTP, resulting in a lack of clear precedent in the field. In addition, access
to the source code for linuxptp allowed for a higher level of familiarity with the attack
context than would be possible in most real-world scenarios, and the network testbed used
consisted of only two devices, thereby not allowing for all scenarios possible with linuxptp

to be evaluated: the peer-to-peer (P2P) mode of operation was not explored, and certain
message types were not able to be produced, as discussed in section 3 and section 5.

7 Conclusion

Covert channel strategies are protocol- and implementation-specific, requiring individual
case studies to assess for vulnerabilities. Through this paper, we have demonstrated the
feasibility of covert channels in Precision Time Protocol (PTP). Of the feasible attack
strategies identified, one was implemented and experimentally evaluated; the high
throughput and low detectability of this prototype illustrate the need for additional work
developing remediation strategies. This project is the first to assess PTP for covert channel
vulnerabilities, and intends to contribute to the body of research on covert channels in
control systems as well as prompt improvements to better secure PTP-enabled systems.

29

A Appendix

A.1 Payload encoding script

1 size_t pos = 0; // file position holder

2

3 /**

4 * Processes the message header immediately prior to sending. Located in the msg.c

↪→ file and called within the msg_pre_send function.

5 *

6 * @param m The header structure of the message being prepared for transmission.

7 */

8 static int hdr_pre_send(struct ptp_header *m)

9 {

10 // INITIALIZATION

11 char *filename = "payload.txt"; // payload source file

12 unsigned int ch; // holder for individual chars in payload text

13 unsigned int payload [14]; // holder for numerical encodings of payload chars

14 int i, j; // iterators

15

16 // OPEN PAYLOAD SOURCE FILE

17 FILE *fp = fopen(filename , "r");

18

19 // ERROR CHECK

20 if(fp == NULL) {

21 printf("Error: could not open file %s", filename);

22 }

23

24 // RETURN TO SAVED FILE POSITION

25 fseek(fp, pos , SEEK_SET);

26

27 // READ NEXT 7 CHARS OF PAYLOAD

28 for(i = 0; i<14; i++) { // for 14 repetitions ...

29 ch = fgetc(fp); // get next char in payload text

30 switch(ch == EOF) {

31 case 0: // if current char does not mark the end of the payload file ...

32 payload[i] = (unsigned int)(ch >> 4); // save the first digit of the

↪→ current char’s ASCII value

33 i++; // move forward one spot in the holder array

34 payload[i] = (unsigned int)(ch & 0x0f); // save the second digit of the

↪→ current char’s ASCII value

35 break; // exit switch statement and continue to next char in payload text

36 default: // if current char does mark the end of the payload file ...

37 for(j=i; j<14; j++) { // for the remainder of the space in the holder

↪→ array ...

38 payload[j] = (unsigned int)(0x0); // save the first digit of the ASCII

↪→ value for new line

39 j++; // move forward one spot in the holder array

40 payload[j] = (unsigned int)(0xa); // save the second digit of the ASCII

↪→ value for new line

41 }

42 goto reset_file; // reset file position to zero

43 }

44 }

45

46 // SAVE FILE POSITION

47 pos = ftell(fp);

48 reset_file_return:

49

50 // CLOSE PAYLOAD FILE

51 fclose(fp);

52

53 // WRITE PAYLOAD TO HEADER FIELDS

30

54 // reserved (nibble)

55 m->ver = m->ver | (payload [0]<<4);

56 // reserved1 (1 byte)

57 m->reserved1 = (payload [1]<<4) | payload [2];

58 // flagField [0] (nibble)

59 m->flagField [0] = m->flagField [0] | (payload [3]<<4);

60 // reserved2 (4 bytes)

61 m->reserved2 = (payload [4] << 28) |

62 (payload [5] << 24) |

63 (payload [6] << 20) |

64 (payload [7] << 16) |

65 (payload [8] << 12) |

66 (payload [9] << 8) |

67 (payload [10] << 4) |

68 payload [11];

69 // control (1 byte)

70 m->control = (payload [12] << 4) | payload [13];

71

72 // CONVERT BYTE ORDER

73 //// included in original linuxptp source; converts target values from host CPU

↪→ byte order to network byte order

74 m->messageLength = htons(m->messageLength);

75 m->correction = host2net64(m->correction);

76 m->sourcePortIdentity.portNumber = htons(m->sourcePortIdentity.portNumber);

77 m->sequenceId = htons(m->sequenceId);

78

79 // RETURN

80 //// included in original linuxptp source

81 return 0;

82

83 // RESET FILE

84 reset_file:

85 pos =0; // set file position to zero

86 goto reset_file_return; // complete the rest of the function

87

88 }

31

A.2 Payload decoding script

1 /**

2 * Processes the message header immediately after receiving. Located in the msg.c

↪→ file and called within the msg_post_recv function.

