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Abstract

This thesis addresses the problem of reassembling a broken surface. Three di-
mensional curve matching is used to determine shared edges of broken pieces. In
practice, these pieces may have different orientation and position in space, so edges
cannot be directly compared. Instead, a differential invariant signature is used to
make the comparison. A similarity score between edge signatures determines if two
pieces share an edge. The Procrustes algorithm is applied to find the translations
and rotations that best fit shared edges. The method is implemented in Matlab,
and tested on a broken spherical surface.
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Chapter 1

Introduction

The motivation for this project is the work of Hoff and Olver, [8]. Using a curve
matching algorithm based on differential invariant signatures, these authors devel-
oped an effective technique for the automatic reassembly of jigsaw puzzles. It was
suggested by Olver that similar methods could be applied to reassemble surfaces.
As possible test data, we obtained scans of a broken ostrich egg, [7], pictured in
Figure 1.1. This thesis extends the algorithms of Hoff and Olver to three dimen-
sions with the end goal of automatic reassembly of the broken ostrich egg. Though
this goal is not met entirely, our method is successful in assembling artificial test
data.

Figure 1.1: A digitized broken ostrich egg

The mathematical strategy for reassembling a broken surface is based on
matching the edges or boundaries of the surface. Thus, reassembly becomes a
problem of matching up three dimensional curves, like a jigsaw puzzle in space. In
practice, the surface pieces may have different orientation and position, so their
edges cannot be directly compared. Instead, we will use differential invariant
signatures as a measure of comparison. The signature enables us to recognize the
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shape of a curve regardless of its orientation and position. Additionally, edges
are specified not by a continuous curve, but a discrete set of points. Hence it is
necessary to use approximate discrete signatures computed from these points. The
discrete signatures are compared via a similarity score to identify if the edges share
a common portion. Portions of an edge are determined to be congruent if their
signatures are close, and the similarity score is a measure of this closeness. Finally,
matched edges must be reassembled via a rotation and translation in space, which
is computed via the Procrustes algorithm.

Chapter 2 provides the mathematical background necessary for the method.
This includes a discussion of differential invariants for space curves, the differential
invariant signature, discrete signature approximation, similarity score computation
and the Procrustes algorithm. Chapter 3 is dedicated to implementation. Pseu-
docode for all steps of implementation is provided in this chapter, and a Matlab
implementation is available on Github at the following URL:

https://github.com/robcth/surfaceReconstruction

We apply our method to an artificial broken surface consisting of four pieces
of a sphere. This application is discussed in Chapter 4. The algorithm successfully
matches and reassembles the pieces. In Chapter 5 we discuss difficulties encoun-
tered and possible future work.
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Chapter 2

Background

This project has roots in several branches of mathematics, including differential
and computational geometry, linear algebra, and computer vision. This chapter
provides an overview of the mathematical tools that will be used, including signa-
ture, similarity score, and the Procrustes algorithm.

The signature, S = (κ, κs, τ), allows us to be able to compare one piece
to another without any concern about orientation and position in space. The
signature of an edge is used as the metric of the comparison instead of the edge
itself. Because the edges to be compared consist of a discrete set of points, it is
necessary to approximate the signature at each point on the edge by a discrete
numerical approximation. We first discuss below the construction of the signature
and its approximation.

The second stage of this project is to identify matching edges by applying
a signature comparison. To do this, the edges are decomposed into smaller arcs,
called bivertex arcs. The level of matching of two bivertex arcs is then measured by
calculating the similarity score of their signatures. The similarity score, which is
presented in [2], measures the closeness of two curves. We discuss below in Sections
2.2 and 2.3 the bivertex arc decomposition and similarity score computation.

The final stage is to find the translation and rotation that reassembles matched
pieces by a rigid motion reconstruction method known as the Procrustes algorithm.

2.1 Signature

The signature S of a three dimensional curve is a curve parametrized by the cur-
vature κ, its derivative with respect to arc length κs, and torsion τ . The signature
of a two dimensional curve is a special case of the signature of a three dimensional
curve where torsion τ = 0.

3
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Figure 2.1: A two dimensional curve and its signature
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Figure 2.2: A three dimensional curve and its signature

With some restrictions that will be discussed in Section 2.2, it can be shown
that two curves are related by a group transformation if and only if their signature
curves are identical. A proof of this result appears in [1]. This implies that
regardless of their orientation and position, two curves are congruent if and only if
their signatures are identical. Since an understanding of the concept of signature
requires understanding of curvature κ and torsion τ , we begin with a discussion of
this topic.
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2.1.1 Curvature and Torsion

Curvature κ measures the bendiness of a curve. Moving along the curve at con-
stant speed, the direction of the tangent vector changes as the curve bends. The
curvature measures the magnitude of the rate of change of the tangent vector.
The torsion τ measures how sharply the curve twists out of a plane as we move
along the curve. Moving along the curve at constant speed, the tangent vector
will rotate or twist. The torsion measures the magnitude of this twisting of the
tangent vector.

