
Macalester Journal of Physics and Astronomy Macalester Journal of Physics and Astronomy

Volume 4
Issue 1 Spring 2016 Article 6

May 2016

Contributing to Astropy: A community Python library for Contributing to Astropy: A community Python library for

astronomers astronomers

Asra Nizami
Macalester College, asra.nizami.92@gmail.com

Follow this and additional works at: https://digitalcommons.macalester.edu/mjpa

 Part of the Astrophysics and Astronomy Commons, Numerical Analysis and Scientific Computing

Commons, and the Physics Commons

Recommended Citation Recommended Citation
Nizami, Asra (2016) "Contributing to Astropy: A community Python library for astronomers," Macalester
Journal of Physics and Astronomy: Vol. 4: Iss. 1, Article 6.
Available at: https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

This Capstone is brought to you for free and open access
by the Physics and Astronomy Department at
DigitalCommons@Macalester College. It has been
accepted for inclusion in Macalester Journal of Physics
and Astronomy by an authorized editor of
DigitalCommons@Macalester College. For more
information, please contact scholarpub@macalester.edu.

https://digitalcommons.macalester.edu/mjpa
https://digitalcommons.macalester.edu/mjpa/vol4
https://digitalcommons.macalester.edu/mjpa/vol4/iss1
https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6
https://digitalcommons.macalester.edu/mjpa?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6?utm_source=digitalcommons.macalester.edu%2Fmjpa%2Fvol4%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu
https://www.macalester.edu/
https://www.macalester.edu/

Contributing to Astropy: A community Python library for astronomers Contributing to Astropy: A community Python library for astronomers

Abstract Abstract
This paper discusses the author’s contributions to two packages affiliated with Astropy, a community
Python library for astronomers. The packages the author contributed to were modeling, a sub-package
within the core Astropy package, and WCSAxes, an Astropy affiliated package, outside the core package.

Keywords Keywords
Astropy python astronomy modeling wcsaxes

This capstone is available in Macalester Journal of Physics and Astronomy: https://digitalcommons.macalester.edu/
mjpa/vol4/iss1/6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6
https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

I. Introduction

 Python has been one of the fastest growing programming languages in the astronomy

community. Prior to 2011, there were a number of separate Python packages for astronomy-

specific functionality, but these were mostly disjoint software development efforts with little or

no coordination. This resulted in a duplication of efforts, lack of homogeneity, and no single

source for most of the software tools needed by astronomers. Thus the Astropy project was

started in 2011 in order to coordinate and facilitate the development of a set of common tools for

astronomers and astrophysicists [1]. The Astropy project develops and maintains the core

astropy package that contains much of the tools astronomers frequently use. In addition, the

Astropy project includes work on more specialized Python packages, referred to as Astropy-

affiliated packages, that are not included in the core astropy repository for various reasons. The

astropy core package and Astropy-affiliated packages are open-sourced and hosted on GitHub, a

web-based repository hosting service.

II . ASTROPY.MODELING

A. Background

astropy.modeling provides a framework for representing models and performing model

evaluation and fitting. It currently supports different 1-D and 2-D models and allows users to fit

data to these models with parameter constraints. The goal of this package is to provide users with

a rich set of models and fitting algorithms such that most users will not need to define new

models or fitting routines. When users try to fit their data to a certain model, they have to provide

initial estimates for the parameters of the model. For instance, if a user is trying to model their

1

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

dataset to a Gaussian, they have to provide the program with their estimates of the center of the

peak, the depth or height and the full width at half maximum of the curve.

Data analysis tools for the upcoming James Webb Space Telescope (JWST) are to be

written in Python and distributed as part of astropy. During a JWST analysis tools training

session, scientists at the Space Telescope Science Institute were unable to fit example spectral

data to certain models. The data they were using was from a sample Hubble Space Telescope

(HST) spectra calibrator, in particular three absorption lines in model spectra. The models they

attempted to use were the Gaussian distribution and the Lorentzian, also known as the Cauchy,

distribution.

Figure 1. shows an example fit to the Lorentzian distribution. As is clearly visible in the

figure, the program was unable to produce a good fit to the data. We investigated the cause of

this failed fit.