3 *

4 * @param m The header structure of the message being processed after reception.

5 */

6 static int hdr_post_recv(struct ptp_header *m)

7 {

8 // CONVERT BYTE ORDER

9 //// included in original linuxptp source; converts target values from network

↪→ byte order to CPU byte order

10 if ((m->ver & VERSION_MASK) != VERSION)

11 return -EPROTO;

12 m->messageLength = ntohs(m->messageLength);

13 m->correction = net2host64(m->correction);

14 m->sourcePortIdentity.portNumber = ntohs(m->sourcePortIdentity.portNumber);

15 m->sequenceId = ntohs(m->sequenceId);

16

17 // READ HEADER FIELDS AND WRITE PAYLOAD TO FILE

18 FILE *exfp;

19 exfp = fopen("exfiltrated -payload.txt", "a");

20 fprintf(exfp , "%c", (m->ver & 0xf0) | (m->reserved1 >> 4));

21 fprintf(exfp , "%c", ((m->reserved1 & 0x0f) << 4) | (m->flagField [0] >> 4));

22 fprintf(exfp , "%c", (m->reserved2 >> 24) & 0xff);

23 fprintf(exfp , "%c", (m->reserved2 >> 16) & 0xff);

24 fprintf(exfp , "%c", (m->reserved2 >> 8) & 0xff);

25 fprintf(exfp , "%c", (m->reserved2) & 0xff);

26 fprintf(exfp , "%c", (m->control) & 0xff);

27 fclose(exfp);

28

29 // RETURN

30 //// included in original linuxptp source

31 return 0;

32 }

32

Bibliography

[1] Butler W Lampson. “A note on the confinement problem”. In: Communications of
the ACM 16.10 (1973), pp. 613–615.

[2] Richard A Kemmerer. “Shared resource matrix methodology: An approach to iden-
tifying storage and timing channels”. In: ACM Transactions on Computer Systems
(TOCS) 1.3 (1983), pp. 256–277.

[3] US Department of Defense. Covert Channel Analysis of Trusted Systems (Light Pink
Book). National Computer Security Center, Fort Meade, MD. 1993. url: https:
//irp.fas.org/nsa/rainbow/tg030.htm.

[4] James P. Anderson. Computer Security Technology Planning Study. Planning study.
Deputy for Command and Management Systems (Bedford, MA), 1972. url: http:
//seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf.

[5] US Department of Defense. Trusted Computer System Evaluation Criteria (Orange
Book). National Computer Security Center (Fort Meade, MD). 1983. url: https:
//csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/

proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.

pdf.

[6] Overt and covert channels. Certified Ethical Hacker (CEH) Blog. Jan. 2012. url:
http : / / certifiedethicalhackerceh . blogspot . com / 2012 / 01 / overt - and -

covert-channels.html.

[7] C.G. Girling. “Covert Channels in LAN’s”. In: IEEE Transactions on Software Engi-
neering SE-13.2 (1987), pp. 292–296. doi: 10.1109/TSE.1987.233153. url: https:
//ieeexplore.ieee.org/document/1702208.

[8] Reshad Patuck and Julio Hernandez-Castro. “Steganography using the extensible
messaging and presence protocol (XMPP)”. In: arXiv preprint arXiv:1310.0524 (2013).

[9] Erik Brown et al. “Covert channels in the HTTP network protocol: Channel char-
acterization and detecting Man-in-the-Middle attacks”. In: Journal of Information
Warfare 9.3 (2010), pp. 26–38.

[10] Hanaa Nafea et al. “Efficient non-linear covert channel detection in TCP data streams”.
In: IEEE Access 8 (2019), pp. 1680–1690.

[11] Steffen Schulz, Vijay Varadharajan, and Ahmad-Reza Sadeghi. “The silence of the
LANs: efficient leakage resilience for IPsec VPNs”. In: IEEE transactions on infor-
mation forensics and security 9.2 (2013), pp. 221–232.

[12] Steffen Wendzel et al. About. Information Hiding Patterns Project. June 2021. url:
https://patterns.ztt.hs-worms.de/about/.

[13] Sebastian Zander, Grenville Armitage, and Philip Branch. “A survey of covert chan-
nels and countermeasures in computer network protocols”. In: IEEE Communications
Surveys & Tutorials 9.3 (2007), pp. 44–57.

[14] Steffen Wendzel et al. “Pattern-based survey and categorization of network covert
channel techniques”. In: ACM Computing Surveys (CSUR) 47.3 (2015), pp. 1–26.