Let r(t) be a parameterized curve representing the position vector of a moving
particle. Arc length s(t) of this curve is defined by

s(t) =

∫ t

a

‖r′(σ)‖ dσ,

where the integration can start at any a in the domain of the parameterization.
Then we can write t as a function of s, and write r(s) = r(t(s)). The curve r(s) is
then parametrized by its arc length. The unit tangent vector T , the unit normal
vector N , and the unit binormal vector B are defined as follows:

T =
dr

ds
, N =

dT

ds∥∥∥∥dTds
∥∥∥∥
, B = T ×N.

The unit tangent vector T points in the direction of the curve, the unit binormal
vector is in the same plane but perpendicular to T , and the unit normal vector
N is perpendicular to both T and B. It is possible to use T , N , and B to move
anywhere in three dimensional space with two motions. This is shown in Figure
2.3. One motion measures the rate of change of the unit tangent vector T and
another measures the rate of change of the unit binormal vector B.
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N

T

B

Figure 2.3: T , N , and B as a moving frame

Figure 2.4: A helix, with constant positive curvature and torsion

The rate of change of the unit tangent vector is proportional to the unit normal
vector N , and the coefficient of this proportionality is the curvature κ. Moreover,
the rate of change of the unit binormal vector is also proportional to the unit
normal vector N and the coefficient of the proportionality is negative of torsion τ .

dT

ds
= κN,

dB

ds
= −τN.

Example 2.1.1. If τ = 0, κ = 0, then the curve is a straight line. If τ = 0,
κ = c > 0, then the curve is a circle. If τ = c1 > 0, κ = c2 > 0, then the curve is
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a helix, and it spirals upward at a constant rate and constant diameter (see Figure
2.4).

2.1.2 Signature Approximations

In practice, the edge curves of each piece are represented by many three dimensional
data points, not a continuous curve or formula. Therefore, the signature can
only be approximated at each point by a discrete numerical approximation. Our
approach to this numerical approximation is described in [1] and [3].

In [1], the authors propose to find numerical approximations for κ and κs

in terms of joint invariants to get less sensitive numerical approximations. A
(Euclidean) joint invariant is a function of a collection of points that is independent
of orientation and position of this collection in space. For example, the Euclidean
distance of two points is a joint invariant of these points, the simplest joint invariant
of the action of the Euclidean Group on R

3. The differential invariants κ, κs, and τ
are then approximated in terms of the Euclidean distance.
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Figure 2.5: Consecutive points for signature approximations

It is shown in [3] that with four consecutive points on a curve, one can com-
pute the numerical approximations for κ, κs, and τ . The approximations of these
differential invariants will be denoted κ̃, κ̃s, and τ̃ . In Figure 2.5 four consecutive
points, Pi−1, Pi, Pi+1, and Pi+2 on a three dimensional curve are shown, together
with the Euclidean distances of interest. We then denote by d(Pi, Pj) the Euclidean
distance between the point Pi and Pj. Let

a = d(Pi−1, Pi) b = d(Pi, Pi+1) c = d(Pi−1, Pi+1) d = d(Pi+1, Pi+2)

e = d(Pi, Pi+2) f = d(Pi−1, Pi+2)
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The formulas used to approximate the signature are as follows:

κ̃(Pi) =
4Δ

abc

κ̃s(Pi) = 3 · κ̃(Pi+1)− κ̃(Pi)

a+ b+ d

τ̃(Pi) = 6 · H

defκ̃(Pi)
,

(2.1)

where Δ is the area of triangle whose sides are a, b, and c (computed using Heron’s
formula), and H denotes the height of the tetrahedron with sides a, b, c, d, e, and
f with respect to Pi+2.

To illustrate the method behind these signature approximation formulas, we
give a proof of the second formula of (2.1).

Proposition 2.1.2. The approximation to the derivative of curvature,

κ̃s(Pi) = 3 · κ̃(Pi+1)− κ̃(Pi)

a+ b+ d
,

converges to the actual derivative of curvature, κs(Pi), as a, b, d approach 0.

