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Part I

P R O L O G U E

In which the astute reader may glimpse things to come, the hurried
reader may glean the Spark-Note version of this manuscript, and the
disinterested reader may give up and do something else. . .





T H E S PA R K - N O T E T E A S E R

For decades, computer use has largely focused on managing and manipulating
files– creating and consuming media, browsing the web, software development,
and even, with such systems as UNIX and Plan9, direct device access can largely
be reduced to locating, creating, reading, and writing files. To facilitate these oper-
ations, developers have created a vast assortment of file-systems, each presenting
a unique framework underlying nearly everything people do with a computer.

For various reasons, these file-systems have historically represented only incre-
mental improvements and alterations from their predecessors, leaving the basic
design and interaction models relatively unchanged. Because of this, most com-
mon file-systems share a similar set of weaknesses and limitations, intrinsic to
those models.

As an attempt to break with these traditional shortcomings, the author has cre-
ated STUFFS, a Semantically-Tagged Unstructured Future File-System. It is in-
tended largely as a research platform for investigating fundamentally new ideas
in storing, locating, managing, and otherwise manipulating files, their data, and
their associated meta-data. As such, STUFFS does not claim to perfectly solve
all of these problems – rather, it serves as a proof-of-concept and testbed for a
number of promising new approaches.

Of these new features, users are likely most impacted by STUFFS’s titular tag-
based structure, which spurns the traditional folder hierarchy in favor of a folk-
sonomy inspired, tag-centric approach to file organization. While this change re-
tains backwards compatibility, and is therefore fully usable as a traditional FS, it
has profound impact on potential user interaction. In order to support this high-
level transition, STUFFS is implemented using a relational database for storage
and tag-resolution, and, as an exciting side effect, it has gained proper transaction
support and full ACID compliance.
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Part II

B A C K G R O U N D

In which the reader endures the obligatory exposition describing the
magical world of our protagonist. It even has several dull pages worth
of text describing trees. . .





1
T H E P E A C E F U L S H I R E S O F A U X I L I A RY S T O R A G E

Readers knowledgeable of the intricacies of databases, files and file-systems
may wish to skip or skim this chapter. It is provided largely as brief introduc-
tion to those unfamiliar.

Auxiliary storage devices – those which operate below the computers main mem-
ory (RAM) and allow for data retention without power1– are essential compo-
nents of modern computers. However, they are, to understate somewhat, cumber-
some to use in their raw form. This difficulty-of-use has led to the development
of a number of wrappers and interfaces, which generally fall into two categories:
File-Systems and Databases.

1.1 the tower of the databases

Databases2, or, more properly, database management systems, represent the more
heavy-weight approach to storage interfacing. Their somewhat Orwellian ap-
proach necessitates knowing as much as possible about the data they store – its
type (integer, id, text, date, blob, etc.), uniqueness, etc. – and strongly defining all
relations between data. Using this knowledge, databases are able to build com-
plex, rigid structures expressing these relationships and massive indexes, provid-

1 Such devices include optical and magnetic disk drives, solid state drives, tape drives, etc. In
general, it would seem that the term “auxiliary storage” applies to most anything dubbed a
“drive” in colloquial usage (including flash-, thumb-, etc.). This is, of course, largely limited to
its use in relation to computers and components thereof; such drives as the “Sunday” variety are
usually distinct and unrelated.

7



8 the peaceful shires of auxiliary storage

ing an express-lane for queries. In order to maintain their positions as omniscient
arbiters of storage-access, and to maintain their internal structure, databases typ-
ically handle all of the actual disk access and data manipulation internally. They
are then free to expose higher-level APIs3 that provide a number of supported
operations which can be combined to achieve the desired effect(Ramakrishnan,
2003).

This complex framework and centralized access point allow databases to pro-
vide incredibly helpful functionality. Some features, such as fine-grained con-
currency support and optimization, are largely invisible to the user, while sim-
ple searching and filtering based on virtually any defined property of an entry
are generally essential components of day-to-day interaction. Additionally, many
databases provide full ACID (Atomicity, Consistency, Isolation, Durability) trans-
actions which are capable of making certain guarantees regarding the integrity
and scope of database operations (see Section 3.1).

1.2 the valley of the file-systems

While databases present a powerful means of storing and organizing data, it is
often desirable, for reasons of simplicity, performance, or feasibility, to interact
with the actual data without the intermediate layer and imposed structure of a
database. However, raw devices are generally too cumbersome to interact with
directly. This is where file-systems come in; they provide a thin veneer4 of orga-

2 It should be noted that throughout this section, I will be referring primarily to classical relational
databases, especially the various SQL engines. However, this commentary is generally applicable
to the vast majority of non-relational and NoSQL databases as well. A full comparison of the var-
ious approaches to database design and implementation is beyond the scope of this manuscript,
and the interested reader is advised to look elsewhere.

3 These higher level APIs can easily be as complex as an entire Turing-complete language. Ex-
amples include the various dialects of Structured Query Language (usually abbreviated SQL),
a general purpose semi-standardized interface language for relational databases, and the Multi-
User Multi-Programming System (usually abbreviated MUMPS), a database initially designed for
high throughput in a medical environment which includes a full data query and manipulation
language.

4 The lightweight nature of file-systems, should not, however, be interpreted as somehow preclud-
ing a lack of functionality. Rather it gives users and programmers the freedom to implement
higher-level functionality as they see fit. Indeed, nearly every computer with auxiliary storage
uses a file-system, and the vast majority of software which interacts with such storage uses a
file-system interface.



1.2 the valley of the file-systems 9

nization on top of the raw disk while still largely allowing users and applications
to do as they like with the actual contents and composition of the data. The
only guaranteed abstractions in a modern file-system are the idea of a file – an
opaque, content agnostic bucket for data – and a simple organization scheme –
the hierarchical directory tree (Giampaolo, 1999).

1.2.1 The Secret Life of Files

The first of these abstractions, the file, has traditionally been thought of as roughly
equivalent to its analog polyseme5. Like their paper counterparts, digital files
have been envisioned as a collection of data somehow bound together (Harper
et al., 2013). Its actual content is irrelevant; it could be text, pictures, video, audio,
some cryptic squiggles, etc.

Digitally, this content-agnosticism is directly baked into the representation of
files. At their lowest levels, these mysterious packages are simple strings of bytes
with designated beginnings and ends – no more, no less. There is nothing par-
ticularly unique about the form of a given file, and the only thing differentiating
one from another is the particular contents.

On the most basic level, these objects (physical and virtual) need (and therefore,
with human nature being as it is, can only be guaranteed to) support only a few
simple operations6:

read
It must be possible to read a file. By this it is meant that all or part of a
file’s contents may be copied into some form of more accessible, higher-tier
memory.

write
In addition to consuming content with a read, it is generally possible to
produce content with a write. This operation sets the contents of a file, or
part of the contents of a file to some arbitrary sequence.

5 In some senses then, this makes them more synonyms then polysemes. I wonder if there is a word
for those things which are themselves reflections of a single essential archetype as seen through
the multifold mirrors of the physical, virtual, and the mental/conceptual. . . But, I digress. . .

6 Of the operations described, none are technically guaranteed. Some file-systems are, or can be
configured to be, "read-only", "write-only",etc. Which is to say that they support only some subset
of the standard opperations. In this section, however, I will be focusing on general use file-systems
configured in their most common, read-write-create-delete mode.



10 the peaceful shires of auxiliary storage

create
Reading and Writing are likely the most salient operations one may perform
on files, but they are of little consequence if the files do not exist. To rectify
this, we must also acknowledge a third function which operates on files, or
more accurately files in potentia, the create operation. As one might guess
from its name, create simply takes a file which does not exist, but could
exist, and makes it exist.

remove
As the mirror operation of create, a remove operation takes a file which
currently exists, and revokes said existence.

1.2.2 The Tree of Order

While simply having file abstraction is a large step towards a coherent system
for managing auxiliary storage, it does not provide the organization one might
desire for answering the simple question "where is my data?" While we can now
refine such a question into "where is my file?", the net effect remains largely
unchanged.

Early file-systems largely neglected this question. So called "flat" file-systems,
including the original Macintosh File System7 simply stored all of the files to-
gether and let users call them by name. Unfortunately this practice, the digital
equivalent of simply paper-clipping all documents, photos, etc. together (possi-
bly ordered by title), left something to be desired. Naming files quickly became
a headache since each name needed to be unique (the same cannot be said of
human names, book titles, etc.), in some cases forcing the user to manually check
name availability or risk overwriting current files. This approach also lacked effi-
ciency when dealing with large files.

In the analog world, when given a large number of documents which may be
added to, retrieved or modified at any time, people often turn to folders and
filing cabinets. Early developers, noting the problems with flat file-systems and
seeing a ready made real-world solution implemented the same metaphor in
their digital document collections, giving the modern hierarchical file-system.

7 Oddly, even while MFS was in widespread use, Macintosh Finder, the bundled GUI file manager,
attempted to give the appearance of a hierarchical system to users. This obviously led to no small
amount of confusion.
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The hierarchical directory tree has traditionally been and largely remains the
only way to organize files on a file-system level. At its most basic level, this
methodology is nearly identical to its folders-and-cabinets analog. Every direc-
tory (folder) may contain some arbitrary number of sub-folders and plain files,
beginning with some highest level "root" directory. Finding a given file then is
simply a matter of knowing the path to it from root. For example, if a file child is
inside a directory parent which is itself in a directory grandparent which resides
directly within the root directory, one may find child by starting at the root and
replaying the steps: root → grandparent → parent → child. Of course since
early programmers generally valued economy of typing and the use of a standard
qwerty keyboard, this is generally expressed as: /grandparent/parent/child.





2
T H E G R O W I N G U N R E S T

These early file-systems were highly effective in the environment in which they
were conceived, but over time they have become somewhat outdated as their
assumptions and abstractions remain rooted in a time and culture which is now
long past.

2.1 the case against simple files

Consider the fundamental idea of a file. Traditionally, it is an opaque chunk of
data, but as new technologies have emerged, this simple has become inadequate.
Relatively early on, programmers saw the need for meta-data, data about the
data, to be added containing such simple things as names and timestamps, and so
they amended file-systems to accommodate (Giampaolo, 1999), using this simple
idea as the basis for a much more complicated system.

Of course once the floodgates on meta-data had been cracked, they were pushed
farther. Beginning with simple access control bits and permissions, and quickly
escalating to everything from what type of data the file contains, what software
created it, and even logically separate information such as the full lyrics of an
mp3. These additions have become increasingly more frequent as companies and
individuals attempt to assert or maintain ownership over a particular piece of
data, adding copyright information, owner information, and digital rights man-
agement software directly into their creations.

The net effect of these additions has been to transform files from simple buckets
of bits into something much more complicated. Each container is now annotated
with everything from expiration dates and advertisements to instruction manuals
and a detailed autobiography.

13



14 the growing unrest

However, even these highly annotated buckets cannot contain all of the in-
formation users are beginning to associate with files. It’s not simply a matter
of storage1, but rather a limitation imposed by the essentially static nature of
file-systems. Some of these qualities are highly dynamic, such as the number of
"Likes" a picture has on Facebook. Some are ambiguous or non-finite, such as
the conceptual content of a given picture, or the quality of a Wikipedia article.
And still others are simply beyond the realm of computers, such as how a video
makes a viewer feel.

Systems such as UNIX, with its "everything is a file" mentality have further
complicated the question of "what is a file?". Plan 9 had arguably the most ex-
tensive expansion of the file metaphor – literally everything in the system is
represented as a file. Users are files. Pieces of hardware are files. All of the graph-
ical widgets in the GUI are files. Even the users themselves are represented by
files. This extensive file-ization did away with the idea of files as static, human-
controlled entities, and replaced it with files as interfaces, middle-men who fa-
cilitated communication with a wide array of content providers– not only static
bytes on a disk, but also a vast array of dynamic, and in some cases even liv-
ing data-sources (Pike, Presotto, Thompson, and Trickey, 1990) (Pike, Presotto,
Thompson, Trickey, and Winterbottom, 1992) (Garcia-Molina, 2009) (Korth, 1991).

The third nail in the coffin of the traditional file metaphor is a matter of identity.
Traditionally, a file referred to a specific set of bytes stored at a specific location.
However, end-users tend to take a complex, dualistic view of files. An individual
may refer to downloading a file from the Internet, despite the fact that what they
have received would technically be a copy of said file, since the original never
moved2. Two pictures of the same flower might be called the same file, despite
existing in different locations and having different meta-data.

Files may also be referred to as "good" in the case of a particularly high-quality
recording of a song ("that’s a good FLAC"), or "bad" in the case of a laggy movie
("No, don’t watch SomethingTotallyNotPirated.avi, its terrible"). In a technical
sense both of these files may be perfect– they contain exactly the bytes that were
written to them. In fact it may even be that the "good" audio file is technically
imperfect, but it’s corruption or truncation occurs in such a way that the user

1 Many modern file-systems utilize extended-attributes and forks to provide essentially unlimited
meta-data storage.

2 This is to say nothing of the complexities created by peer-to-peer file transfer, in which "down-
loading a file" may actually entail downloading copies of small pieces of a number of files from
a number of locations and then processing them into a combined form. . .
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does not notice it, or that it otherwise does not, in their eyes diminish the overall
quality.

How then can to files which are equally perfect as traditional files (their bytes
are correct) be "good" and "bad"? In these cases, it is not the files themselves
which are being commented on, but rather what is encoded in their data. Since
two files which contain recordings of the same song with different representa-
tions (different formats, sampling frequency, etc.) could be ranked differently on
the quality scale (one "good", the other "bad") it can not be the concept that the
files have encoded which is being referred to, but rather the encoded representa-
tion.

At the same time, people actually do conflate files with the concept whose repre-
sentation they encode. Consider, one might download a song from iTunes, or they
might copy a picture of a cat from their camera. In both cases it is actually a digital
encoding of a particular representation which is replicated, however, conceptu-
ally it is the ideas that are represented by those files which are manipulated3. The
exact representations of the song or picture could vary (quality, format, etc.) as
could the actual corresponding bytes, but the actual actions would be the same.