Initially, we proposed several possible reasons for this failure. It could be that the data

were too complicated to be modeled by this software, as the different absorption lines could be

interfering with each other. It was also possible that the Gaussian and Lorentzian distributions

simply were not good models to apply to these data. The last possibility was that the fitting

algorithms were not behaving as we expected them to be. We decided to compare

astropy.modeling’s results with those of another program, IRAF.

B. Testing with IRAF

IRAF, Image Reduction and Analysis Facility, is a collection of data analysis tasks for

optical astronomy data. Though the first version of the software was released over 30 years ago,

IRAF is still the primary optical astronomy data analysis tool used by researchers. Though it is

2

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

immensely powerful, its interface is difficult to use. It is somewhat inflexible when it comes to

dealing with data in new formats and cannot be integrated easily to work with other languages

and programs.

An IRAF task 'splot' allows users to fit spectral data to Gaussian, Lorentzian

distributions, and to Voigt profiles, where the latter is a convolution of the first two. We tested

the HST spectra data against this task to eliminate the possibility that the data was too

complicated. However, the data was in a form that was incompatible with IRAF. The sampling

rate of the spectra varied over the range of wavelengths, but IRAF is only able to plot spectra

assuming constant sampling rates. We had to interpolate the flux so that it was distributed over

equally sized bins to allow splot to fit the models to it. After interpolation, we plotted the spectral

data and attempted to fit the Gaussian, Lorentzian and Voigt profiles to it. Splot was successful

in fitting these three distributions to the data. The best model fit was of the Voigt profile, which

will be discussed later in the paper.

 Successful fitting with IRAF allowed us to eliminate the possibility that the data was too

complicated. We then used the parameters produced by IRAF’s fitting routine and used them as

inputs for astropy.modeling’s fitting functions. These results produced a visibly better fit

compared to our initial attempt. Figure 2. shows such a fit of the Lorentzian distribution to the

spectral data. Upon comparing the values produced by IRAF and the initial parameter estimates

from astropy.modeling’s fitting, we discovered that these varied very slightly. By experimenting

with parameters that varied very slightly, we discovered that astropy.modeling, though fully

functional, is very sensitive to the initial parameter estimates. We suggest that users use

astropy.modeling in the interactive mode of Python, iPython, such that they are able to look at

their data more closely and create better estimates of the model parameters.

3

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

C. Voigt Profile

 IRAF’s splot command allows users to fit spectral line data to three models: the Gaussian

distribution, Lorentzian distribution and the Voigt profile. The modeling sub-package in astropy

only contains the Gaussian and Lorentzian models as compatible ones for spectral data. IRAF’s

splot command had produced the best fit with the Voigt profile which astropy.modeling did not

initially have.

 As part of this project, we coded a numerical approximation to the Voigt profile from [2].

A Voigt profile is a convolution of a Gaussian and a Lorentzian distribution and is

computationally expensive. Since the numerical approximation fit the data nicely and worked

well with the parameters produced by IRAF’s splot, it appears to be well-behaved and we

integrated into the main astropy codebase.

D. Extinction models

 Extinction models are mathematical models that account for the extinction of light due to

interference by interstellar and intergalactic dust. Extinction depends on the wavelength of light

and several different models exist for its calculation. An Astropy-affiliated package specutils

contains code to calculate these extinction models. However, this project is not currently well-

maintained and it is the intention of the Astropy project coordinators to move these models to the

astropy.modeling package.

 We worked on porting this code over from specutils to astropy.modeling. However the

original code in specutils uses the units package from astropy and needs to convert values

between different units. Currently astropy.modeling is unable to work with models that contain

units and only works for dimensionless data. There is an incomplete version of astropy.modeling

that allows the user to create models with units but this code branch has not yet been merged

4

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

with the main repository. The code we attempted to port over works well with this branch of

astropy.modeling but it cannot be integrated and used by the community until the units branch is

merged.

III. WCSAxes

A .Background

Astronomers frequently have to deal with the problem of projection in astronomical

images. The image of any source on the sky is essentially the projection of something from a

curved surface onto a flat two-dimensional image, which will always result in some distortions.

The severity of the distortions depends on the location of the object in the sky, the size of the

image and the coordinate system the image is being plotted in. Information about the default

coordinate system for an astronomical image is contained in the FITS filer headers. This

coordinate system is referred to as the World Coordinate System (WCS) and contains the

mappings from the physical to pixel coordinate system.