Proof. Begin by writing the approximation of κ at Pi as

(2.2) κ̃(Pi) = κ(Pi) +
1

3
(b− a)κs(Pi) + · · · ,

an expansion proved in [1]. From Figure 2.5, we also have

(2.3) κ̃(Pi+1) = κ(Pi+1) +
1

3
(d− b)κs(Pi+1) + · · · .

Taking the difference of the (2.2) and (2.3) we arrive at

(2.4) κ̃(Pi)− κ̃(Pi+1) = κ(Pi)− κ(Pi+1)+
1

3
(b− a)κs(Pi)− 1

3
(d− b)κs(Pi+1)+ · · ·

Now we use

κs(Pi) ≈ κs(Pi+1) and κ(Pi+1)− κ(Pi) ≈ bκs(Pi)

to rewrite (2.4) as

κ̃(Pi)− κ̃(Pi+1) ≈ −1

3
(a+ b+ d)κs(Pi).
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The proof of the τ formula is more complex, and the reader is encouraged to
investigate [3] for further discussion of this and the other formulas from (2.1).

A comparison of the actual signature of the curve pictured in Figure 2.2 and
the discrete approximation of this signature is shown in Figure 2.6.

Κ

Κs

Τ

Figure 2.6: Actual signature versus discrete approximate signature

2.2 Bivertex Arcs

We will be using the closeness of the signatures of two edges as a metric of com-
parison. However, there are two issues that need to be addressed before applying
this comparison. The first is that two pieces share only a portion of their edges,
so we cannot simply compare the signatures of entire edges.
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Figure 2.7: Two pieces share a common edge

The second is that it is possible to construct some closed curves that are not
congruent, but have identical signature. This implies that with just information
of the signature, we may not know entirely the shape of the curve. A method of
constructing these curves is described in [4]. A family of non-congruent curves with
identical signature is shown in Figure 2.8. The construction of these non-congruent
curves motivates the method of segmentation into bivertex arcs, as first described
in [2]. Consider the situation when a curve contains a portion of a line or circle.
The curvature and torsion of line or circle is a constant, so their signatures consists
of only a point. We then extend the length of the line or circle, which does not
change the signature, but creates a non-congruent curve.
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Figure 2.8: A family of curves and their common signature, [4]

Therefore, we want to decompose our curves into smaller arcs, none of which
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contains a portion of a line or circle. This decomposition also helps us to create
smaller pieces of the edge that will be compared. We can eliminate any lines or
circles on the edge by excluding portions of the curve that have κs = 0. These
smaller arcs on which κs �= 0 are called bivertex arcs.

Definition 2.2.1. A bivertex arc is an arc of a curve for which κs = 0 at the
endpoints and κs �= 0 at all other points.

Theorem 2.2.2. Two bivertex arcs are congruent if and only if their signatures
are identical.

Bivertex arcs provide both a practical and a theoretical advantage. In theory,
two bivertex arcs are congruent if and only if their signatures are identical. The
proof of this result for planar curves appears in [1]; for three dimensional curves
the proof is very similar. In practice, it is difficult to compare bivertex arcs directly
because the numerical approximation of κs never takes on the exact value of zero.
However, if there is a portion where κs is approximately zero, κs may change signs.
Therefore, in practice we check if κs changes sign instead of κs = 0. Using this
approach, we compare the arcs that contain the most “curvature information”, i.e.
those whose curvature is changing the most.

x

y

z

Κ

Κs

Τ

Figure 2.9: A curve and its signature with bivertex arc decomposition marked
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Figure 2.10: Two projections of the signature with bivertex arcs marked

2.3 Curve Similarity Score

The core of the surface reconstruction method is to identify if two pieces share a
common edge by computing the similarity score of the signatures of their edges.
The similarity score measures the closeness of two curves on a scale from 0 to 1.
The approach described here for computing the similarity score is developed in [2].

2.3.1 Terminology and intuition

Before getting to the technical details of the similarity score, it is worth under-
standing the intuitive idea first. Suppose we want to compare two curves, which
we will call the p-curve and the q-curve. Each curve is represented by a set of
three dimensional data points. We measure closeness by comparing each point of
the p-curve to each point on the q-curve. The intuitive idea is: for each point on
the p-curve, if there is a point on the q-curve that is close to it, we should get a
good similarity score. Therefore, we iterate through each point on the p-curve and
measure the strength of comparison of that point to each point on the q-curve.