Humans, it would seem have created a sort of trinity of the file (actual data, rep-
resentation, and concept). This is not entirely unexpected, and one can observe
the same phenomenon with nearly any physical data container: books, (sheet)
music, etc. The file abstraction, however, exposes only one face of this being–
the opaque-bytes view, thus limiting file-systems and computers to that same
restricted way of observing, and manipulating a file. While this restricted view
no doubt allows for a more optimized, efficient and possible computer technical
solution, it also forces users to translate their conceptual tasks (downloading a
song, looking at a picture, writing a novel) into the physical bag-of-bytes model
which the computer understands.

3 While files (more specifically, their meta-data) typically carry formatting information, access con-
trol bits, etc. this information is logically seperate from their human interpretation. A picture of
elvis is a picture of Elvis is the same picture of Elvis regardless of whether it is a jpeg or a png
and whether or not a given user has access to it – the idea is the same. In the analog world, one
could say similar things about a book – The Hobbit is The Hobbit whether a particular copy is
written in English, Esperanto, or Elvish (encoding invariant), and regardless of whether it is in a
private collection or public library (access control invariant), etc.
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2.2 arbitrariness of physical identification

Looking back at the file-system structure through the lenses of files-as-concepts
and files-as-representations reveals a number of inadequacies. Consider the the
hierarchical tree and its idea of a path – the singular and exclusive file iden-
tifier. Under the Free Hierarchy Standard, a simple path to a picture of Tim
holding a horseshoe crab on his trip to Florida last spring may be found in
/home/tim/Pictures/May2012/Horseshoe_Crabs.jpg. Under the classic interpre-
tation, this is simply a series of directories contained within each other. However,
this is only valid for a physical interpretation of files. After all, how can a con-
cept, an abstract idea, exist within a folder? This physical space interpretation
then simply fails to apply (James W. O’Toole and David K. Gifford, 1992).

At this point, attempting to reinterpret this path as a series of meaningful
descriptors rather than an arbitrary identifier may help.

home
The "home" directory, as part of the Free Hierarchy Standard (FHS), is
largely a pre-defined part of the file-hierarchy. Theoretically, the "home"
directory like its brethren "usr", "sys", "etc", "var" and the rest, represents a
technical distinction between parts of a file-system. Historically, this direc-
tory has often been hosted on a separate disk, or disk partition from the root
system. In modern systems, this is still common in enterprise environments,
but relatively rare in personal computers.

tim
"tim", as a directory, serves to designate private storage for a particular user.
In general then, this is merely a way of assigning a piece of meta-data to a
set of files.

pictures
"Pictures" is again a piece of meta-data, in this case specifying the file-type.

may2012
The "May2012" directory is effectively a time-stamp, once again a piece of
meta-data.

horseshoe_crabs
"Horseshoe_Crabs" is again meta-data. This time however, it does not rep-
resent a standard field, rather it is an arbitrary, user-defined descriptor.
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.jpg
The ".jpg" extension is largely beyond the user’s control. In general, this,
like all file extensions, is a standardized form expressing the file format.

In general then, each of these pieces of the path is simply a piece of meta-data.
In fact, the location itself is simply meta-data (data about the data).

The particular set of meta-data used in the path is not necessarily the entire
set of meta-data. Rather it is some arbitrarily selected subset with an arbitrary
ordering. Logically then, one may ask "why this data?" or "why this order?".
Why not save the same picture as:

• "/home/tim/May2012/Pictures/Horseshoe_Crabs.jpg"

• "/home/tim/Pictures/SpringBreak/Horseshoe_Crabs.jpg"

or even

• "/images/Florida/2012/Tim’s_pictures/awesome/IMG01234.jpg"

Each of these options, as well as any permutation of any subset of the entire
collection of meta-data, is arguably just as valid so long as it uniquely identifies
the data in question. Locating a given file then requires remembering an entire,
specific, and largely arbitrary subset of this meta-data, an increasingly more dif-
ficult prospect in a world where disk capacities are measured in terabytes and
music collections alone may contain tens or hundreds of thousands of files.

If each of these paths is logically valid, then why are these technically invalid?
Under traditional file-systems, this single valid path is entirely a consequence of
the physical, location-centric structure of the system. Once again, it seems that
the traditional view of files is at odds with their new conceptual identity.

Instead of viewing a file as being identified by a vector in physical space, one
may instead view them as being a vector in concept-space. Unlike a physical
space, this concept space does not, necessarily, have an independent basis – any
given “location” can be accessed by some finite, but potentially non-singleton
set of discrete and independent vectors. This new space then allows all of the
many logically valid paths, rather than specifying unique directions to an end
goal, paths simply give enough information to specify the end goal itself.
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2.3 uniqueness

A number of readers are probably thinking that, while these points may be con-
ceptually valid, they “have a system” and are perfectly capable of using arbitrary
paths and remembering the folder order. This may even be true. However, it is
not only the arbitrariness of location-paths which is problematic, but also their
uniqueness. While having paths map surjectively to files is perfectly reasonable
and desirable, their injective mapping can cause chaos for even the best systems.

Consider a stock photographer who likes to be able to easily look at all avail-
able photographs containing a particular content – say people, bicycles, and cats.
It is then perfectly logical to create a simple hierarchy containing /photos/{people

/, bicycles/, cats/} with each directory containing the appropriate correspond-
ing pictures. This system works perfectly well until this photographer takes a pic-
ture of a person (or a cat for that matter) riding a bicycle. Logically, this picture
should be in both /photos/people and /photos/bicycles, but can only exist in
one.

The obvious solution, which does not entirely break the content categorization,
involves simply creating directories for the overlaps: /photos/{peopleANDbicycle
s/, peopleANDcats/, bicyclesANDcats/, peopleANDbicyclesANDcats/}. How-
ever this requires an impractically large number of directories for more than a
small number of base categories. Specifically, for n base categories, it may require

as many as
n∑

i=1

(
n

i

)
= 2n − 1 directories4.

One could, of course, contest that this is entirely a function of the categori-
cal organizational system, and that using some known-to-be-discrete descriptor,
such as the the date the picture was taken, the first x characters of a hash of
the image, the size of the image, etc. While this is true, it is beside the point.
The photographer wants to be able to easily find all of his pictures containing
cats/people/bicycles/etc. (and is willing to identify them as such on creation).
This is not an uncommon or unreasonable request, but it is one which the tradi-
tional file-system metaphor is ill-equipped to support or even allow (Seltzer and
Murphy, 2009).

4 for reference, on a typical file-system with 4Kb blocks, as few as 28 base categories requires over a
terabyte of storage just to hold the empty directories (assuming 4KB directory entries, the default
for ext3 and some others)
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2.4 the johnny mnemonic effect

This arbitrary unique path concept seems to be overly taxing on human memory
– as described, in order to retrieve a given file, a human must perfectly remember
an arbitrary piece of text. For a single, relatively short path, this is fairly simple:
/myfile, /pics/spot.jpg, but longer paths and names become significantly more
difficult: /var/abs/core/linux/0001-x86-x32-Correct-invalid-use-of-user-ti
mespec-in-the-.patch or /media/net_drive/home/aaron/CloudBkp/files/Macal
ester/CompSci/Honors/STUFFS/Thesis/Chapters/Chapter03.tex. To compound
this, users may have thousands of files, all of which have unique, and often simi-
lar, and therefore potentially confusable, paths. Even a dozen paths easily exceeds
the working memory capacity of most users (Miller, 1956). And so like this sec-
tion’s titular character, users memories are being asked to store large amounts of
what is essentially computer data in a storage medium which is neither optimized
for the encoding, nor particularly spacious (at least as far as short-term memory
is concerned).

This effect is not limited to local file-systems, and has been addressed in in a
number of different areas. As an analog, consider the World Wide Web – it is,
at its heart, a distributed file system. URLs (effectively paths) uniquely specify a
particular item (a file, which could be html, css, video, etc.) somewhere on the
network.





3
T H E C R A C K S I N T H E WA L L

The shortcomings of traditional file-systems are not, however, limited to theoret-
ical disconnects with user perceptions of files. The systems themselves exhibit
a much more practical issue: fragility. Despite their common use, file-systems
have historically1 suffered from a disturbingly high failure rate – corrupt files,
inconsistent state, outright file and directory loss, etc. Unfortunately, a single
file-system error can bring entire systems, and by extension entire networks or
organizations, to a halt2. This is unacceptable. Errors happen – this is undeniable
and a function of the human condition – but the capacity for harm of file-system
errors rivals even errors in core kernel code3 (Traiger et al., 1982) (Gray, 1981).

3.1 transactions and acid

Databases, the go-to solution for highly reliable data-storage, have achieved their
place via the use of transactions. Transactions, state changes which follow the
ACID – Atomicity, Consistency, Isolation, and Durability – principles, are capable
of making some guarantees regarding the limitations of damage possible due to
errors. In general, they ensure that, when errors happen, they are detected and
do not affect the overall state of the system.

1 Modern file-systems have made significant strides towards the goals outlined in this section, but
have not yet reached a consensus on the ideal solution. See chapter 4 for more detail.

2 Computer system and network design has attempted to mitigate this possibility through the use
of redundancies and backups, but none are entirely perfect. However, the very need for these
sorts of systems is further evidence of a problem.

3 Since a file-system error can induce a kernel error, and vice versa, determining which is more
dangerous is non-trivial. On the other hand, a given file-system error is more likely to affect
stored data, which, unlike hardware and software, may not be interchangeable or replaceable,
causing more permanent damage.
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3.1.1 Atomicity

The first of the ACID principles, Atomicity, describes the boolean nature of a
transaction. It must either entirely complete, or none of it may complete. For
example, if a transaction renames a file A to B, then, once it completes, exactly
one of either A, if the transaction failed, or B, if it succeeded should exist with the
contents of the original A. It should not terminate in an intermediate state with
either both A and B or neither. Similarly, after a transaction creates and writes a
new file, either the file must exist with its entire contents, or it must not exist at
all. In simple terms this principle reduces to wise words of Yoda, ‘Do or do not,
there is no try’.

3.1.2 Consistency

The Consistency principle states that a transaction must transition a system from
one valid state to another. This effectively means that at no point may a transac-
tion generate an invalid file-system. For example, if a given file-system requires
that there exist a valid path from root to every file (under a traditional hierarchi-
cal scheme), then transactions are forbidden from violating this by, say, deleting
a directory with subdirectories or contained files (since these would be orphaned
and therefore invalid). In short, don’t break it.

3.1.3 Isolation

The third principle, Isolation, deals with multiple transactions. It requires that a
set of transactions generate the same final state regardless of the order in which
they apply, even if some number of them occur simultaneously. In file-system
terms, this one is somewhat complicated since it is lacking in traditional imple-
mentations (see Section 3.2.2). In general this principle means that concurrent
file-system access should not interleave their operations. For example, if two
transactions append data to a file, the net result should be the original file, and
then the appended data from one of the transactions and then the other. This can
be summarized as one transaction at a time.
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3.1.4 Durability

The final principle, Durability, ensures that, once transactions claim to complete,
their results will be permanent. Even if the system crashes, the computer is
turned off, or loses power, once, say, a file claims to have finished writing, that
data will not be lost (and thanks to atomicity, if it has not yet finished writing, it
will revert to its original state). Simply put, transactions should not lie about their
achievements.

3.2 where file-systems fail

Many traditional file-systems do implement some subset of transactions – wrap-
ping their basic operations into discrete functions. However, they generally fail
to follow some or all of the ACID principles. Because of this, they fail to make
many of the guarantees necessary for constructing a stable system.

3.2.1 Update In-place

Many early file-systems developed for hard-disks fell to what Jim Gray, inventor
of the transaction principle, called the ‘poison apple’ of in-place updates (Gray,
1981). Eschewing the continuous ledger method of bookkeeping in effect since
the age of clay tablets, these file systems began the new and innovative practice
of overwriting data. Unfortunately, since they began writing immediately over the
data to be modified without backups, Atomacity is impossible for any transac-
tion which writes to the file-system (data, meta-data, structure etc.). In the case
of writing transactions which fail part-way through and is incapable of complet-
ing, since there is no way of recovering the original (now over-written) data, the
system cannot revert to its original state (Tamma and Venugopalan, 2014).

This also has a number of potential implications regarding consistency, as can
any other Atomicity violation. Consider a transaction which manipulates the
meta-data around a directory. If, through power failure, electrical surge, or EMP,
an invalid configuration of bits is written, this cannot even be detected until the
damage has already overwritten the disk. In the worst case, this can leave an
entire sub-tree of the file-system unreachable due to a single corruption.
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3.2.2 Isolation? What Isolation?

While modern file-systems have made some progress, with variable success, in
implementing Atomic transactions, Isolation remains largely absent from tradi-
tional file-systems. The curious reader is encouraged to attempt to write (or for
more fun, append) to a single file from half a dozen programs simultaneously
and observe the result.

3.2.3 Disk Buffers (a.k.a. "We’ll save it later")

Stability is not the sole goal of file-systems. In particular, the field has been and
continues to be highly benchmark driven – seeking and celebrating even minute
speedups. This has led to a number of risky innovations including disk write-
buffers. Since, in general, the actual storage device is the slowest part of a file-
system operation, buffers have been implemented to hold data before it is written
to disk, spreading it out as needed to prevent the disk from bogging down. They
are also used to lump small writes together into a single larger write to avoid
repeated spin-up costs and reduce heating and power consumption.

File-systems then report completion once the data has reached the buffer, and
possibly before it has actually reached the disk. This, by definition, violates the
Durability principle. If, for whatever reason, the actual write either never occurs,
or fails, the stored data is lost. As an additional consequence, if a read is per-
formed after a write completes, it will return the data stored in the buffer. If, at
a later point, the actual write to disk fails, then consecutive reads may return a
result inconsistent with the the initial buffer read without any intervening writes
(Sweeney, 1993).