33

https://irp.fas.org/nsa/rainbow/tg030.htm
https://irp.fas.org/nsa/rainbow/tg030.htm
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
http://certifiedethicalhackerceh.blogspot.com/2012/01/overt-and-covert-channels.html
http://certifiedethicalhackerceh.blogspot.com/2012/01/overt-and-covert-channels.html
https://doi.org/10.1109/TSE.1987.233153
https://ieeexplore.ieee.org/document/1702208
https://ieeexplore.ieee.org/document/1702208
https://patterns.ztt.hs-worms.de/about/

[15] Sebastian Zillien and Steffen Wendzel. “Reconnection-Based Covert Channels in Wire-
less Networks”. In: ICT Systems Security and Privacy Protection. IFIP SEC 2021.
Springer International Publishing, pp. 118–133.

[16] Steffen Wendzel et al. “A Revised Taxonomy of Steganography Embedding Patterns”.
In: arXiv preprint arXiv:2106.08654 (2021).

[17] Steffen Wendzel et al. Pattern collection. Information Hiding Patterns Project. June
2021. url: https://patterns.ztt.hs-worms.de/PatternCol/.

[18] SteffenWendzel et al.Describing covert channels. Information Hiding Patterns Project.
June 2021. url: https://patterns.ztt.hs-worms.de/desrcovert/.

[19] Steffen Wendzel, Benjamin Kahler, and Thomas Rist. “Covert channels and their
prevention in building automation protocols: A prototype exemplified using BACnet”.
In: 2012 IEEE International Conference on Green Computing and Communications.
IEEE. 2012, pp. 731–736.

[20] Aleksandar Velinov et al. “Covert channels in the MQTT-Based Internet of Things”.
In: IEEE Access 7 (2019), pp. 161899–161915.

[21] Mario Hildebrandt et al. “Information hiding in industrial control systems: An OPC
UA based supply chain attack and its detection”. In: Proceedings of the 2020 ACM
Workshop on Information Hiding and Multimedia Security. 2020, pp. 115–120.

[22] Ryan Mazerik. ICMP attacks. INFOSEC Institute. Aug. 2021. url: https://resources.
infosecinstitute.com/topic/icmp-attacks/.

[23] Andy Greenberg. Sandworm: A New Era of Cyberwar and the Hunt for the Kremlin’s
Most Dangerous Hackers Hardcover. Doubleday, 2019. isbn: 978-0385544405.

[24] Industrial Control System. Trend Micro. url: https://www.trendmicro.com/vinfo/
us/security/definition/industrial-control-system.

[25] Gaurav Shah, Andres Molina, Matt Blaze, et al. “Keyboards and Covert Channels.”
In: USENIX Security Symposium. Vol. 15. 2006, p. 64.

[26] Luke Muehlhauser. Jonathan Millen on covert channel communication. Machine In-
telligence Research Institute. July 2014. url: https://intelligence.org/2014/
04/12/jonathan-millen/.

[27] John C. Eidson.Measurement, Control and Communication Using IEEE 1588. Springer,
Apr. 2006. isbn: 978-1-84628-250-8.

[28] IEEE 1588-2019. Standard for a Precision Clock Synchronization Protocol for net-
worked measurement and Control Systems. IEEE Standards Association. Sept. 2016.
url: https://standards.ieee.org/ieee/1588/6825/.

[29] Precision Time Protocol (PTP/IEEE-1588). White paper. EndRun Technologies. url:
https://endruntechnologies.com/pdf/PTP-1588.pdf.

[30] Aimée Ricca. “SMPTE Publishes First Two Parts of Standard Enabling Deployment
of PTP-Timed Equipment in Existing SDI Plants”. In: Society of Motion Picture and
Television Engineers (Apr. 2015).

34

https://patterns.ztt.hs-worms.de/PatternCol/
https://patterns.ztt.hs-worms.de/desrcovert/
https://resources.infosecinstitute.com/topic/icmp-attacks/
https://resources.infosecinstitute.com/topic/icmp-attacks/
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system
https://intelligence.org/2014/04/12/jonathan-millen/
https://intelligence.org/2014/04/12/jonathan-millen/
https://standards.ieee.org/ieee/1588/6825/
https://endruntechnologies.com/pdf/PTP-1588.pdf

[31] Geoffrey M. Garner. “IEEE 802.1AS and IEEE 1588”. In: Joint ITU-T/IEEE Work-
shop The Future of on The Future of Ethernet Transport. Geneva, Switzerland, May
2010. url: https://www.itu.int/dms_pub/itu-t/oth/06/38/T06380000040002PDFE.
pdf.