The strength of comparison of two points is inversely proportional to their
distance. The closer the two points, the larger their strength is. If they overlap,
their strength is ∞. Denote the strength of comparison of points pi and qj as
h(pi, qj). For each fixed point of the p-curve, we find overall strength, which is the
sum of all strengths of that point to points on the q-curve. The overall strength is
very large if there exists a point of q-curve that is very close to the fixed point of
p-curve. We then rescale the overall strength, which lies in [0,∞], to lie in [0, 1].
The similarity score of the p-curve and the q-curve is then the average over all

12



points on the p-curve of the rescaled overall strength to each point on the q-curve.
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Figure 2.11: Two pairs of curves to be compared

Consider the two pairs of curves in Figure 2.11. For the left pair, h(p1, q1)
is large because p1 is very close to q1. However, h(p1, q2) and h(p1, q3) are smaller
because their distances are larger. Then the overall strength of p1 to the q-curve,
defined to be the sum of the point-wise strengths, is large:

h(p1, q-curve) =
∑
j

h(p1, qj) is large.

In general, if there exists a point on the q-curve close to p1, h(p1, q-curve) will be
large. In contrast, for the second pair of curves in Figure 2.11, comparing p1 to
the q-curve results in a smaller overall strength:

h(p1, q-curve) =
∑
j

h(p1, qj) is small.

Next, we rescale the overall strength to be in [0, 1]. The average over all points
on the p-curve of the rescaled overall strength measures the similarity score, s, of
the two curves:

s(p-curve, q-curve) = average
i

(rescaled h(pi, q-curve)) .

One can see that the average of the overall strengths for the pair of curves
on the left will be larger than the pair on the right because, overall, more p-curve
points are close to the q-curve. As a final consideration, since the similarity score
is not symmetric, we also compute s(q-curve, p-curve) and take the minimum of
the two values as our final similarity score.
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2.3.2 Similarity Score Algorithm

The procedure of computing the similarity score is based on the intuitive ideas
above. However, its implementation is more complex due to choices that can be
made regarding the scale of comparison, the elimination of instances of division
by zero, and the shape of the rescaling function. For each of these choices there
are parameters that will adjust the value of the similarity score, and these pa-
rameters should be chosen so that the similarity score provides the most effective
comparison.

The similarity score is described as a metric to measure the closeness between
two signature curves. For this purpose, suppose that we wish to compare two curves
B1 and B2. The approach to computing the similarity score has four ingredients:
the scale of comparison, separation, strength, and rescaling.

We first define the scale of comparison D. The scale of comparison measures
the maximal variation of curvature along the two curves and is computed via the
following formula:

D = max

{
max(κ ∈ B1)−min(κ ∈ B1),max(κ ∈ B2)−min(κ ∈ B2)

}
.

We then compute the separation between two points p and q, where p ∈ B1 and
q ∈ B2. Essentially, the separation measures the closeness between two points.
However, it also checks to see if the Euclidean distance between p and q is not
greater than or equal to the scale of comparison. The scale of comparison is used
to serve as the cut-off value, and scale down the separation of two points. The
separation between two points p and q is then defined as follows:

d(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

‖ p− q ‖
D− ‖ p− q ‖ if ‖ p− q ‖< D

∞ if ‖ p− q ‖≥ D

Now we can compute the strength. The idea is that the closer the two points, the
larger their strength. The strength is inversely proportional to some power of their
separation. The strength of two points, p and q, is denoted h(p, q):

h(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

1

d(p, q)γ + ε
if d(p, q) < ∞

0 if d(p, q) = ∞

where γ > 0 is fixed, and ε > 0 is a small constant. The ε is a cut-off to avoid
infinities when p and q coincide. The constant γ is used to scale the strength.
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Larger values of γ cause the strength to drop more quickly to zero as separation
increases.

Next we compute the sum of the strength over q for fixed p and scale the result to
[0, 1] using a rescaling function r(t). Then the final similarity score of two curves
is the average over p of the rescaled values.

(2.5) s(B1, B2) = average
i

(∑
j

r (h(pi, qj))

)

A reasonable rescaling function is needed to make the curve similarity score lie in
[0, 1]. The rescaling function used in our algorithm is

r(t) =
t

t+B
, 0 ≤ t ≤ ∞.

The parameter B > 0 affects the distribution of the score along the interval [0, 1].

2.4 Procrustes Algorithm

After identifying that two pieces share a common edge, the next step is to re-
assemble these pieces. These pieces may have different orientation and position,
so a rotation and translation needs to be computed that best aligns the pieces in
space. To compute the translation, the centroid (center of mass) of each piece is
computed, and the translation is simply the difference of the two centroids. To find
the rotation, the centroids of both pieces are placed at the origin, and a rotation
minimizing the inter-point distances of shared edges is computed. This procedure
is pictured in Figure 2.12. All of this may be done using the Procrustes algorithm.