4
T H E G AT H E R I N G S T O R M

These issues with traditional file-systems are not new. They have been actively
documented for decades, and numerous proposed solutions have been devel-
oped. Some fixes have involved complete re-designes of the underlying technolo-
gies, while still others have taken a much smaller view and addresses some spe-
cific symptoms on top of the traditional model.

4.1 band-aid fixes

The latter case, on-top band-aid fixes, are likely the most common solution,
thanks to their relatively simple implementation and deployment. Unfortunately,
the scope of these solutions tends to be highly limited. Nonetheless, a variety of
such solutions exist, and bear consideration.

4.1.1 Duplication

A simple method of overcoming the uniqueness restrictions of traditional file-
systems involves simply placing copies of files into all of the desired locations.
However, this is, for rather obvious reasons infeasible for files which are subject
to change, moved or be deleted due to the need for synchronization. Files of any
significant size are similarly prohibative due to space constraints. As such, it is
not really a solution except in some niche cases.

25
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4.1.2 Links: Hard and Symbolic

The earliest, generally effective, effort at solving the structural restrictiveness
problem came in the form of hard and symbolic (sometimes soft, also sym-) links.
In both cases, links allow a file to exist at multiple paths at one time. As such a
movie about cowboys fighting aliens could exist in both /movies/cowboys/ and
/movies/aliens/, thus removing, or at least ameliorating the one-file-one-path
restriction allowing for complex, non-standard systems such as that employed by
GoboLinux (Muhammad, Detsch, and Leopoldo-RS-Brasil, 2002) (Homer, 2014).
Hard links accomplish this by having multiple directory entries refer to the same
actual inode and data storage, while soft links use one actual file with data and
creates additional pointers to it at other locations as needed.

Unfortunately, while links are highly effective in a number of situations, they
are not an effective solution to the general case of problems. Since they lack auto-
matic management, they must be individually created, deleted, etc. This requires
a significant amount of additional work on the part of users since they must
manually recall and manipulate every valid path individually. This is especially
important, and potentially problematic when using soft links since deleting or
moving the linked file without updating every link leads to broken links, an incon-
sistent state in which links have no valid target.

Even though links avoid the unique path problem, they fail to remove the
arbitrariness and ordered nature of paths. One could certainly construct a system
under which files (or links to them) exist under all possible orderings and subsets
of their path components, but this is somewhat overly-complicated in practice.

This would require
n∑

i=0

i! links for each file, where n is the maximum depth

of the file. The number of hard links to a given inode must be stored in a file-
system dependent format. The ten bit counter used by NTFS overflows at a depth
of seven, 32 bit UNIX systems overflow at a depth of thirteen, and 64 bit UNIX
systems overflow at a depth of twenty-one, making this approach impossible for
systems using hard links with more than a few descriptors. Soft links, on the
other hand, do not need to be counted, but require a full inode for every link
which can require something on the order of four kilobytes each, leading to over
two terabytes of additional storage for a file depth of twelve.
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4.1.3 Single Purpose Databases

The go-to solution for implementing highly stable storage and persistent, search-
able data-stores, single purpose databases, are perhaps the most popular means
for overcoming file-system limitations. Generally, these databases are housed
atop traditional file-systems and are accessed by one, or, in some cases, a small
number of highly integrated applications.

These sorts of systems are most visible to the average user via applications
such as media players and mangers, including iTunes, Windows Media Player, and
Amarok, which use them as a sort of domain-specific file management scheme1.
These systems generally allow users to interact with a tabular interface, which
directly maps to the database back-end, and exposes the native, indexed, column
searching functionality at which databases excel. This has shown remarkable ben-
efits over direct file-system interaction in regard to file-location and management.
So much so, that systems such as Jody Foo’s DocPlayer (Jody Foo, 2003) have been
constructed in an attempt to extend this metaphor to general file-management.

Single purpose databases are also commonly employed for their stable ACID-
compliant transactions. In this case, these databases are constructed to contain
some amount of mission-critical data atop a traditional file-system (Subramanian
et al., 2010).

Unfortunately, this method is highly limited. Because of the many possible
database interfaces and configurations, data storage and application become tightly
linked – each application must setup and maintain its own database. Naturally
then, this requires any applications which wish to share a database to agree on a
model and make sure that they do not interfere with each other. In practice, this
is a relatively rare occurrence – in general, arbitrary programs, even those with
similar purposes and functionality, cannot be assumed, or even expected to be
capable of using the database of another program. As such, any particular piece
of data in one of these systems becomes locked-in to a small, closed set of tools
rather than being globally accessible.

While this limitation may be reasonable for storing internal data, systems such
as DocPlayer which aim to solve the general file management problem run into

1 It should be noted that these systems typically take a hybrid approach. The files themselves are
typically stored directly in the file-system, and the meta-data is put into a database. This allows
the searchability of a database across the file meta-data (author, year, title, etc.) while preserving
the efficiency of file-systems for actual data access.
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serious issues. For example, while they can provide useful interfaces for finding a
file within their application, those interfaces are unavailable to other applications
so, if a user wanted to, say, open an image file from within their favorite graphics
editor, they would be required to either use traditional methods or (assuming the
manager uses a hybrid system and the files can be accessed directly within the
underlying file-system via an exposed path) open the database-backed manager,
find the file and copy its file-system path, and then input said path into the
graphics editor. In effect, the file manager becomes a sort of card-catalog which
must be consulted separately whenever a file is to be accessed rather than an
integrated part of a streamlined process.

4.1.3.1 Desktop Search

A special case of the single-purpose database, the Desktop Search model, as im-
plemented by such applications as Mac OSX’s Spotlight, Beagle, and Google Desk-
top, swaps the tabular media-player like interface for a more general-purpose,
natural language search engine. This makes it especially simple to locate arbi-
trary files, but limits the system’s organizational and file-management capabili-
ties. While this method creates a helpful, general-purpose file launcher, it suffers
from most of the same limitations as other single-purpose database systems: lim-
ited scope, lack of standardized access, etc.

4.1.4 Journaling

Apart from implementing databases on top of traditional file-systems, effort has
been made to graft additional capabilities onto existing systems. One of the most
common innovations in the area of file-system stability comes in the form of jour-
naling. File-systems which implement journaling store pending operations in a
circular log. Physical logging pre-records every write to the file-system. Because
this log can then be replayed in the event of a crash (and an incomplete journal
can be detected via checksums), writes can be performed Atomically. Unfortu-
nately, things like broken links can still lead to inconsistent file-systems, and the
lack of Isolation is not addressed (Giampaolo, 1999).

Since physical logging effectively requires writing twice as much data for ev-
ery operation, it incurs significant performance penalties, which has led many
file-systems to adopt logical logging. Under these systems, only meta-data is
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pre-recorded and the actual data is written directly. Unfortunately, since data is
not recoverable, corruption can occur if a crash occurs during a write operation.
This adds some degree of increased stability, but is far from a complete solution
(Sweeney, 1993).

4.2 fundamental redesigns

Striving to avoid the limitations of simple band-aid fixes, a number of more
fundamental changes have been proposed and developed. These span the gambit
from new paradigms to a complete overhaul of the computer interaction.

4.2.1 Remove Local General-Purpose File-Systems

Perhaps the most extreme redesigners have proposed removing the local general-
purpose file-system, or, for practicality reasons, keeping it but restricting it to
use by essential operating system services and hiding it from the end-user. This
then begs the question, how does a user store data? This is, after all, the purpose of
file-systems and an incredibly common practice among computer users.

The most popular solution involves using cloud storage or similar technologies
to replace or augment traditional file-systems (Zhang et al., 2014) (Cachin, Keidar,
and Shraer, 2009) (Baron and Schneider, 2010) (Vokorokos et al., 2013). This does
not, however, address the problems with the file-system metaphor. If the cloud
service is accessed via some private API, then it suffers from all of the same issues
with limited application support, etc. that plague single-purpose databases. If, on
the other hand, it uses a file-system interface, then it, by design is vulnerable to
the same issues as traditional file-systems.

Regardless of the method, removing the file-system has serious repercussions.
Any changes to the storage interface potentially removes compatibility with cur-
rent programs, requiring massive porting efforts, hampering adoption and lead-
ing to the same sorts of incompatibility as single-purpose databases.

4.2.2 File-System Redesigns

Since abandoning the file-system concept seems to create as many problems as
it solves, it seems reasonable to keep the general concept but rebuild it from the
ground up. In doing so, engineers are free to explore new techniques and avoid
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the pitfalls of their predecessors. The most promising approaches synthesize not
only the lessons in stability learned from databases, but also new approaches in
organization and information retrieval.

4.2.2.1 Tagging

Tagging represents a natural translation of location-paths to concept-paths. This
common web 2.0 practice locates and identifies objects (files, web-pages,etc.) us-
ing a set of textual descriptors (tags). Every item in in object-space is reversibly,
but not necessarily uniquely, mapped (usually by users) to a set of tags in tag-
space as shown in Figure 4.1. These objects are then locatable and (not neces-
sarily uniquely) identifiable via arbitrary set-queries over their associated tags.
Depending on the tagging architecture, these queries can be as complicated as
full boolean expressions which filter the corpus based on applied tags (some
examples are given in Figure 4.1).

This approach largely implements the concept-space idea of files discussed
in Chapter 2, with tags expressing concepts and being intrinsically unordered
sets. various research systems have investigated the possibility of using tags to
organize files, but have, for various reasons either failed to be developed, or
been incapable of replacing traditional systems. (Hans Reiser, 2001) (Gifford et
al., 1991) (Padioleau, Sigonneau, and Olivier Ridoux, 2006) (Dourish et al., 1999)
(Seltzer and Murphy, 2009) (Jesse Phillips, 2006) (Schandl and Haslhofer, 2009)

4.2.2.2 ACID

A number of file-systems redesigns (You et al., 2013) have also focused on stabil-
ity, generally by incorporating fully ACID compliant transactions within the file-
system itself. One of the most successful research systems in the area, the Amino
system (Wright et al., 2007) uses a sophisticated system-call interception scheme
to allow applications to initiate and commit transactions within the file-system.
This largely surpasses the capabilities of journalling systems and provides a prov-
ably stable base.
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Objects

Ducks

Tomatoes

Small Rocks

Witches

Tags

Awesome!

Animal

Vegetable

Mineral

Alive

Can fly

Floats

Make good pets

Turned me into a newt

Some sample queries:

Tags Objects

Animal Ducks, Witches

Mineral Small Rocks

Can fly AND Make good pets Ducks

Floats AND NOT Animal Small Rocks

. . . . . .

Figure 4.1: A simple tagging illustration. Elements in object-space are associated with an
arbitrary number of elements in tag-space. Objects can then be located via
queries on their tags.
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5
E N T E R S T U F F S : A F E AT U R E O V E RV I E W

While each of the alternatives discussed in Chapter 4 offer relief from some of
the symptoms of traditional file-system maladies, none seems to fully address
the causes. To this end, I propose, and have developed, a new experiment in file-
system design, a Semantically-Tagged Unstructured Future File-System. This
project explores novel methods of improving both file-system integrity and us-
ability by taking a radically different approach to the implementation of both the
underlying system, and the overlying interface of the file-system metaphor.

5.1 backwards compatibility

One of the biggest advantages of file-systems over other storage solutions is their
simple and implementation-independent interface. This allows a wide variety
of applications, including other storage solutions (data-bases, etc.) to efficiently
utilize a single data-store.

In order to maintain this important property, STUFFS must maintain back-
wards compatibility with traditional systems. This is largely limited to the inter-
face and API aspects of the file-system, since these are the only ones necessarily
shared by traditional file-systems anyway. For specifics, see Chapter 6.

5.2 tagging

Inspired by the common web 2.0 practice and similar systems at other levels
of the storage hierarchy, STUFFS implements a tag-based organizational system.
Each file can be assigned an arbitrary number of textual tags upon creation, and
this set may be modified at any later time. Files are not assigned a traditional
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location-based path, but one may be emulated through clever use of tags (see
Chapter 6).

5.3 paths as queries

Having lost their meaning as locations, the standard file path has been re-purposed
to serve as a search system for tags (For syntax specifics, please see Chapter 6).
Each path encodes a tag query, complete with standard AND-OR-NOT combina-
tional logic, and its contents are dynamically generated by the result of such a
search. If the path is used to refer to a file, then the first file to match the query
is returned. If, however, the path is used in reference to a directory, then it is
dynamically generated with contents based on the files whose tags match the
query.

As such, a path encoding "Tag1 AND (Tag2 OR Tag3)" would refer to a direc-
tory containing all files tagged with "Tag1" and at least one of either "Tag2" or
"Tag3". On the other hand, a path encoding "file1.ext with Tag1 AND (Tag2 OR
Tag3)" will point to a file named "file1.ext" that has been tagged with "Tag1" and
at least one of either "Tag2" or "Tag3". If their are multiple files to which this path
could refer, STUFFS will arbitrarily pick one (generally the first one created).

5.4 semantic resolution

Unfortunately, while tags are a major step towards implementing a concept-space
view of files and file-systems, they remain, like location based paths, simply an
arbitrary set of textual descriptors. While each tag represents a concept, the map-
ping is not necessarily injective. Consider the tags pics, Pictures, images, and
IconS; each of these is a textually different tag, and therefore resolves to a distinct
set of files under a tagging scheme. However, these tags each share a synonymous
semantic identity, and therefore express a singular concept. Therefore, under a
truly concept-centric system, all of these should map to the same set of files.

In order to facilitate this, more fully concept-centric, approach, STUFFS imple-
ments a Semantic Resolution system. This optional feature uses a semantic simi-
larity metric to collapse semantically identical (or very similar) tags into a single
file-set accessible via any synonymous tag (i.e. a file tagged as picture could be
picked up by a query for files tagged as images). Since the query tag does not
even need to exist in the file-system, users may search by whatever term seems
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most appropiate at search time rather than at creation time. This frees them from
needing to remember a specific, arbitrary piece of text describing their file, and
instead generate any text expressing a concept which describes their file.