The problem of creating astronomical plots with the correct WCS information on the axes

isn't a new one; a lot of existing programs in different languages allow this. There are also

different Python packages such as APLPY (Astronomical Plotting Library in Python), pwcsgrid2

and kapteyn, that allow users to create astronomical plots. However, these programs are not very

flexible and the goal was to create a common 'core' package that includes all the functionality

astronomers need. WCSAxes is designed to be a flexible and extensible image plotting

framework that other users and software developers can later build upon. The interface for

WCSAxes was designed by the developers of APLPY and pywcsgrid2 along with other members

from the Astropy project. Currently WCSAxes is an Astropy-affiliated package and is not

5

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

intended to be included in the core Astropy repository. However, it uses a lot of functionality

from the astropy so users need to have it installed on their machines to use the package.

WCSAxes is a framework built on top of matplotlib, a popular plotting library in Python.

The API is designed to be as close as possible to matplotlib so that users already familiar with

matplotlib can use it easily. Plotting an image using WCSAxes to show the correct WCS

information on the axes simply involves adding a few extra lines of code. Figure 3. shows an

example image plotted using WCSAxes. Figure 4. demonstrates another feature of the software,

that allows users to overlay gridlines on their images.

B. Image Testing Framework

Every sub-package in the core repository of Astropy as well as every Astropy-affiliated

package is strongly recommended, if not required, to have a number of thorough tests to ensure

that future changes in the code do not break existing functionality. Most Astropy-affiliated

packages use the testing framework pytest, which makes the process easier. Any class or function

that begins with the word 'test' are run automatically.

Since WCSAxes is an image plotting package, the tests need to be able to compare

images to check for bugs. Matplotlib, the plotting package that WCSAxes is built upon, already

contains a function to compare two images pixel-by-pixel. If the overall difference is greater than

a set specified tolerance, the image tests fail. Figure 5. shows such an example of two images

that can be compared using this function.

We wrote several tests that vary the different options available in WCSAxes. Each

function tests one major or several minor parameters and creates a 'baseline image' that is stored

in a directory ‘baseline_images’ in the source code. Every time the tests are run, it creates new

images with the same code and compares these against the baseline images. If these images

6

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

differ by more than the previously defined threshold, the image test fails and we know that

something is "broken" in the source code.

Figure 6. shows a sample image in the ‘baseline_images’ directory. Since WCSAxes is

only used to modify the axes, and any functions used to display the actual image data come from

matplotlib, the reference images can only contain the axes. This has the added benefit of smaller

overall size of the source code repository.

Astropy-affiliated packages make use of a continuous integration testing framework

called Travis Continuous Integration, or Travis-CI. This means that every time someone makes

changes to the source code and tries to submit them to the main repository on GitHub, Travis-CI

runs all the tests online on a virtual machine. If the tests fail, these changes cannot be merged

into the main repository.

However, attempts to merge the first set of image tests and baseline images failed due to

failures on Travis-CI. Running these image tests locally on our own machines was easy because

we were able to visually look at the baseline images and compare them to the newly generated

images. Since Travis-CI runs the images on an online server, it discarded the newly generated

images and we had no way to visually comparing the images created by our computer with the

images created by Travis.

With a process of severe trial and error and by manipulating each of the various

parameters changed in the image tests, we discovered that these image tests were failing due to

differences in the font styles for the axis labels on our computers and the virtual machines used

by Travis. This difference in font styles, though small, was enough to cause a failure in the tests.

We worked around the problem by not changing the font styles of text at all. This isn't a severe

7

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

issue since the font styles come from matplotlib and any subtle differences in font styles across

different machines will most likely arise from differences in the matplotlib settings.

B.Changing axis units

Though WCSAxes was written with the primary goal of displaying angular spatial

coordinates properly on the axes, astronomical data frequently contains other information such as

velocity or frequency. This is particularly important for multi-dimensional data, for instance in a

"data cube", where the images in physical space might be stacked in frequency or velocity space.

WCSAxes allows users to slice along a multi-dimensional dataset and create a plot of this slice

along any two axes. Figure 7. shows an example of such a slice.

The WCS information in images like these contain the units for the different dimensions

in the dataset. For instance, in Figure 7., the default units are in m/s. However, users requested

the feature to be able to change these units. Since the values for these units are larger, in

thousands of meters, it would be a nice feature to allow users to change this to a unit with more

manageable numbers like km/s.