Figure 2.12: Translation and rotation to fit shapes together

Assume that we have two n × 3 matrices A and B, representing collections
of points in R

3. The question to be solved is: how closely can B be rotated into
A? This question is answered by solving the optimization problem:

minimum
Q

‖ A− BQ ‖, where QTQ = I.
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The solution to this problem is a rotation matrix Q that “best” rotates B into A.
This problem is generally known as the Procrustes problem.

For the practical use of the Procrustes algorithm, the matrices A and B
represent the collections of points on matching curves. The first step is to translate
both curves such that their centroids are at origin. We then solve the Procrustes
problem for these translated curves. This problem can be solved simply via the
Singular Value Decomposition (SVD), as later described in Algorithm 3.3.1.
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Chapter 3

Methods

In this chapter we develop the implementation of the surface reconstruction method,
which is presented in the form of pseudocode. The implementation is based on the
work of [2] for computing signature similarity scores and [3] for the numerical ap-
proximation of differential invariants κ, κs, and τ . As described in Section 2.2, the
bivertex arc decomposition is applied to each edge to create two sets of bivertex
arcs. The signatures of the bivertex arcs are used in the comparison. After iden-
tifying possible matching pairs, these pairs are reassembled using the Procrustes
algorithm, for which pseudocode is also presented. The method is implemented in
Matlab.

3.1 Computing Approximations of Signatures

In this section, we give pseudocode for the implementation of the numerical ap-
proximations of differential invariants κ, κs, and τ using the formulas from Section
2.1.2. The differential invariants are approximated using only Euclidean distances
in R

3. Therefore, no result of the computation depends on orientation or position
in space. The formulas for the signature approximation are described in Section
2.1.2 and pictured in Figure 2.1.

Denote by Pi a point on a curve, dist(Pi, Pj) the distance between point Pi

and Pj, and A(Pi, Pj, Pk) the area of triangle with vertices Pi, Pj, and Pk. We
can compute the numerical approximation of κ of a point with three consecutive
points provided. The pseudocode is presented below.
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Algorithm 3.1.1: The numerical approximation of κ

Data: Given three discrete points Pi−1, Pi, and Pi+1

Result: Return κ̃ at point Pi

Compute a = dist(Pi−1, Pi)
Compute b = dist(Pi, Pi+1)
Compute c = dist(Pi−1, Pi+1)
Compute Δ = A(Pi−1, Pi, Pi+1) using Heron’s formula

Compute κ̃(Pi) =
4Δ

abc

To compute the numerical approximation of κs at a point, four consecutive points
are required. The pseudocode is presented below.

Algorithm 3.1.2: The numerical approximation of κs

Data: Given four discrete points Pi−1, Pi, Pi+1, and Pi+2

Result: Return κ̃s at point Pi

Compute a = dist(Pi−1, Pi)
Compute b = dist(Pi, Pi+1)
Compute d = dist(Pi+1, Pi+2)

Compute κ̃s(Pi) = 3 · κ̃(Pi+1)− κ̃(Pi)

a+ b+ d

To compute the numerical approximation of τ at a point, four consecutive points
are required. The pseudocode is presented below.

Algorithm 3.1.3: The numerical approximation of τ

Data: Given three discrete points Pi−1, Pi, Pi+1, and Pi+2

Result: Return τ̃ at point Pi

Compute a = dist(Pi−1, Pi)
Compute b = dist(Pi, Pi+1)
Compute c = dist(Pi−1, Pi+1)
Compute d = dist(Pi+1, Pi+2)
Compute e = dist(Pi, Pi+2)
Compute f = dist(Pi−1, Pi+2)
Compute Δ = A(Pi−1, Pi, Pi+1) using Heron’s formula
Compute V , the volume of pyramid base Pi−1, Pi, and Pi+1

Compute height, H = 3 · V
Δ

Compute τ̃(Pi) = 6 · H

defκ̃(Pi)

These methods are used to compute the approximations of the signature at each

18



point on the edge curve of interest. It then produces a discrete signature curve,
S ⊂ R

3, used to perform similarity score computation.

3.2 Comparing Similarity Scores of Signatures

In this section, we will cover the implementation of the similarity score. The
similarity score computation is applied to the signatures of the bivertex arcs. As
previously mentioned, the edges are decomposed into smaller arcs on which κs �= 0.
In practice this is done by checking if κ̃s(Pi) and κ̃s(Pi+1) change sign. If they do,
Pi defines an endpoint of an arc. We iterate through all points, and decompose
the edge using this method.