5.5 unique global file identification

This tagging system fully replaces one of the central components of the tradi-
tional hierarchy – the unique path. Since any number of files may share some set
of tags and have the same name, a given path may resolve to zero, one, or arbi-
trarily many distinct files. In the case of browsing, this is desirable – each of the
files located by a given path is valid. Adding more terms to the path can logically
differentiate the files, and therefore systematically differentiates the files.

On the other hand, simply identifying a known file is significantly more com-
plicated using only tags. Even once a file has been identified via a unique set of
tags, this identification cannot, in general be guaranteed to be unique and valid
in the future. Adding tags to other files may induce conflicts, and modifying the
tags of the file in question may remove it from its original path. Unfortunately,
this violates the first rule of STUFFS by failing to be backwards compatible. Ev-
erything from loading kernel modules to setting desktop wallpapers relies on
being able to specify a unique path to a specific file, and without this capability,
STUFFS fails to be backwards compatible.

To rectify this, STUFFS introduces the concept of file IDs. Each file, on creation,
is given a globally unique file ID which tracks that specific file for its entire
lifetime despite any file manipulations (read/write, tag additions/deletions, re-
nameing, etc.). This file can then be uniquely identified using only its ID. STUFFS
supports this natively using the standard path interface (see Section 6.4.1.1 for
specifics).

These IDs are not merely a replacement for traditional paths. They also add use-
ful functionality. While conceptually similar to inode numbers, because these IDs
are exposed via the typical file-system interface, they can provide this location-
independent identification to general purpose applications. Now, when a user
specifies desktop wallpaper it can remain selected, even when that user reorga-
nizes their pictures, removes and adds tags, or even renames the file.
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5.6 acid transactions

As an experiment in developing a stable file-system, STUFFS implements fully
ACID compliant transactions. By default, every syscall is wrapped within a trans-
action as implemented by a SQLite database. This provides all of the standard
transaction guarantees implemented natively at the file-system level. By auto-
matically wrapping standard syscalls, STUFFS provides all of the benefits of a
transaction system to legacy applications without requiring software modifica-
tions.
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S Y N TA X A N D O P E R AT I O N S

As stated, STUFFS has been designed for maximum backwards-compatibility
while implementing as many advanced features as possible. To that end, all oper-
ations use the standard path format and require no special libraries or mysterious
system calls. This allows all features to be used by any program using standard,
current tools.

6.1 the tag

Like most simple tagging systems, STUFFS employs purely textual tags. These
textual tags apply to an arbitrary number of files and serve as a sort of analog to
the traditional directory.

6.2 the file

STUFFS new format for files converts them from the traditional, opaque series of
bytes to more complicated objects:

File
tags

The set of all tags applied to the file – for convenience, this includes the
empty tag for all files.

name
The user-assigned file name – equivalent to the traditional file name.

id
A globally unique file identifier.
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data
The opaque byte data – identical to the traditional file data.

This new file metaphor does not impose the traditional constraint on file names
being unique. Instead, each is assigned a unique ID which is appended to the
display name as "name@id@". Each file can then be uniquely specified by its id:
"@id@", a combination: "name@id@", or, in the case where the rest of the path
removes ambiguity, only the name: "name".

6.3 the path

Since the standard hierarchical file-system has been replaced by a tagging system,
a path as a series of directories is meaningless. Instead, this form has been re-
purposed not as a traditional vector in physical-space, but rather in tag-vector
space. This redefinition converts a physical map marking the location of a file
into a query specifying its attributes. In short, the path has now been redefined
from an ordered sequence of directories to a logical combination of tag-based
filters.

Given the file mapping in fig. 6.1, one such path may be: "/Floats/%Make

good pets%Alive%/!Animal/?Stone?/" which points to a directory containing
the file "Small Rocks". In order to understand this mapping, one must first un-
derstand STUFFS’s basic query components: intersection, union, negation, and
fuzzy matching.

6.3.1 Intersection

In the simplest query case, we have intersection, typically defined for sets as:

S1 ∩ S2 ≡ {s | s ∈ S1 ∧ s ∈ S2} (6.1)

Extending this to the new file/tag object metaphor gives:

Tag1 ∩ Tag2 ≡ {file | Tag1, Tag2 ∈ file.tags} (6.2)

Unfortunately, the "∩" syntax is is cumbersome to type and is potentially incom-
patible with some localizations. For convenience, STUFFS uses the "/" symbol:

Tag1 ∩ Tag2 ⇔ Tag1/Tag2 (6.3)



6.3 the path 41

Files

Ducks

Tomatoes

Small Rocks

Witches

Tags

Awesome!

Animal

Vegetable

Mineral

Alive

Can fly

Floats

Make good pets

Turned me into a newt

Figure 6.1: Object mapping from fig. 4.1. Note that each object is a file.
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This convention has the added advantage of providing compatibility with tradi-
tional paths: "/dir1/dir2/dir3/" now maps to " ∩dir1∩dir2∩dir3∩ ", where " "
is the empty tag. Since " " applies to every file, this is degenerate to "dir1 ∩dir2 ∩
dir3". This means that a file can be made to exist in the "path" "/dir1/dir2/dir3/"
by tagging it as "dir1","dir2", and "dir3". In this way, arbitrary classical paths can
be formed in the expected way.

6.3.2 Union

Union, in many senses the opposite of Intersection, is defined for sets as:

S1 ∪ S2 ≡ {s | s ∈ S1 ∨ s ∈ S2} (6.4)

with an analogous definition for tags:

Tag1 ∪ Tag2 ≡ {file | Tag1 ∈ file.tags∨ Tag2 ∈ file.tags} (6.5)

Once again, "∪" is difficult or impossible to type in many situations and so the
following modified form has been adopted:

Tag1 ∪ Tag2 ⇔ %Tag1%Tag2% (6.6)

Admittedly, this syntax is perhaps more complex than is strictly necessary. Un-
fortunately, a simple infix notation would potentially be more dangerous, since
this would effectively prohibit the infix symbol from being used in tags entirely,
since it would always be interpreted as a union. The three symbol notation is still
limiting, but only complicates the simultaneous use of "%" as both the first and
last symbol of a tag. It can still become complicated when using tags containing
"%" in unions. However, this is largely unavoidable regardless of notation.

It should be noted that this operation is not restricted to two arguments, but
generalizes to higher numbers as:

Tag1 ∪ Tag2 ∪ · · · ∪ Tagn ⇔ %Tag1%Tag2% . . .%Tagn%



6.4 operations 43

6.3.3 Negation

Negation, the final standard logical operator implemented within the STUFFS
path system is traditionally defined for sets as:

¬S ≡ {u | u /∈ S} (6.7)

For files this gives:

¬Tag ≡ {f | Tag /∈ f.tags} (6.8)

Again, mathematicians have chosen difficult to type symbols, and so the stan-
dard programming convention "!" has been used:

¬Tag ⇔!Tag (6.9)

6.3.4 Fuzzy Matching

Beyond the logical operations, another syntax has been introduced to handle
fuzzy matching. For performance and specificity reasons (a user may actually
mean exactly what they type), fuzzy matching is disabled by default. Enabling
it is as simple as surrounding the text to be matched with "?". So, "?pics?" will
evaluate to "pictures", "images", "icons", etc.

6.4 operations

Now that these basic path manipulations have been identified, we may move on
to more complex operations.

6.4.1 Locating a file

STUFFS’s flexible path-as-tag-filters simplifies the process of locating a particular
file. It also provides a number of approaches based on known names, tags, and
ids:

6.4.1.1 By ID

If the unique id of a file is known, then locating it is trivial. It will be found at
"/ALLFILES/@id@". If the name is also known, it can be used as well:
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"/ALLFILES/name@id@". It should be noted that, in the current implementa-
tion, if the last element of the path is an id, the rest of the path is ignored, so

• "/ALLFILES/@id@"

• "/ALLFILES/name@id@"

• "/@id@"

• "/some/!other/%combination%of%path%elements%/@id@"

are all the same file.

6.4.1.2 By tags and name

A files tags (or some knowledge of a subset of them) can also be used to narrow
the file-system scope and identify the file.

Consider a file named "target" with tags "a","b","c", and "d".
If there is exactly one file named target in the file-system, then the the file can

be uniquely identified by name alone, "/target" although the preferred method
(which avoids potential conflicts with tags named "target", etc.) is "/ALLFILES/
target".

If however, there exists some other file named "target" with tags "d","e","f" and
"g". Then enough tags must be given to differentiate the two. This could be ac-
complished by such paths as:

• "/d/b/c/a/target"

• "/a/target"

• "/%a%b%c%/target"

• "/!f/target"

• etc.

However, filters which do not uniquely specify a "target" will lead to ambigu-
ous results and should be avoided:

• "/target"

• "/ALLFILES/target"
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• "/d/target"

• "/!h/target"

• "/%a%b%e%f%/target"

• etc.

6.4.1.3 Browsing

Browsing through files without a known goal is also possible.
The virtual-tag "ALLFILES" contains all files in the system, and therefore these

can be viewed with standard tools for reading directory contents. Additionally,
all tags exist as virtual-directories under the file-system root, and entering them
performs an intersection by default.

In all other cases for the current virtual directory, a query is generated based on
the evaluation of the current path filters. Any files which exist in the logical set
returned by such an evaluation exist within the directory. Additionally, all tags
applied to files in the directory which are not already used in a path intersection
exist as virtual directories within the current directory. This is somewhat more
intuitive to grasp in a graphical than textual form and a less murky explanation
may be given by Figure 6.2

6.4.2 Manipulating files

In general, manipulating files in STUFFs is the same as in a traditional system.
Once a file is located (see Section 6.4.1) ther location "path" can be used directly
by standard tools (cat, touch, rm, cp, etc.) without problems.

6.4.3 Manipulating tags

Tag manipulation is somewhat more complicated than file manipulation due to
its need to re-purpose standard tools. In general, a given traditional function
(Create, Delete, etc.) performs its tag analog.
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Figure 6.2: Simple STUFFS file-system tree. In this example, the system contains the tags
{Tagn | n ∈ [5]} and the files {Filen | n ∈ [3]}. tag subsets {Tag1}, {Tag1, Tag2},
and {Tag1, Tag3} apply to File1, File2 and File3 respectively.

/

ALLFILES
File1

File2

File3

Tag1

Tag2

File2

File1

File2

Tag2

Tag1

File2

File2

Tag3

Tag1

File3

File3

Tag4

Tag5



6.4 operations 47

6.4.3.1 Creating tags

Tags are created by the same means as traditional directory creation. They will
not, however, show up in the current directory (unless the current directory is the
root directory) (see Section 6.4.1.3). This is not a problem for the file-system, but
some interfaces, file managers and the like, may take issue with this. Creating
all tags in the root directory explicitly (i.e. ‘mkdir /some_tag‘) avoids this issue
without changing functionality.

6.4.3.2 Deleting tags

Just as tags can be created by standard directory creation tools, they can be
deleted by standard directory deletion tools. While there is no explicit prefer-
ence for either absolute or relative paths, it may be better to use absolute simply
for symmetry with the create commands.

6.4.3.3 Adding tags

Since files no longer have a hierarchical location, commands which move or re-
name a file have been re-purposed to support tagging. Moving a file to a given
absolute path adds all elements of that path to the file’s tag set (so ‘mv file@1@

/a/b/c/‘ will add tags "a", "b", and "c" to the tags of "file", referenced here by id
1, assuming that those tags exist and are not already in "file" ’s tags.).

It should be noted that tagging a file with a non-purely-intersection path is
currently undefined and unsupported. This means that commands such as ‘mv

file /%a%b%/‘ will not work.

6.4.3.4 Removing tags

Removing the tag "t" from a file is logically the same as moving that file to the set
¬t, and this is reflected by the syntax. Removing a tag from a file is equivalent
to tagging the file as the negative of the tag (so mv file@1@ /!a/ will remove the
tag "a" from "file").

Since there is conceptually and practically little difference between removing
a tag from a file and adding one, support has been provided for mixing the two
operations. A command such as mv file@1@ /!a/b/!c/d will add the tags "b"
and "d" to "file" and remove the tags "a" and "c" from it. In the case of a conflict
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( an operation attempts to remove and add the same tag ) the removal takes
precedence.
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S C E N E R I O D E M O N S T R AT I O N

Here follow the exploits of three potential (and purely fictional) users of STUFFS.
They illustrate not only common usage patterns, but also some innovative repur-
posing and extensions of the tagging framework to suit their needs and desires.
The three are approximately ordered by technical prowess and complexity of
usage.

7.1 brad : the questing

Brad is on a quest again. Fortunately, he has not been tasked with killing ten rats
or destroying a great evil. Rather, he is on a quest for the perfect picture. As the
freelance stock photographer from Section 2.3, he strives every day to provide
his clients with the perfect picture for all of their needs. Along the way, he has
picked up some technical skills and now hosts his own website and handles
all of his business via his trusty computer. Unfortunately, his need for efficient
organization has led him to sample dozens of different schemes, both in as file-
system layouts and single-purpose databases, but, for now, he has settled on
STUFFS, which seems to meet all of his requirements.

The Tale of Brad

Jim is chatting with a client who needs some pictures. Fortunately, he has a large
collection1. So, he brings up his file manager (PCManFM http://http://wiki.

1 It is best to simply assume it is large. The screenshots etc. presented here actually show only a
small number of files (∼ 200 randomly generated) and tags (∼27). This both reduces the visual
clutter for readers (somewhat) and the work necessitated on the part of the author.
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lxde.org/en/PCManFM) and takes a look (note the path shown near the top of the
window. /media/stuffs is the root of a STUFFS file-system).