[32] Industrial communication networks - High availability automation networks. Part
3: Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy
(HSR). International Electrotechnical Commission. url: https://webstore.iec.
ch/publication/64423.

[33] Communication networks and systems for power utility automation. Part 9-3: Preci-
sion time protocol profile for power utility automation. International Electrotechnical
Commission. url: https://webstore.iec.ch/publication/24998.

[34] Wikipedia contributors. List of PTP implementations. url: https://en.wikipedia.
org/wiki/List_of_PTP_implementations (visited on 01/01/2022).

[35] Antonio Pepiciello and Alfredo Vaccaro. “A reliable architecture based on Precision
Time Protocol for WAMPAC synchronization”. In: 2018 AEIT International Annual
Conference. 2018, pp. 1–5. doi: 10.23919/AEIT.2018.8577414.

[36] Institute of Embedded Systems (InES). url: https://www.zhaw.ch/en/engineering/
institutes-centres/ines/.

[37] Richard Cochran et al. linuxptp. PTP IEEE 1588 stack for Linux. Latest commit
f078f19339a3 51be8bccd1daed59c4845918d30d. GitHub repository. Aug. 2020. url:
https://github.com/openil/linuxptp.

[38] Peter Kirn. Let’s dump master-slave terms: They’re vague, horrible, and we’re better
off without them. Create Digital Media (CDM). June 2020. url: https://cdm.link/
2020/06/lets-dump-master-slave-terms/.

[39] Elizabeth Landau. Tech confronts its use of the labels ‘master’ and ‘slave’. WIRED.
July 2020. url: https://www.wired.com/story/tech-confronts-use-labels-
master-slave/.

35

https://www.itu.int/dms_pub/itu-t/oth/06/38/T06380000040002PDFE.pdf
https://www.itu.int/dms_pub/itu-t/oth/06/38/T06380000040002PDFE.pdf
https://webstore.iec.ch/publication/64423
https://webstore.iec.ch/publication/64423
https://webstore.iec.ch/publication/24998
https://en.wikipedia.org/wiki/List_of_PTP_implementations
https://en.wikipedia.org/wiki/List_of_PTP_implementations
https://doi.org/10.23919/AEIT.2018.8577414
https://www.zhaw.ch/en/engineering/institutes-centres/ines/
https://www.zhaw.ch/en/engineering/institutes-centres/ines/
https://github.com/openil/linuxptp
https://cdm.link/2020/06/lets-dump-master-slave-terms/
https://cdm.link/2020/06/lets-dump-master-slave-terms/
https://www.wired.com/story/tech-confronts-use-labels-master-slave/
https://www.wired.com/story/tech-confronts-use-labels-master-slave/

	Passing Time and Syncing Secrets: Demonstrating Covert Channel Vulnerabilities in Precision Time Protocol (PTP)
	Recommended Citation

	Abstract
	Table of contents
	List of figures
	List of tables
	Introduction
	Investigation overview

	Related works
	Early history of field
	Continued developments
	Classification schemes
	Control systems

	PTP fundamentals
	Network architecture
	Protocol structure
	Header
	ANNOUNCE message
	SYNC message
	FOLLOW_UP message
	DELAY_REQ message
	DELAY_RESP message

	Synchronization procedure

	Exploration
	PTP-based covert channels
	Event/Element Interval Modulation - ET1 (RT1n)
	Rate/Throughput Modulation - ET1.1 (RT1.1n)
	Event Occurrence - ET2 (RT2n)
	Frame Corruption - RT2.1n
	Artificial Element-Loss - EN1 (RN1n)
	Artificial (Forced) Reconnections Modulation - RN1.1n
	Elements/Features Positioning - EN2 (RN2n)
	Elements/Features Enumeration - EN3 (RN3n)
	Artificial Retransmissions Modulation - RN3.1n
	State/Value Modulation - EN4 (RN4n)
	Reserved/Unused State/Value Modulation - EN4.1 (RN4.1n)
	Random State/Value Modulation - EN4.2 (RN4.2n)
	Blind State/Value Modulation - EN4.3 (RN4.3n)
	Feature Structure Modulation - EN5 (RN5n)
	Size Feature Modulation - EN5.1 (N5.1n)
	Character Feature Modulation - EN5.2 (RRN5.2n)

	Summary of findings

	Experimentation
	Methodology
	Technical specifications
	Determining channel targets

	Implementation
	Results
	Message type data
	Traffic data

	Analysis

	Discussion
	Risk assessment
	Future work
	Limitations

	Conclusion
	Appendix
	Payload encoding script
	Payload decoding script

	Bibliography