Algorithm 3.2.1: Curve decomposition

Data: Given an edge C1

Result: Return a set of bivertex arcs
initialize set arcs = {} (cell array in Matlab) ;
compute kappas = numerical approximations of κs;
initialize number arcs = 1;
initialize length of arc = 1;
for pi ∈ C1 do

set arcs{number arcs}(length of arc) = pi;
if kappas(pi) · kappas(pi+1) < 0 then

number arcs = number arcs+ 1;
length of arc = 1;

else
length of arc = length of arc+ 1;

Then each edge is decomposed into a set of arcs. Comparison of edges is done by
comparison of sequences of these arcs. If two edges match together, they will both
contain some number of arcs whose signatures are very close, as measured by the
similarity score. Next we discuss the implementation of this similarity score.

3.2.1 Procedure of Similarity Score Computation

We first implement the scale of comparison of two arcs as described in Section
2.3.2. The method takes as inputs the sets of discrete signatures B1 and B2 of two
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arcs and outputs the scale of comparison D(B1, B2).

Algorithm 3.2.2: The scale of comparison

Data: Given two signatures, B1 and B2

Result: return scale of comparison, D
initialize first max kappa = max(κ ∈ B1);
initialize first min kappa = min(κ ∈ B1);
initialize second max kappa = max(κ ∈ B2);
initialize second min kappa = min(κ ∈ B2);
D = max(first max kappa− first min kappa, second max kappa−
second min kappa);

We precompute the scale of comparison D, which will be used in the similarity
score computation. Next we describe the measurement of the separation between
points from B1 and B2. Pseudocode is given below.

Algorithm 3.2.3: The separation value of two points

Data: Given two points, p ∈ B1 and q ∈ B2

Result: return separation
Compute pointDiff = dist(p, q);
initialize D = D(B1, B2);
if pointDiff < D then

separation =
pointDiff

D - pointDiff
;

else
separation = ∞;

Next we describe the measurement of the strength of separation between points
from B1 and B2 as defined in Section 2.3. The pseudocode is given below.

Algorithm 3.2.4: The strength value of two points

Data: Given two discrete points, p ∈ B1 and q ∈ B2

Result: return strength of p and q
initialize γ = 0.5;
initialize ε = 10−5;
initialize separation = separation(p, q);
if separation < ∞ then

strength =
1

separationγ + ε
;

else
strength = 0;

Then we can compute the similarity score of the signatures, B1 and B2. The sim-
ilarity score method takes two signatures B1 and B2 as the inputs, and returns
their similarity score. The rescaling function is required to make the similarity

20



score lie in [0, 1].

Algorithm 3.2.5: The rescaling function

Data: Given a value, t
Result: return a rescaled value, r

initialize B = 1000;

r =
t

t+B
;

The parameter B > 0 affects the distribution of the score along the interval [0, 1].
In our case, we use B = 1000 as tested in [2]. Choosing larger values of B makes
the score transition more slowly from 0 to 1.

The pseudocode for the similarity score computation is given below.

Algorithm 3.2.6: The similarity score of two signatures

Data: Given two signatures, B1 and B2

Result: return similarity score, the closeness of two signatures
initialize first score = 0;
initialize total strength = 0;
for pi ∈ B1 do

for qj ∈ B2 do
total strength = total strength+ strength(pi, qj);

first score = first score+ rescaling(total strength);
total strength = 0;

first score =
first score

size(B1)
;

initialize second score = 0;
initialize total strength = 0;
for qj ∈ B2 do

for pi ∈ B1 do
total strength = total strength+ strength(qj, pi);

second score = second score+ rescaling(total strength);
total strength = 0;

second score =
second score

size(B2)
;

similarity score = min(first score, second score);

As mentioned, each edge is represented by a set of arcs. Therefore, when comparing
two edges, we need to compare each arc of the first edge to each arc of another
edge. First, we construct a table to store the similarity score of each pair of arcs.
Then we find the highest similarity score in this table. From experiments, we
define the threshold of 0.90. If the highest similarity score ≥ 0.9, we conclude that
these two edges share a common arc. Next we trace upward and downward along
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the diagonal of this table starting from the index with the highest similarity score.
We want to find a sequence of pairs with similarity score ≥ 0.9. Then we include
these arcs in the matching part. This is because the matching part should be a
sequence of consecutive arcs in the table.