First off, Brad creates a new tag for his client, Jim. This is fairly straightforward:
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Having done so, Brad begins looking for pictures. Jim wants animals, so Brad
starts there:
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Unfortunately, many of these are pictures of cats (Brad loves cats) and Jim ex-
pressly requested pictures without cats. The customer is always right, so, through
the power of STUFFS, Brad looks at just the animals that are not cats:
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There are still quite a few pictures, so Brad asks Jim if he has any other requests.
"Ducks" says Jim, "or horses. Either one would be nice." Brad is only too happy
to add that to his search:

Brad shows these remaining pictures to his client and identifies a few should
work. He adds Jim’s tag to them so that he can find them later:
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Great! Brad has found some animal pictures for Jim. Jim wants more though –
this time he wants airships. Brad looks to see what he has:

As the astute observer would expect, there is nothing there. However, Brad
knows he has pictures of airships, or something like them. Thinking that he
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may have simply tagged them as something else ("blimp" in this case) and uses
STUFFS’s fuzzy matching feature:

There they are! The process continue in this manner for a while until Jim is
satasfied.

7.2 clara : the great and powerful

Clara is powerful – at least in front of a computer. A sys-admin by day, Clara
spend much of her free time tinkering with her private computers or listening to
her extensive music collection. While perusing a forum, Clara stumbled across
STUFFS and, being a bit of a neo- and technophile, she immediately tried it out.
She was intrigued. Quickly seeing the value of STUFFS’ new tagging metaphor,
she imagined and implemented dozens of new uses for it.2

2 It should be noted that many of Clara’s, seemingly magical, uses of the STUFFS system rely
on an incredibly intricate file-system structure, and large number of complex tags. This level of
sophistication is likely not practical for the average user, but illustrates some fairly simple, yet
powerful capabilities of the system in the hands of an advanced user.
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The Tale of Clara

Clara is driving home from work and stops at a red light. Through an open
window, she hears a snippet of music – . . . My mind rides and slides as my circuits
are fried. . . – from the car parked in the lane to her right, before the driver spots
an opening in traffic and speeds away. Clara has heard this line of ska before
and recognizes its particularly ’90s sound, but she can’t seem to place it. The
remainder of the drive is uneventful, but that line sticks in her head until she
reaches her home computer, determined to place it. Clara is certain that she has
the full song somewhere, but, without knowing the title, artist, album etc., it
would be nearly impossible to find in a traditional, hierarchical, music library.
Fortunately, she has STUFFS. . .

Having, shortly after acquiring STUFFS, created a small program that STUFFS-
isizes her music collection by extracting meta-data from the files and matching
on-line meta-data and lyrics databases and generating corresponding tags, Clara
pulls up a terminal (her preferred file management instrument) and locates the
song:

> ls -p /Genre:Ska/Lyrics_Line:My_mind_rides_and_slide

s_as_my_circuits_are_fried/Year:199*/ | grep -v /

No_Doubt-Trapped_In_A_Box.ogg@98712@

No_Doubt-Trapped_In_A_Box (LIVE).flac@5420@

No_Doubt-Trapped_In_A_Box (VIDEO).ogg@312712@

Of course, No Doubt’s "Trapped in a Box"! It seams quite obvious to Clara now.
It is also quite obvious to her that she would like to hear the rest of the song, so
she decides to try it out on a new audio player, maybe XMMS2...3

3 Note the use of "–prefix=/InstalledBy:xmms2". This simple option makes package management
(and removal) simple by associating all installed files with a known tag. The end result is not
unlike GNU Stow, but without all the symlink mess. The addition of "/Requires:ALSA" tags or
similar to indicate dependencies could also be used to remove them in a similar operation or
prevent unintended dependency deletion. This is somewhat beyond the scope of this project, but
should be trivial to implement.
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> mkdir xmms2temp && cd xmms2temp

> git clone ’git://git.xmms2.org/xmms2/xmms2- devel.git’

> cd xmms2-devel

> ./waf configure -prefix=/InstalledBy:xmms2/

> ./waf build

> sudo ./waf install

> nyxmms2 add /ALLFILES/Box.ogg@98712@

> nyxmms2 play

After a few verses, Clara remembers how much she loves No Doubt, Ska, and
music from the 90s in general and adds all of it to the list...

> nyxmms2 add /Music/%Artist:NoDoubt%Genre : Ska%/∗
> nyxmms2 add /Music/Year:199*/*

After a while, Clara decides that, while XMMS2 works fine, she really prefers
mpd. So, she removes the newcomer in one of the most efficient ways possible,
and then goes about her evening as usual.

4

> sudo rm -r InstalledBy:xmms2/

4 Note the "-r" flag which is needed to recursively remove the tagged files as well as the tag itself.
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M E T H O D S & I M P L E M E N TAT I O N

Unlike many current attempts to fix the perceived issues with current file-systems,
STUFFS is composed of standard, readily available components held together by
a relatively small amount of glue code. While this somewhat limits the func-
tionality that can be implemented, it brings a slew of benefits. On one hand, it
allows for a shorter development cycle with lower implementation cost, while on
the other, it allows STUFFS to take advantage of a large body of work already
performed and adopt new features and functionality from its components with
minimal additional work.

8.1 programming language : python

STUFFS is primarily implemented in the Python programming language (version
3). This high-level, interpreted language allows for rapid prototyping with a short
development cycle and cross-platform implementation. Additionally, Python bind-
ings exist for a wide variety of external libraries, including all of the libraries used
in the STUFFS system, allowing for simple integration and clean code. While a
language such as C would be needed for integration with the mainline kernel and
optimal performance, Python is a viable option for the proof-of-concept stage.

8.2 storage backing : sqlite

At its most fundamental level, even with all of its changes in file-system metaphors,
STUFFS is a file-system. Therefore, the ability to actually store files is essential.
While STUFFS ultimately uses a database-backed solution, all three of the options

0 Source code for STUFFS may be found in Appendix A.1
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discussed in Chapter 1,raw device, database, and file-system backends, were ini-
tially considered before selecting an SQLite database as storage-backing.

8.2.1 Raw storage

In the lowest-level case, raw storage can be accessed directly, and, for obvious rea-
sons, direct access is the most common option for general file-systems. However,
as discussed in 1, this is highly cumbersome, and, since STUFFS was neither in-
tended to do anything particularly innovative with its disk-access and allocation
nor optimized for performance, there is nothing necessitating the level of control
achieved by raw access.

8.2.2 File-Systems

Using an existing file-system as back-end storage may at first seem counter-
intuitive, but a large number of semantic file-systems do just that (Sauermann
et al., 2006) (Faubel and Kuschel, 2008). This storage file-system is typically
mounted in such a way as to be hidden from the user, but available program-
matically. The semantic system can then present an interface which transparently
reads and writes files to the background file-system through standard application
level calls.

These sorts of systems, when implemented properly, can be reasonably fast,
and generally have fairly good space efficiency. Unfortunately, they also inherit
the fragility of the underlying file-system implementation making the file-system-
on-file-system method impractical for implementing a stable, ACID compliant
system1.

8.2.3 Databases

Using a database as storage for STUFFS presents an interesting third option.
As with file-system backing, databases avoid much of the minutiae required by
low-level raw storage manipulation. Unlike typical file-systems, however, a large

1 While one certainly can implement proper transactions and full ACID compliance on top of a
file-system (most databases either by default, or optionally, do exactly that), it is a non-trivial
process. In doing so, one would essentially construct a database, which seems excessive given
their general size and complexity, and the fact that a wide variety already exist.
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number of databases provide fully ACID-compliant transactions. This provides
a known stable base, allowing for easier ACID implementation within the over-
lying file-system.

Databases are also well suited to file-systems lacking inherent organization
(such as tagging systems). Their efficient, indexed, look-ups are nearly essential
for quickly accessing arbitrary items.

8.2.3.1 Key/Value-Stores

The most conceptually simple breed of database, the key/value-store effectively
manifests as an on-disk associative array. A set of unique keys, whose format is
either arbitrary or implementation specific, map one-to-one to arbitrary chunks
of data. Many of these systems, including the original UNIX dbm (DataBase Man-
ager) and many of it clones, are very simple, and lack features such as concurrent
access and ACID compliant transactions. The former places a significant restric-
tion on overlying file-systems, which are often accessed by multiple programs or
multiple threads within a single program at a time. The later removes one of the
major advantages of using a database over a file-system.

Berkeley DB
Berkeley DB, a notable exception to this trend of simplicity, pairs a basic Key/-
Value system with a plethora of advanced features (fine-grained locking, ACID
compliant transactions, etc.). By avoiding complex structure, Berekley DB trades
functionality for speed making it a particularly viable option for file-system stor-
age as evidenced by the Amino file-system (Wright et al., 2007). This Berkeley
DB-backed system achieves performance, both in terms of CPU utilization and
throughput, comparable to traditional file-systems while implementing ACID
compliant transactions (Olson, Bostic, and Seltzer, 1999).

8.2.3.2 Relational Databases – SQL

While the Amino system certainly shows that a simple key/value-store is suf-
ficient to implement a hierarchical file-system, complete with ACID compliant
transactions, its implementation is largely dependent on the traditional path con-
cept – each unique path maps to its corresponding file. Under STUFFS’ new
tagging scheme, uniqueness is reserved only for IDs, and most of the the brows-
ing and file location is done via potentially non-unique, volatile properties (tags).
Without a unique key, this common use then devolves into a linear-search.
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Relational databases, such as the various SQL implementations, present data
in a tabular fashion. Each entry in the database corresponds to a row in the
table with an arbitrary number of designated values as columns. In general, any
of these columns can be indexed and searched efficiently without necessarily
being constrained by uniqueness. The addition of features such as foreign-keys
makes implementing many-to-many tagging systems fairly straight-forward (see
Section 8.2.4).

SQL Servers: PostgreSQL, MySQL, etc.
A number of the most popular SQL database engines – PostgreSQL, MySQL,
Oracle, etc. – implement a client-server model in which a single server process
manages the actual storage and data-structures while providing an interface for
IPC calls. Any number of client programs can then communicate with the server
to access the databases.

These systems are very powerful, generally providing the most features and
highest performance of any option. Abstracting away the actual data-structure
also keeps the interface simple and provides some ability to choose an appropri-
ate storage format, or alter the implementation as needs change without chang-
ing the client programs. However, this power is not without its price. These sys-
tems generally require significant computational load and significant setup and
maintenance investments. The existence of a server process also complicates the
use of such systems on the kernel level – generally the level at which file-systems
are implemented.

SQLite
SQLite is, as the name implies, a lighter approach to SQL systems. It eschews
heavyweight client-server architecture in favor of allowing clients to interact with
the data directly. A single, relatively small C library (wrappers exist for many
other languages, including a stable and feature complete module for Python 3)
implements a full SQL implementation complete with ACID compliant transac-
tions and concurrency support.

This self-contained approach allows a relational database to be constructed, ad-
ministered and manipulated entirely within the client, with negligible setup and
configuration. Since it has minimal external dependencies (SQLite can be config-
ured to use built-in memory allocation and avoid almost all external functions,
other than those needed to access hardware), it can be implemented on nearly
any architecture even at the kernel level if needed.
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While this lighter SQL generally displays somewhat less performance (slower
searches, more significant slowdown durring concurrent operations, etc.) than its
heavier cousins, it was selected for use in STUFFS due to its dramatically easier
setup and administration coupled with lower resource utilization.

8.2.4 Table Schema

STUFFS’s SQLite database uses four tables interconnected by a system of foreign
keys. The first three, Files, Uses, and Tags (figs. 8.1 to 8.3), implement fairly stan-
dard many-to-many relationships. Entries in the Files and Tags tables correspond
to file and tag objects respectively. Each one stores some basic descriptors (an
identification number and a name in the case of files, and simply the text of
the tag in their case). They also store some basic attributes (generally the same
information that would be contained in a traditional inode)– timestamps, size,
owner, group, etc. – while these could be implemented as normal tags, they are
accessed very frequently and lower latency greatly improves the overall perfor-
mance. The Uses table consists entirely of pairs of foreign keys into the Files and
Tags tables, each of which represents an application of a tag to the corresponding
file. Indexing both columns allows for rapid searches of files by tags and vice
versa.

A fourth table, Data (fig. 8.4), stores the actual file data in 4 Kilobyte blocks
coupled with foreign keys to the corresponding file and a unique ID. Splitting
the files into multiple blocks dramatically improves database performance on
large files and random read/write operations. Additionally, keeping rows to a
manageable size allows arbitrarily large (but smaller than the storage device ca-
pacity) files to be expressed without overflowing main memory.

8.3 syscall interface : fuse

Of course, storage management is largely useless without a means of accessing it,
and, in the case of a file-system, presenting some interface to client applications.
Fortunately, file-systems already have a standardized2 interface at the kernel
and system-library level. Therefore, providing a file-system access method which
works seamlessly on all standards compliant applications without modification
reduces to simply providing the expected results to the already existing system
calls when directed at a STUFFS system.
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Files
id

(Integer)
Primary Key,
Unique,
Indexed

name

(Text)
Indexed

attrs

(Text)

· · ·
18 “some_file.txt” encoded meta-data

19 “some_other_file.pdf” encoded meta-data

· · ·
Figure 8.1: The Files table stores entries for each file object along with some meta-data.

Uses
file_id

(Integer)
Indexed

tag_name

(Text)
Indexed

· · ·
18 “some_tag”

357 “some_other_tag”

· · ·
Figure 8.2: The Uses table serves as a helper table for mapping files to and from tags.
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Tags

name

(Text)
Primary Key,
Indexed,
Unique

attrs

(Text)

· · ·
“some_tag” encoded meta-data

“some_other_tag” encoded meta-data
· · ·

Figure 8.3: The Tags table stores entries for each tag object along with some metadata.

Data
id

(Integer)
Primary Key,
Unique,
Indexed

parent_id

(Integer)
Foreign Key→Files.id,
Unique,
Indexed

datum

(4KB BLOB)

· · ·

256 37

011000100110110
001101111011000
110110101100100
00000110001. . .