WCSAxes already had the capability of handling angular coordinates and changing the

units for these angular values but was unable to do so for other physical coordinates. Fortunately,

astropy's units module contained the exact functionality required to implement this feature. The

units module is aware of almost all major physical units as well as which units can be converted

to and from each other. The new feature written as part of this project extracts the units of each

dimension from the WCS headers and allows the users to convert this unit to another compatible

one of their choosing. Figure 8. shows such an example of an image with changed axis units.

C. Viewing world coordinates in interactive mode

8

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

Python has an interactive shell, iPython, that allows users to work more easily with

Graphical User Interfaces or GUIs. WCSAxes and Matplotlib are compatible with iPython and

some users that work with solar data requested a feature that would allow them to view world

coordinates interactive mode.

Initially, a plot with WCSAxes in iPython could only display the pixel coordinates at the

bottom of the screen. A feature was added as part of this project that would compute the pixel to

world coordinate transformation of the mouse position using already built-in functions. It would

then display the world coordinates instead of the pixel coordinates at the bottom of the

interactive plot window. If a user overlays multiple coordinate systems onto the image, they are

able to switch between the different world coordinate systems by simply pressing a key.

IV. Summary and Conclusion

 With the work done as part of this project, we can conclude that the current functionality

of astropy.modeling and WCSAxes is stable. Though there are still a lot more features that can

be added to astropy.modeling, the current implementation works as it should. WCSAxes is

mostly stable as well, though there is room of course for more features which users are free to

request as they emerge.

 The work on extinction models is incomplete because astropy.modeling still does not

have support for units. The work for integrating units is currently underway by other Astropy

developers, and once that is completed, extinction models will also be available in

astropy.modeling.

9

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

I would like to thank my advisors Dr. Perry Greenfield and Dr. Thomas Robitaille for the

opportunity to do this research and contribute to software that facilitates astronomy research.

10

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

References

1. The Astropy Collaboration. Astronomy & Astrophysics 558 (2013): 9

2. McLean, A. B., C. E. J. Mitchell, and D. M. Swanston. Journal of Electron

Spectroscopy and Related Phenomena 69, 2 (1994): 125–32

11

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

Figure 1. A fit of the Lorentzian distribution to three spectral lines from a standard HST

spectra calibrator. The red curve is the model data and the blue curve is the sample data. The bad

nature of the fit is clearly visible.

12

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

Figure 2. A fit of the Lorentzian distribution to three spectral lines from a standard HST

spectra calibrator. The red curve is the model data and the blue curve is the sample data. The

parameters for the model were taken from the results of IRAF’s splot command. This is clearly a

very good fit to the model.

13

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

Figure 3. An image of the galactic center plotted using WCSAxes with overlaid grid

contours. The default coordinate system of this image is the Galactic coordinate system.

14

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

Figure 4. An image of the galactic center plotted using WCSAxes with overlaid grid

contours. The default coordinate system of this image is the Galactic coordinate system with the

Equatorial coordinate system overlaid. The yellow and white gridlines correspond to the Galactic

and Equatorial coordinate systems respectively.

15

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

Figure 5. Two side by side plots of the same image. The characters separating the angle

and arcminute values are different in both plots, and this small difference is enough to cause a

failure in a pixel-by-pixel image comparison test.

16

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

Figure 6. A sample image contained in the ‘baseline_images’ directory in WCSAxes. For

the purposes of testing, this image contains no axis labels and does not show any image data.

17

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

Figure 7. A plot of a slice of a three-dimensional dataset, where two are spatial

dimensions corresponding to right ascension and declination and the third dimension is in

velocity space. The default units of the velocity are m/s.

18

Macalester Journal of Physics and Astronomy, Vol. 4, Iss. 1 [2016], Art. 6

https://digitalcommons.macalester.edu/mjpa/vol4/iss1/6

Figure 8. A plot of a slice of a three-dimensional dataset, where two are spatial

dimensions corresponding to right ascension and declination and the third dimension is in

velocity space. The units of the velocity axis have been changed to km/s.

19

Nizami: Contributing to Astropy

Published by DigitalCommons@Macalester College, 2016

	Contributing to Astropy: A community Python library for astronomers
	Recommended Citation

	Contributing to Astropy: A community Python library for astronomers
	Abstract
	Keywords

	tmp.1461906040.pdf.1X6ds