Algorithm 3.2.7: Construct similarity score table for two sets of arcs

Data: Given two sets of bivertex arcs, bivertex arcs 1 and bivertex arcs 1
Result: Return table, similarity score table

initialize table = [];
for first arci ∈ bivertex arcs 1 do

for second arcj ∈ bivertex arcs 2 do
table(i, j) = similarity score(first arci, second arcj)

Algorithm 3.2.8: The procedure of finding the matching part of two edges

Data: Given two edges C1 and C2

Result: Return κ̃s at point Pi

initialize bivertex arcs 1 = all bivertex arcs of C1;
initialize bivertex arcs 2 = all bivertex arcs of C2;
initialize score table = table(bivertex arcs 1, bivertex arcs 2);
initialize max score = max(score table);
initialize (r max, c max) = row and column of max score;
initialize threshold = 0.9;
initialize start row = r max ;
initialize start col = c max ;
initialize end row = r max ;
initialize end col = c max ;
if max score ≥ threshold then

while score table(start row, start col) ≥ threshold do
start row = start row− 1;
start col = start col− 1;

while score table(end row, end col) ≥ threshold do
end row = end row+ 1;
end col = end col+ 1;

3.2.2 Example of Similarity Score Computation

In this section the signature and similarity score computation applied to three
pairs of test curves. We begin by generating a small segment of a curve, then we
add different levels of noise to create another curve for the comparison.
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Figure 3.1: Curves with identical signature

The two identical curves in Figure 3.1 have identical signatures, each shown as
blue and red points. It may be difficult to see from the figure, but the blue and red
points overlap one another in space. Computing the bivertex arc decomposition
and similarity score of these identical signatures produces a highest score of 0.9934
between bivertex arcs. The score is above the threshold, so these two curves would
be said to share an edge.
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Figure 3.2: Curves with almost identical signature

The two curves in Figure 3.2 have almost identical signature: the blue points
and red points are generally very close to each other in three dimensional space.
Computing the bivertex arc decomposition and similarity score of these nearly
signatures produces a highest score of 0.95 between bivertex arcs. The score is
above the threshold, so these two curves would be said to share an edge.
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Figure 3.3: Curves with different signature

The two curves in Figure 3.3 have clearly different signatures. The blue points
and red points are far away from each other, and they seem to split into two
different groups based on the magnitude of their values. Computing the bivertex
arc decomposition and similarity score of these nearly signatures produces a highest
score of 0.66 between bivertex arcs. The score is below the threshold, so these two
curves would not be said to share a common edge.

3.3 Reassembling Broken Pieces

The final stage of the surface reconstruction is to reassemble each piece of a broken
surface. The matching pieces are in different orientation and position in space, so
we need to translate and rotate until their matching part overlaps. The Procrustes
algorithm solves this problem. We have already described the Procrustes algorithm
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in Section 2.4, and we will implement it here.

Algorithm 3.3.1: Algorithm to find rotation [5]

Data: Given A and B ∈ R
m×n

Result: Return a rotation matrix Q
Compute C = BTA
Compute the SVD UTCV =

∑
and save U and V .

Compute Q = UV T

Algorithm 3.3.2: Procrustes Algorithm

Data: Given common edges from two pieces, common edge1 and
common edge2

Result: return first centroid, second centroid, rotation
initialize first centroid = [0; 0; 0];
for pi ∈ common edge1 do

first centroid = first centroid+ pi;

initialize second centroid = [0; 0; 0];
for qj ∈ common edge2 do

second centroid = second centroid+ qj;

first centroid =
first centroid

size(common edge1)
;

second centroid =
second centroid

size(common edge2)
;

compute C = common edge1 · transpose(common edge2);
compute SVD UTCV =

∑
and save U and V ;

rotation = U · transpose(V );

The Procrustes algorithm reassembles two pieces at a time. The method takes
two inputs, the matching part of the first piece and the matching part of the second
piece. It then finds the centroid of each common edge, and computes the rotation
that maps common edge2 to common edge1. The first centroid, second centroid,
and rotation then are used to reassemble two pieces. To reassemble two pieces, we
first translate each piece to another using the centroid values from the Procrustes
algorithm. Then we apply the rotation to rotate one piece to another, so that the
matching part overlaps.
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Chapter 4

Application

In this chapter, we apply our surface reconstruction method to an artificial broken
surface. The artificial broken surface is generated in Matlab using Bèzier curves
to generate curved edges, and a basic transformation to map these broken edges
to the surface of a sphere. The algorithm successfully reassembles all pieces, and
we discuss these results below.