257 18

001100100110111
001100100001000
000110001001101
00101110100. . .

· · ·
Figure 8.4: The Data table stores the actual file data in 4 Kilobyte blocks.
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For STUFFS development, Filesystem in Userspace (FUSE, http://fuse.source
forge.net/) was selected thanks to its simple, straightforward integration with
other components and its extensive functionality without requiring modifications
of client software. Unlike some of the other methods considered, FUSE was de-
signed specifically for implementing user-space file-systems, and it does an ac-
ceptable job.

8.4 direct kernel integration

Perhaps the most obvious solution is simply to build STUFFS directly into the
kernel beside more traditional file-systems. While this method is certainly pos-
sible, it requires modifying the kernel, a non-trivial undertaking, which greatly
complicates deployment (any systems using STUFFS must also use a custom,
patched kernel which must be installed and maintained). This method is also in-
compatible with other design decisions (Python does not run in kernel-space, and
pulling SQLite and other needed libraries into the kernel raises security, stability,
and performance concerns).

8.4.1 Library Modifcations & LD_PRELOAD

Putting the file-system into user-space can alleviate many of the concerns with
in-kernel implementations. Doing so then requires gaining control of file-system
related syscalls before it hits the kernel. One method for doing this is to simply
replace the necessary library functions with custom versions which act differently
for STUFFS targets, either by using LD_PRELOAD to dynamically load in custom
versions, or by replacing standard libraries entirely with patched versions.

Unfortunately, this method has two large issues: statically linked programs
and cyclic calls. The former would need to be recompiled in order to use the
new libraries, which may or may not be possible and goes against the drop-in
backwards compatibility goal of STUFFS. Cyclic calls appear since functions such
as fread and fwrite (standard C functions for file input and output) would need

2 More accurately, one might say there exist a number of competing standards. However, under
a given operating system, there is generally a single most commonly used and encouraged one.
STUFFS has been developed for Linux and, as such, it is the Linux kernel APIs and Glibc stan-
dard C library which are being considered. This distinction is, however, largely irrelevant to this
discussion.
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to be replaced, but these functions, in turn, are used by the SQLite library in
STUFFS, creating an infinite loop.

8.4.2 ptrace

The process tracing facility ptrace provides another above-the-kernel option used
in the Amino system and others. This system call allows a single “monitor” pro-
cess to observe and control another. In this case, a single monitor process can
be used to intercept system calls before they reach the kernel and filter out file-
system access calls to be handled by the STUFFS system.

Unfortunately, a number of programs, such as OpenSSH, forbid being run un-
der a ptrace which would prevent them for interacting with the file-system. The
ptrace method also potentially incurs a significant performance penalty since ev-
ery syscall would incur a context-switch to the monitor before continuing as usual
in most cases.

8.4.3 FUSE

Filesystem in Userspace (FUSE) takes a very different approach. Instead of at-
tempting to capture syscalls before they reach the kernel, FUSE provides a load-
able kernel module which interfaces with the Virtual File-System (VFS). Before
reaching the VFS layer, the syscall proceeds as it would for a typical file-system,
but the FUSE module takes control at the level of a file-system protocol (much
like Sun Microsystems’ NFS). At this point, the call is redirected to the user-space
fuse library and the specific program responsible for the data being accessed. This
process is diagrammed in fig. 8.5.

FUSE takes advantage of the best of both worlds. On one hand, because they
enter the call-chain at the kernel-level, FUSE-based file-systems are entirely in-
distinguishable from their native siblings by any user application and most of
the kernel without any modifications. On the other, the file-system itself exists
in user-space, allowing the use of the vast wealth of use-space libraries, such as
SQLite, and programming languages and interpreters, including Python.
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System Library Kernel-spaceApplication

Application

libc

VFS

File-system

FUSE Library

FUSE Module

Figure 8.5: A simplified flow diagram of basic access to a FUSE file-system.

8.5 fuzzy matching : wordnet and nltk

STUFFS’s semantic "Fuzzy Matching" of tags uses the WordNet library via the ex-
cellent Natural Language Toolkit (NLTK) available as a Python module. WordNet
provides a massive lexical database of the English Language complete with word
relations (conjugations, antonyms, synonyms, etc.). STUFFS’s rudimentary proof-
of-concept implementation uses a radically simplified, incomplete, and some-
what inaccurate method of defining similar terms as any direct synonyms and
first order hyponyms, which are directly exposed by the WordNet system. In the
future, a more advanced similarity metric would likely provide superior results,
but this approach seemed reasonable for a proof of concept.
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T H E E N D - G A M E

In which the protagonist finally faces its Nemesis, armed only with
the lessons learned on it’s journey. . .
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R E S U LT S

As stated, STUFFS is primarily a research system designed to establish a proof-of-
concept system for a number of advanced file-system features. On those grounds,
it appears to be a success. In its current state, STUFFS includes working imple-
mentations of all of its claimed features (see Chapter 5), including:

• Backwards compatibility

• Tagging

• Paths as Queries

• Semantic Resolution

• Unique Global File Identification

• ACID Transactions

Even while adding these features, STUFFS has remained fairly usable, largely
thanks to its backwards-compatibility, and implements a fully functional file-
system. Of course, comparing it with other file-systems in the most common
way, performance benchmarks, paints a somewhat different picture. This is not
particularly surprising or bothersome, but warrants noting.

9.1 usability

As shown in Chapter 7, STUFFS is usable and beneficial under a variety of us-
ages. Unfortunately, its relatively poor performance (as shown in Section 9.2) and
lack of support will likely prevent widespread use. Additionally, while the file-
system itself requires no configuration and an automated package build script
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exists for at least one operating system (Archlinux), installing STUFFS and its de-
pendencies on a number of mainstream operating systems, including Windows,
Mac OSX, and a number of linux distributions can be difficult.

9.2 benchmarks

The benchmarks presented in figs. 9.1 and 9.2 paint an interesting picture of
STUFFS performance. These benchmarks were generated using the IOzone bench-
marking tool (www.iozone.org) on a consumer grade laptop circa 2011 (Pen-
tium B940 CPU, 5400RPM magnetic hard disk, 8GB DDR3 ram). Throughout the
benchmarks, STUFFS is shown versus an on-disk BTRFS (btrfs.wiki.kernel.
org) file-system. BTRFS is a modern, hierarchical file-system with performance
on-par with other modern file-systems. The "BTRFS" and "STUFFS" plots indicate
performance based on completion time reported by the respective file-system.
The "-SYNC" variants include the time taken for the data to be synchronized
to disk. For each variant, maximum and minimum performance ("-MAX" and
"-MIN") across record lengths of {2n|n ∈ {6.. log2(datasize)}.

Writing and rewriting under STUFFS exhibits remarkable consistency. Since
STUFFS’s ACID transactions require that data be committed to disk before a
write can claim completion, the addition of explicit disk syncs is understandably
negligible. More intriguingly, the STUFFS timings show minimal variation across
record lengths, implying that there is little performance difference between a
large number of small writes and a few larger ones – something not seen in
traditional file-systems.

While a consistent write speed is desirable, STUFFS appears to have a consis-
tently slow write speed, at least when compared to the speeds reported by BTRFS.
This is, however, an unfair comparison. As mentioned, STUFFS is inherently syn-
chronous, while BTRFS makes use of buffers, etc. to claim completion before
the data actually reaches the disk. When looking purely at the synchronous tim-
ings, STUFFS and BTRFS appear to have much more similar performances, with
STUFFS even pulling ahead for some record lengths.

Reading and rereading performance shows much more variance than writing
and rewriting. Unlike writing, STUFFS does not inherently perform this opera-
tion synchronously and exhibits a noticeable speedup when not doing so. Fur-
thermore, and again unlike the writing case, STUFFS (re)reading speed varies
wildly across record length. For lengths near the total data size, non-synchronous
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Figure 9.1: STUFFS write and rewrite performance benchmarks. Note, the write and
rewrite speeds for "STUFFS" and "STUFFS-SYNC" (minimum and maximum)
differ by, at most, tens of KB/sec. and, as such, their plots are largely overlap-
ping.
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Figure 9.2: STUFFS read and reread performance benchmarks. Generation and analysis
are largely identical to fig. 9.1
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STUFFS performs even with or slightly better than BTRFS. On the other hand, for
short record lengths, STUFFS slows by several orders of magnitude.

While these benchmarks are, of course, not entirely representative of perfor-
mance, especially in real-world scenarios, they provide some amount of quan-
tization. Real-world anecdotal evidence suggests that write speeds are in fact,
very slow when one is accustomed to a modern traditional system. Read speeds,
and intra-system moves (tagging and renaming) are not noticeably slower under
normal use.

9.3 outstanding issues

As with any sizable piece of software, STUFFS is not without bugs. While none of
them are particularly show-stopping, they can be troublesome under particular
circumstances which may appear during normal usage.

The most notable outstanding issue is less a bug, and more an unexpected, and
undesired design decision. STUFFS development largely targeted command-line
usage and considered GUI usage as secondary, largely based on the usage pat-
terns of the author. Unfortunately this has left the GUI interface somewhat less
polished. For example, while the syntax for union, negation, and fuzzy queries
("%tag%tag%", "!tag", and "?tag?") is accessible within a GUI file manger by ex-
plicitly entering them in a location bar or similar interface, there is no point-and-
click method. Additionally, paths such as "/" with a large number of intersecting
tags can be difficult to navigate due to the large number of displayed folders.
These issues not exclusive to GUI file managers, of course, and largely hold for
graphical FTP access and other point-and-click navigation schemes.

STUFFS also has compatibility issues with software which uses file extensions
to infer file-type. Attempting to use such software with files specified using their
id (i.e. "somefile.txt@1234@" rather than "somefile.txt"), as is the default for GUI
file-choosers and auto-completion systems, will obviously cause problems since
it clobbers the extension. This can be worked around by manually specifying the
file without the id, but this removes the benefits of global file location and is less
than ideal.

As a final outstanding bug, STUFFS lacks robust support for extended at-
tributes. In the future, it would be desirable to implement a system which au-
tomatically maps these attributes to tags and their manipulation to tag manipu-
lation.
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9.4 future work

Apart from resolving the above issues and improving overall performance, STUFFS
could benefit greatly from some extension and refinement of its existing imple-
mentation. As mentioned in Section 8.5, STUFFS’s fuzzy matching algorithm is
rudimentary at best and should be replaced by a proper semantic similarity sys-
tem. Additionally, while STUFFS does implement transactions on a per-syscall
basis automatically, implementing an interface to allow programs to manually
create and commit transactions across system calls, as is done in the Amino sys-
tem (Wright et al., 2007), would allow even more flexibility in application design.



10
C O N C L U S I O N

STUFFS represents a natural exploration of alternative file-system design. While
it cannot claim to be universally superior to current technology, it shows distinct
advantages in a wide variety of applications, and serves as a proof that the old
fragile hierarchies are not the only option. Hopefully, STUFFS and other such
innovative redesigns will encourage continued work and bring new ideas to an
otherwise slow-moving field.
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A P P E N D I X





A
S O U R C E C O D E

a.1 stuffs .py

Most recent code may be found at http://www.github.com/aaronlaursen/STUFFS.
Here follows the current code at the time of writing.

#!/usr/bin/python3 -OO

#License, reuse, etc.

#--------------------

#

#This software was originally written by Aaron Laursen <aaronlaursen@gmail.com>.

#

#This software is licensed under the ISC (Internet Systems Consortium)

#license. The specific terms below for allow pretty much any reasonable use.

#If you, for some reason, need it in a different licence, send me an email,

#and we’ll see what I can do.

#

#However, the author would appreciate but does not require (except as

#permitted by the ISC license):

#

#- Notification (by email preferably <aaronlaursen@gmail.com>) of use in

#products, whether open-source or commercial.

#

#- Contribution of patches or pull requests in the case of

# improvements/modifications

#

#- Credit in documentation, source, etc. especially in the case of
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# large-scale projects making heavy use of this software.

#

#### ISC license

#

#Copyright (c) 2013, Aaron Laursen <aaronlaursen@gmail.com>

#

#Permission to use, copy, modify, and/or distribute this software for any

#purpose with or without fee is hereby granted, provided that the above

#copyright notice and this permission notice appear in all copies.

#

#THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

#WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

#MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

#ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

#WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

#ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

#OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

from sqlalchemy import Table, Column, Integer, ForeignKey, BLOB, \

Boolean, String, create_engine, MetaData

from sqlalchemy.orm import relationship, backref, sessionmaker, scoped_session

from sqlalchemy.ext.declarative import declarative_base

from time import time

#from sqlalchemy.dialects.mysql import VARCHAR, TEXT

from stat import S_IFDIR, S_IFLNK, S_IFREG

#from hashlib import md5

from fuse import Operations, LoggingMixIn, FUSE, FuseOSError

from sys import argv

from errno import ENOENT

from nltk.corpus import wordnet

#database stuff

from sqlalchemy.engine import Engine
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from sqlalchemy import event

#’’’

@event.listens_for(Engine, "connect")

def set_sqlite_pragma(dbapi_connection, connection_record):

cursor = dbapi_connection.cursor()

cursor.execute("PRAGMA foreign_keys=ON")

cursor.execute(’PRAGMA synchronous=OFF’)

cursor.execute(’PRAGMA count_changes=OFF;’)

#cursor.execute(’PRAGMA mmap_size=268435456;’)

cursor.close()

#’’’

DBPATH="fs.db" if len(argv) <=2 else argv[2]

db = create_engine(’sqlite:///’+DBPATH,connect_args={’check_same_thread’:False})

#db = create_engine(’sqlite:////tmp/stuffs.db’)

#db = create_engine(’mysql+oursql://stuffs:stuffs@localhost/stuffs_db’)

db.echo = False

Base = declarative_base(metadata=MetaData(db))

Session = scoped_session(sessionmaker(bind=db))

#session=Session()

Table(’use’

, Base.metadata

, Column(’file_id’, Integer, ForeignKey(’files.id’), index=True)

#, Column(’tag_id’, Integer, ForeignKey(’tags.id’), index=True)

, Column(’tag_name’, String, ForeignKey(’tags.name’), index=True)

#, mysql_engine = "InnoDB"

#, mysql_charset= "utf8"

)

class Datum(Base):
__tablename__=’data’

#__table_args__={

# ’mysql_engine’:’InnoDB’

# ,’mysql_charset’:’utf8’
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# }

def __init__(self):

self.datum=bytes()

id = Column(Integer, primary_key=True)

parent_id = Column(Integer, ForeignKey(’files.id’), index=True)

datum = Column(BLOB(length=4*1024))

class File(Base):
__tablename__ = ’files’

#__table_args__={

# ’mysql_engine’:’InnoDB’

# ,’mysql_charset’:’utf8’

# }

def __init__(self):

pass

id = Column(Integer, primary_key=True)

#attrs = Column(String)

attrs = Column(String(length=512))

name = Column(String(length=256), index=True)

data = relationship("Datum"

, collection_class=list

)

tags = relationship("Tag"

, secondary="use"

, backref=backref("files", collection_class=set)

, collection_class=set

)

class Tag(Base):
__tablename__ = ’tags’

def __init__(self, txt):

self.name=txt

#id = Column(Integer, primary_key=True)

name = Column(String(length=256), primary_key=True)

attrs = Column(String(length=512))
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Base.metadata.create_all()

def mkfile(name, session, mode=0o770, tags=None):

f = File()

session.add(f)

if tags !=None:

f.tags |= set(tags)

now=time()

a = {’st_mode’:(S_IFREG | mode)

, ’st_nlink’:1

, ’st_size’:0

, ’st_ctime’:now

, ’st_mtime’:now

, ’st_atime’:now

, ’uid’:0

, ’gid’:0

}

f.attrs = convertAttr(a)

f.name=name

addBlock(f,session)

#f.data=bytes()

#print("****new file tags:", tags)

return f

def mktag(txt, session, mode=0o777):

t=Tag(txt)

session.add(t)

now=time()

a = {’st_mode’:(S_IFDIR | mode)

, ’st_nlink’:1

, ’st_size’:0

, ’st_ctime’:now

, ’st_mtime’:now

, ’st_atime’:now

, ’uid’:0

, ’gid’:0
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}

t.attrs = convertAttr(a)

return t

’’’

def getAttrTag(obj, attr, session):

q=session.query(Tag).filter(Tag.in_(obj.tags), Tag.name.like("attr::"+attr+"::%

return q.first()

def setAttrTag(obj, attr, value, session):

obj.tags.discard(getAttrTag(obj,attr,session))

t=getTagsByTxts("attr::"+attr+"::"+value)

#’’’

def getSimTerms(term):

t = wordnet.synsets(term)

terms=set()

for syn in t:

print("???:",syn.lemma_names())

for name in syn.lemma_names():

terms.add(name)

for hypo in syn.hyponyms():

for name in hypo.lemma_names():

terms.add(name)

for hyper in syn.hypernyms():

for name in hyper.lemma_names():

terms.add(name)

return terms

def getSimTagsFromTerm(term,session):

terms=getSimTerms(term)

tags=getTagsByTxts(set(terms),session)

return tags

def getSimTags(tag,session):

terms = getSimTerms(tag.name)
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tags=getTagsByTxts(terms,session)

return tags

def convertAttr(attrs):

attrdata=( (’st_mode’,int)

, (’st_nlink’,int)

, (’st_size’,int)

, (’st_ctime’,float)

, (’st_mtime’,float)

, (’st_atime’,float)

, (’uid’, int)

, (’gid’, int)

)

if type(attrs) == type(dict()):

s=’’

for i in range(len(attrdata)):

s+=str(attrs[attrdata[i][0]])

s+=’,’

return s[:-1]

if type(attrs) == type(’’):

attrs=attrs.split(’,’)

d={attrdata[i][0]:attrdata[i][1](attrs[i]) for i in range(len(attrdata))}

return d

return None

def getIdFromString(s):

t={’%’:Tag,’@’:File}

if len(s) <3: return 0, File

if s[-1] not in (’%’,’@’):

return 0, File

if len(s.split(s[-1]))<3:

return 0, File

i=s.split(s[-1])[-2]

if not i.isdigit():

return 0, File

return int(i), t[s[-1]]
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def genDisplayName(obj):

if obj.__tablename__==’files’:

name=obj.name

s=’@’

name += s + str(obj.id) +s

elif obj.__tablename__==’tags’:

name=obj.name

s=’%’

return name

def getByID(id_, session, typ=File):

return session.query(typ).get(int(id_))

def getFilesByTags(tags,session):

q=session.query(File)

for t in tags:

q=q.filter(File.tags.contains(t))

return q.all()

def getFilesByLogicalTags(tags,session):

if len(tags[0])+len(tags[1])+len(tags[2]) ==0: return None

q=session.query(File)

for t in tags[0]:

q=q.filter(File.tags.contains(t))

for t in tags[1]:

q=q.filter(~File.tags.contains(t))

#for op in tags[2]:

# q=q.filter(File.tags.isdisjoint(op[0]))

# q=q.filter(~File.tags.isdisjoint(op[1]))

if len(tags[2])==0: return q.all()

#t=set(q.all())

t=set()

for op in tags[2]:

for i in op[0]:

s=set(q.filter(File.tags.contains(i)).all())
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t|=s

for i in op[1]:

s=set(q.filter(~File.tags.contains(i)).all())

t|=s

return t

def getTagsByTxts(txts,session):

q=session.query(Tag).filter(Tag.name.in_(txts))

return q.all()

def getFilesByTagTxts(txts,session):

tags=getTagsByTxts(txts,session)

return getFilesByTags(tags,session)

def getTagsByFiles(files):

tags=set()

for f in files:

tags |= f.tags

return tags

def getTagsFromPath_logical(path,session):

elems=set(path.split(’/’))

elems.discard(’’)

parts=[set(),set(),[]] #[need,not,opt]

if len(elems)==0: return parts

for elem in elems:

#or case

if elem[0]=="%" and elem[-1]=="%":

opts = elem[1:-1].split("%")

p=set()

n=set()

for opt in opts:

if opt[0]=="!" and len(opt)>1: n.add(opt[1:])

else: p.add(opt)

p=getTagsByTxts(p,session)

n=getTagsByTxts(n,session)
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parts[2].append([p,n])

elif elem[0]==elem[-1]=="?":

print("asdf")

e=elem[1:-1]

neg=False

if e[0]=="!":

e=e[1:]

neg=True

#t=getTagsByTxts(set([elem[1:-1]]),session)

#if len(t)==0: continue

#simt=getSimTags(t[0],session)

if len(e)<1: continue

simt=getSimTagsFromTerm(e,session)

if not neg: parts[2].append([simt,set()])

else: parts[2].append([set(),simt])

print(simt)

elif elem[0]=="!" and len(elem)>1: parts[1].add(elem[1:])

else: parts[0].add(elem)

parts[0]=set(getTagsByTxts(parts[0],session))

parts[1]=set(getTagsByTxts(parts[1],session))

return parts

def getTagsFromPath(path,session):

#print("----------------------")

#print("%"+path+"%")

tagnames=set(path.split(’/’))

tagnames.discard(’’)

#print(tagnames)

#print("----------------------")

if type(tagnames)==type(None): return set()

if len(tagnames)==0: return set()

idtags=set()

for t in tagnames:

id_,typ = getIdFromString(t)

tag=getByID(id_, session, Tag)

if tag: idtags.add(tag)
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nametags=set(getTagsByTxts(tagnames,session))

return idtags | nametags

def getEndTagFromPath(path,session):

#if path==’/’: return None

path=path.strip(’/’)

path=path.split("/")

tagname=path[-1]

if tagname==’’: return None

id_, typ = getIdFromString(tagname)

tag=getByID(id_, session, Tag)

if tag: return tag

return getTagsByTxts(tagname,session)[0]

def getFileByNameAndTags(name,tags,session):

#print(tags)

if len(tags)==0:return None

q=session.query(File).filter(File.name==name)

for t in tags:

q=q.filter(File.tags.contains(t))

return q.first()

def getFileByNameAndLogicalTags(name,tags,session):

if len(tags[0])+len(tags[1])+len(tags[2]) ==0: return None

q=session.query(File).filter(File.name==name)

for t in tags[0]:

q=q.filter(File.tags.contains(t))

for t in tags[1]:

q=q.filter(~File.tags.contains(t))

#for op in tags[2]:

# q=q.filter(File.tags.isdisjoint(op[0]))

# q=q.filter(~File.tags.isdisjoint(op[1]))

#return q.first()

if len(tags[2])==0: return q.first()

for op in tags[2]:

for i in op[0]:
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s=q.filter(File.tags.contains(i)).first()

if s: return s

for i in op[1]:

s=q.filter(~File.tags.contains(i)).first()

if s: return s

return None

def getFileFromPath(path,session):

path=path.strip(’/’)

pieces=path.split(’/’)

fstring=pieces[-1]

fid,typ=getIdFromString(fstring)

f=getByID(fid, session, File)

if f: return f

if len(pieces) < 2: return None

path = ""

for p in pieces[:-1]: path +=p+"/"

return getFileByNameAndLogicalTags(fstring,

getTagsFromPath_logical(path,session),session)

def getSubByTags(tags,session):

if len(tags)==0:return genAllTags(session)

subfiles=set(getFilesByTags(tags,session))

subtags=getTagsByFiles(subfiles)

subtags=subtags-tags

#print("{}{}{}{}{}{}{}")

#print(subfiles,subtags)

#print("{}{}{}{}{}{}{}")

return subfiles | subtags

def getSubByTags_logical(tags,session):

if len(tags[0])+len(tags[1])+len(tags[2])==0:return genAllTags(session)

subfiles=set(getFilesByLogicalTags(tags,session))

subtags=getTagsByFiles(subfiles)

subtags=subtags-tags[0]-tags[1]

return subfiles | subtags



A.1 stuffs .py 93

def genSub(path,session):

tags=getTagsFromPath(path,session)

#print("\n tags from subpath", path,tags,"\n")

sub=getSubByTags(tags,session)

#print("############")

#print(sub)

#print("############")

return sub

def genSubLogical(path,session):

tags=getTagsFromPath_logical(path,session)

sub=getSubByTags_logical(tags,session)

return sub

def genSubDisplay(path,session):

sub=genSub(path,session)

return [genDisplayName(x) for x in sub]

def genSubDisplayLogical(path,session):

sub=genSubLogical(path,session)

return [genDisplayName(x) for x in sub]

def getAttrByObj(obj):

return convertAttr(obj.attrs)

def getObjByPath(path,session):

if path[-1]==’/’:

return getEndTagFromPath(path,session)

objname=path.split(’/’)[-1]

#print("============")

#print(objname)

#print(getIdFromString(objname))

#print("============")

obj=None

id_, typ = getIdFromString(objname)
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obj = getByID(id_, session,typ)

if obj: return obj

pathpieces=path.rsplit(’/’,1)

opts=genSubLogical(pathpieces[0]+’/’,session)

if pathpieces[1][0]==pathpieces[1][-1]=="%":

ors=set(pathpieces[1].split("%"))

ors.discard(’’)

ors=set(getTagsByTxts(ors, session))

if len(ors)>=1 and not ors.isdisjoint(opts):

return list(ors.intersection(opts))[0]

for o in opts:

if o.name==pathpieces[1]: return o

if "!"==pathpieces[1][0] and o.name==pathpieces[1][1:]: return o

if typ == File and len(path.split(’/’))>2 and \

’ALLFILES’ not in path.split(’/’):

obj = getFileByNameAndLogicalTags(objname.rsplit(’@’,2)[0],

getTagsFromPath_logical(path,session),session)

return obj

return getFileFromPath(path,session)

def genEverything(session):

stuff=set()

q=session.query(File)

stuff |= set(q.all())

q=session.query(Tag)

stuff |= set(q.all())

#print("------stuff:",stuff)

return stuff

def genAllTags(session):

stuff=set(session.query(Tag).all())

return stuff

def genAllFiles(session):

stuff=set(session.query(File).all())

return stuff
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def genDisplayEverything(session):

stuff=genEverything(session)

return [genDisplayName(obj) for obj in stuff]

def genDisplayAllTags(session):

stuff=genAllTags(session)

return [genDisplayName(obj) for obj in stuff]

def genDisplayAllFiles(session):

stuff=genAllFiles(session)

return [genDisplayName(obj) for obj in stuff]

def getAttrByPath(path,session):

obj=getObjByPath(path,session)

if not obj: return None

return getAttrByObj(obj)

def rmObj(obj,session):

session.delete(obj)

def rmByPath(path,session):

obj=getObjByPath(path,session)

if not obj: return None

rmObj(obj,session)

def addBlock(f,session):

block=Datum()

session.add(block)

f.data.append(block)

#block.parent_id=f.id

#session.flush()

return f

def delBlock(f,session):

session.delete(f.data.pop())
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#session.flush()

return f

#fuse stuff

class STUFFS(LoggingMixIn, Operations):

def __init__(self):

self.fd=0

#self.session=Session()

self.blocksize=4*1024

def getattr(self, path, fh=None):

#print("getattr:", path, fh)

session=Session()

attr=None

if path.strip()==’/’ or path.split(’/’)[-1]==’ALLFILES’ \

or (path.split(’/’)[-2]==’ALLFILES’ and path.split(’/’)[-1]==’’) \

or (path.split("/")[-1][0]==path.split("/")[-1][-1]=="?"):

attr= {’st_mode’:(S_IFDIR | 0o777)

, ’st_nlink’:2

, ’st_size’:0

, ’st_ctime’:time()

, ’st_mtime’:time()

, ’st_atime’:time()