4.1 Artificial Surface Data

We begin our experiment by generating an artificial surface broken into four pieces
along smooth edges. The process of creating this surface is illustrated in Figure
4.1. Five points (“pins”) are chosen inside a unit disk in R

2. Between each of these
pins a Bèzier curve is created using 18 randomly spaced control points. The result
is a planar “puzzle”, shown in the left of the figure. This puzzle is mapped to the
sphere using the transformation

(x, y) �→ (x, y,
√

1− x2 − y2).

To mimic real data some noise is added, and random rotations and translations
are applied to scramble these four pieces in space as pictured in Figure 4.2.

These pieces of broken surface are used to test our surface reconstruction
method. Bivertex arc decompositions are computed, and two pieces are compared
at a time to see if they possess common bivertex arcs with high similarity score.
After identifying those sequences of arcs with high similarity, the Procrustes al-
gorithm is applied to reassemble the arcs (and together with them the rest of the
piece).
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Figure 4.1: A planar “puzzle” and the broken spherical surface created from it

Figure 4.2: Each surface piece scattered in space
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Figure 4.3: Two matched pieces and the complete reassembled surface

The end result of the reassembly is pictured in Figure 4.3. The left part of
the figure shows two pieces of the broken surface reassembled. The red highlight
along the matching edges is the sequence of matching bivertex arcs as found by the
similarity score procedure. The Procrustes algorithm is applied to this highlighted
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portion of the matching edges. In the right part of the figure is shown the final
result with all pieces reassembled. It may be noticed that not all pieces are perfectly
aligned. Because the Procrustes is applied to only two pieces at a time, there may
be small errors that accumulate as assembly proceeds.
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Chapter 5

Conclusion and Future Work

The major effort in this project was devoted to implementation and testing of the
signature computation and comparison. The algorithm was shown to be effective
at reassembling artificial broken surface data, but has not yet been applied to real
data obtained from 3d scanning or other methods. To this end, we are currently
working to apply our method to 3d scans of the broken ostrich egg, [7], discussed
earlier and shown in Figure 1.1.

Each piece consists of a many points in space, i.e. a 3d point cloud. The
strategy for reassembly consists of extracting the boundary curve of each piece,
then applying our surface reconstruction method to these these boundary curves.
The boundaries may be extracted using the free boundary of a surface triangulation
of the egg piece, as shown in Figure 5.1. However, the boundaries of this broken egg
are very rough. Rough or noisy data produces unusable differential invariants, so a
smoothing strategy needs to be adopted before our algorithm can be applied. The
naive approach is to use a smoothing spline, such as the Matlab function spaps.
With a small smoothing parameter, smoothing splines appear to approximate the
egg boundary without showing the same amount of noise, as can be seen in Figure
5.2. It remains to be seen whether these approximate but smoother boundaries
are sufficient to reassemble the egg pieces. It may be worth experimenting with
other ways of smoothing the rough data, such as curvature flow.

Another area deserving further study is the method for decomposing curves
before applying signature comparison. We chose to use κs �= 0, i.e bivertex arcs,
for the decomposition because it helps avoid degenerate or less useful portions
of the signature, and because the decomposition does not depend on position or
orientation in space. In practice, the decomposition should be chosen so that the
resulting arcs are large enough for meaningful comparison, but not so large as
to overlap with other pieces. Another strategy for decomposition is to look for
maximal points of curvature or torsion, called curvature “codons”, [6].

It is also worth refining the approach to the similarity score. In this thesis
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Figure 5.1: An egg piece and its approximate boundary

Figure 5.2: Smoothing spline interpolation of a portion of egg boundary

we adapt the signature comparison strategy from [2]. It can be seen in Section
2.3.2 that there are many parameters γ,R, ε, etc. introduced to avoid numerical
problems and to make the most effective comparison. These parameters have been
chosen and adjusted ad hoc. Perhaps a more thorough study, based on a collection
of curve examples, could improve the selection of these parameters. Completely
different approaches to comparison may also improve the algorithm. For example,
the range of values of curvature or torsion could provide a quick conclusion that
two curves are not congruent.

Finally, as can be seen in Figure 4.3, small errors resulting from assembling
edges using the Procrustes algorithm can accumulate as more edges are assembled.
To get rid of this error, small adjustments could be made after the coarse assembly
of two pieces. This idea, called “piece locking”, was implemented in [8]. A three
dimensional version of piece locking would ensure a more tightly assembled surface.

Through numerical signature approximations, computation of similarity score
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and the Procrustes algorithm, we were able to develop a mathematical strategy for
reconstructing a broken surface. This method was successful in providing enough
information to reassemble four pieces of a spherical surface. However, as we have
described, there is much more work to be done to make the method more robust,
and to achieve the goal of reconstructing a real broken egg.
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