, ’uid’:0

, ’gid’:0

}

pieces=path.rsplit("/",1)

if len(pieces)>0 and len(pieces[-1])>0 and pieces[-1][0]==’!’:

pieces[-1]=pieces[-1][1:]

path=’/’.join(pieces)

if not attr:

attr=getAttrByPath(path,session)

#print("+++++++++")

#print(attr)

#print("+++++++++")

if not attr:
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raise FuseOSError(ENOENT)

return attr

def mkdir(self,path,mode):

session=Session()

path=path.strip(’/’)

path=path.split(’/’)

txt=path[-1]

mktag(txt, session, mode)

session.commit()

Session.remove()

def readdir(self,path,fh=None):

#print("readdir")

session=Session()

#if path==’/’: return [’.’,’..’]+genDisplayEverything(session)

if path==’/’: return [’.’,’..’]+genDisplayAllTags(session)+[’ALLFILES’]

if ’ALLFILES’ == path.split(’/’)[-1] or \

(’ALLFILES’==path.split(’/’)[-2] and ’’==path.split(’/’)[-1]):

return [’.’,’..’]+genDisplayAllFiles(session)

return [’.’,’..’]+genSubDisplayLogical(path,session)

def chmod(self, path, mode):

session=Session()

obj=getObjByPath(path,session)

if not obj: return

attrs=convertAttr(obj.attrs)

attrs[’st_mode’] |=mode

obj.attrs=convertAttr(attrs)

session.commit()

Session.remove()

return 0

def chown(self, path,uid,gid):

session=Session()

obj=getObjByPath(path,session)
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if not obj: return

attrs=convertAttr(obj.attrs)

attrs[’uid’]=uid

attrs[’gid’]=gid

obj.attrs=convertAttr(attrs)

session.add(obj)

session.commit()

Session.remove()

def create(self,path,mode):

#print("creat reached:",path,mode)

session=Session()

tpath, name = path.rsplit("/",1)

tags=getTagsFromPath_logical(path,session)[0]

mkfile(name,session,tags=tags)

session.commit()

Session.remove()

self.fd +=1

return self.fd

def open(self,path,flags):

#print("open reached:",path,flags)

self.fd+=1

return self.fd

def read(self,path,size,offset,fh):

#print("read")

session=Session()

f=getFileFromPath(path,session)

if not f: return ""

#print(":-:-:",f.data[offset:offset+size])

#return f.data[offset:offset+size]

data=bytes()

blockoffs=offset//self.blocksize

offset=offset%self.blocksize

while size >0:
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#print(data)

if blockoffs>=len(f.data): break

data+=f.data[blockoffs].datum[offset:min(self.blocksize,

size+offset)]

size-=(self.blocksize-offset)

blockoffs+=1

offset=0

#print("Loop!")

#print(len(data))

#print(data)

#print(data.decode())

return data

def write(self,path,data,offset,fh):

#print("write")

#print(data)

#print(type(data))

session=Session()

f=getFileFromPath(path,session)

if not f: return

#f.data=f.data[:offset]+data

size=len(data)

attrs=convertAttr(f.attrs)

attrs[’st_size’]=offset+size

f.attrs=convertAttr(attrs)

blockoffs=offset//self.blocksize

offset=offset%self.blocksize

#print("offset:",offset)

start=0

while start<size:

while blockoffs>=len(f.data):

f=addBlock(f,session)

f.data[blockoffs].datum=f.data[blockoffs].datum[:offset]+ \

data[start:start+min(size-start,self.blocksize-offset)]

start+=min(size-start,self.blocksize-offset)

offset=0
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blockoffs+=1

#print("loop!")

session.commit()

Session.remove()

#print(size)

return size

def truncate(self, path, length, fh=None):

#print("truncate")

session=Session()

f=getFileFromPath(path,session)

if not f: return

#f.data=f.data[:length]

numblocks=(length+self.blocksize-1)//self.blocksize

while numblocks>len(f.data):

f=addBlock(f,session)

while numblocks>len(f.data):

f=delBlock(f,session)

if numblocks>0:

f.data[-1].datum=f.data[-1].datum[:length%self.blocksize]

attrs=convertAttr(f.attrs)

attrs[’st_size’]=length

f.attrs=convertAttr(attrs)

session.commit()

Session.remove()

def utimens(self, path, times=None):

now=time()

atime, mtime = times if times else (now,now)

session=Session()

f=getFileFromPath(path,session)

if not f: return

attrs=convertAttr(f.attrs)

attrs[’st_atime’]=atime

attrs[’st_mtime’]=mtime

f.attrs=convertAttr(attrs)
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session.commit()

Session.remove()

def rmdir(self,path):

session=Session()

rmByPath(path,session)

session.commit()

Session.remove()

def unlink(self, path):

session=Session()

rmByPath(path,session)

session.commit()

Session.remove()

def rename(self, old, new):

session=Session()

#pieces=set(new.split(’/’)[:-1])

’’’

npieces=set()

for p in pieces:

if len(p)<2:continue

if p[0]==’!’:

npieces.add(p)

pieces-=npieces

npieces=list(npieces)

for i in range(len(npieces)):

npieces[i]=npieces[i][1:]

new=’/’+’/’.join(pieces)

nnew=’/’+’/’.join(npieces)

tags=getTagsFromPath(new,session)

ntags=getTagsFromPath(nnew,session)

’’’

tags=getTagsFromPath_logical(new,session)

f=getObjByPath(old,session)

f.tags-=set(tags[1])
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f.tags|=set(tags[0])

session.commit()

Session.remove()

def readlink(self, path):

return self.read(path,float("inf"),0,None)

if __name__ == "__main__":

if len(argv) < 2:

print(’usage: %s <mountpoint> [database]’ % argv[0])

exit(1)

fuse = FUSE(STUFFS(), argv[1], foreground=True)
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Here follows the raw output of the IOzone benchmarks.

b.1 btrfs

Iozone: Performance Test of File I/O

Version $Revision: 3.420 $

Compiled for 64 bit mode.

Build: linux-AMD64

Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins

Al Slater, Scott Rhine, Mike Wisner, Ken Goss

Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,

Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,

Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,

Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,

Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,

Vangel Bojaxhi, Ben England, Vikentsi Lapa.

Run began: Fri Feb 21 20:48:02 2014

Auto Mode 2. This option is obsolete. Use -az -i0 -i1

Using maximum file size of 1024 kilobytes.

Command line used: iozone -A -g 1024K

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.
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Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

KB reclen write rewrite read reread

64 4 311842 307554 2923952 3958892

64 8 435202 1066042 2561267 3363612

64 16 653436 492717 2662899 5283570

64 32 524487 735831 4274062 5860307

64 64 591520 821391 3057153 5735102

128 4 447464 573699 2004703 2784517

128 8 576161 780556 2985839 4934216

128 16 677178 753179 2660335 3445772

128 32 870405 836500 3199360 5122535

128 64 800337 814915 3982553 5074121

128 128 800337 976473 4596273 4934216

256 4 742146 584570 1694118 3557725

256 8 1143731 995306 1814348 3465855

256 16 1012194 1027695 2783115 4332998

256 32 900936 1070737 2247235 3654598

256 64 1415041 1312954 3705040 5022044

256 128 1147398 1967260 3654598 4197489

256 256 1243036 1080434 4477549 4652146

512 4 732478 681782 2560168 3504346

512 8 1001715 803757 2811557 3487274

512 16 911184 1145443 3104171 4610256

512 32 1084694 1103647 2625909 3710197

512 64 1055894 1497750 4195896 3934520

512 128 1406520 1422357 4228947 4882800

512 256 1042566 1783912 3736016 4131319

512 512 1098566 1541840 3877684 2894940

1024 4 821247 792019 2976816 3684119

1024 8 977950 1057924 2882904 4146499

1024 16 1155864 1136293 3955557 4674510

1024 32 1030263 1477555 3556008 4083422

1024 64 1497127 1602715 3112733 3481072

1024 128 1247519 1359680 3532609 3414650
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1024 256 1148139 2016600 6244448 5536137

1024 512 1193442 1651398 3618930 3110479

1024 1024 1602118 1600327 3261656 3311958

iozone test complete.

b.2 btrfs-sync

Iozone: Performance Test of File I/O

Version $Revision: 3.420 $

Compiled for 64 bit mode.

Build: linux-AMD64

Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins

Al Slater, Scott Rhine, Mike Wisner, Ken Goss

Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,

Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,

Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,

Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,

Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,

Vangel Bojaxhi, Ben England, Vikentsi Lapa.

Run began: Fri Feb 21 20:45:46 2014

Auto Mode 2. This option is obsolete. Use -az -i0 -i1

Include close in write timing

Include fsync in write timing

SYNC Mode.

Using maximum file size of 1024 kilobytes.

Command line used: iozone -Aceo -g 1024K

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.
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KB reclen write rewrite read reread

64 4 72 69 2203800 3791156

64 8 155 151 3203069 4564786

64 16 274 443 2203800 3022727

64 32 721 718 3363612 5860307

64 64 719 1922 2662899 4897948

128 4 73 72 2132084 2784517

128 8 185 185 2571150 3982553

128 16 349 311 3124872 3867787

128 32 523 640 2843510 4889281

128 64 1439 886 2464907 4557257

128 128 1441 2305 4444086 4267461

256 4 70 68 2114473 2152625

256 8 157 157 3123106 4350555

256 16 319 329 3705040 4264168

256 32 677 606 3756894 4264168

256 64 1047 1441 4929815 6398720

256 128 2304 1772 3717869 4422226

256 256 2881 2882 3197509 3605511

512 4 68 67 2416145 2187279

512 8 144 132 3099691 4163357

512 16 274 260 3068685 4061007

512 32 606 561 2708713 4061007

512 64 1071 1440 3556580 4375425

512 128 1772 2560 3372274 3905895

512 256 3072 3293 3610395 4000485

512 512 5122 5768 4237291 4228947

1024 4 62 54 3010197 3436508

1024 8 134 130 4079544 3738636

1024 16 297 292 3567824 3659010

1024 32 639 631 3436508 3436508

1024 64 1097 1335 3594699 4014717

1024 128 2792 2248 3458646 4162573

1024 256 5115 4609 3355952 3712781

1024 512 6584 6151 3311958 3955557

1024 1024 13182 15390 2859868 3083680
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iozone test complete.

b.3 stuffs

Iozone: Performance Test of File I/O

Version $Revision: 3.420 $

Compiled for 64 bit mode.

Build: linux-AMD64

Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins

Al Slater, Scott Rhine, Mike Wisner, Ken Goss

Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,

Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,

Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,

Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,

Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,

Vangel Bojaxhi, Ben England, Vikentsi Lapa.

Run began: Fri Feb 21 20:42:38 2014

Auto Mode 2. This option is obsolete. Use -az -i0 -i1

Using maximum file size of 1024 kilobytes.

Command line used: iozone -A -g 1024K

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

KB reclen write rewrite read reread

64 4 346 367 3620 3605

64 8 351 310 3497 3702

64 16 355 370 7392 6909

64 32 354 370 7100397 7100397

64 64 312 370 3363612 5735102
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128 4 334 332 4312 4367

128 8 335 333 4096 4310

128 16 334 334 6608 6387

128 32 323 334 12026 12178

128 64 336 312 6406138 6406138

128 128 338 336 5784891 6114306

256 4 303 275 5392 5648

256 8 305 274 5381 5595

256 16 305 282 6960 7046

256 32 295 283 10567 9988

256 64 306 283 19046 20241

256 128 299 275 6398720 5938650

256 256 307 283 5117791 4907284

512 4 253 215 5653 5534

512 8 253 216 5632 4286

512 16 257 214 6643 6465

512 32 258 214 8138 8570

512 64 255 217 10755 10977

512 128 255 217 13701 15063

512 256 254 216 17037 17013

512 512 258 216 4660280 4522868

1024 4 197 142 4597 4448

1024 8 197 145 4216 4679

1024 16 196 143 5150 5144

1024 32 197 143 5853 5175

1024 64 197 143 6566 6391

1024 128 198 143 7159 6243

1024 256 198 143 7848 7488

1024 512 198 144 11871 11461

1024 1024 197 144 3984917 4095102

iozone test complete.

b.4 stuffs-sync

Iozone: Performance Test of File I/O
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Version $Revision: 3.420 $

Compiled for 64 bit mode.

Build: linux-AMD64

Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins

Al Slater, Scott Rhine, Mike Wisner, Ken Goss

Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,

Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,

Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,

Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,

Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,

Vangel Bojaxhi, Ben England, Vikentsi Lapa.

Run began: Fri Feb 21 20:39:25 2014

Auto Mode 2. This option is obsolete. Use -az -i0 -i1

Include close in write timing

Include fsync in write timing

SYNC Mode.

Using maximum file size of 1024 kilobytes.

Command line used: iozone -Aceo -g 1024K

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

KB reclen write rewrite read reread

64 4 351 369 3422 3607

64 8 351 368 3496 3519

64 16 353 368 6684 6888

64 32 355 370 333540 316623

64 64 354 370 426897 453587

128 4 333 332 4235 4256

128 8 334 333 4035 4199

128 16 333 311 6436 6375
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128 32 337 336 12798 11966

128 64 337 335 814915 836500

128 128 337 335 795593 776042

256 4 303 275 5238 5555

256 8 305 282 5431 5535

256 16 305 276 6983 7094

256 32 305 282 9967 10537

256 64 304 275 19078 18932

256 128 295 282 54076 55580

256 256 304 275 1354356 1298662

512 4 254 213 4354 5459

512 8 257 210 5472 5410

512 16 254 214 6537 6384

512 32 255 214 7943 8272

512 64 256 214 10736 10786

512 128 259 214 13737 14412

512 256 257 211 16873 16452

512 512 258 212 1729323 1776533

1024 4 196 141 4508 3817

1024 8 196 144 4186 4516

1024 16 195 141 5228 5092

1024 32 196 143 5797 4402

1024 64 196 143 6511 6368

1024 128 196 142 7190 7864

1024 256 196 144 7895 7652

1024 512 196 144 11518 11330

1024 1024 197 143 2316837 2260740

iozone test complete.
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