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Abstract 

Two tokens are placed on vertices of a graph. At each time step, one to- 
ken is chosen and is moved to a random neighboring point. In previous 
work, Tetali and Winkler studied the Angel strategy for bringing the to- 
kens together as quickly as possible (on average), and the Demon strategy 
for delaying their collision as long as possible (on average). We build on 
these results by studying a game version of this process. 

In our game, two players take turns choosing the token to move. The 
Angel player hopes to bring the tokens together while the Demon player 
tries to keep them apart. We present optimal strategies for both players 
on stars, different types of directed cycles, and paths. Our proofs employ 
couplings of random walks as well as strategy stealing arguments. 
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Chapter 1 

Introduction 

In this paper, we study games that require the players to make optimal 
choices under uncertainty. More precisely, we study the evolution of pro- 
cesses in which each round consists of a strategic choice by a player, fol- 
lowed by a random move. We explore how the decisions of the player 
influences the evolution of the process. In particular, each player will have 
a goal, and we want to characterize the optimal strategy for achieving this 
goal. 

Our game is directly inspired by the work of Coppersmith, Tetali and 
Winkler in Coppersmith et al. (1993b) and Tetali and Winkler (1993). Two 
tokens are placed on a graph. At each time step, one of the tokens is chosen 
and it moves to a randomly chosen neighboring point. We refer to the 
entity that chooses the token that will move as a player. The sequence of 
decisions made by the player is a strategy. In Coppersmith et al. (1993b), 
and Tetali and Winkler (1993), the authors study the Angel strategy for 
bringing the tokens together as quickly as possible, and the Demon strategy 
for delaying their collision as long as possible. In this paper we expand on 
those two papers by considering the game version of this process. In this 
game, Angel and Demon alternate turns picking the token that will move 
next. Both players still maintain their original goals. The Angel player tries 
to bring the tokens together while the Demon player tries to keep them 
apart. 

In this paper, we completely determine the optimal game strategies for 
Angel and Demon on stars, paths, and certain directed cycles. We prirnar- 
ily use three techniques: coupling, strategy stealing and the introduction 
of additional players (using non-optimal strategies). Coupling aligns two 
random processes, so they may evolve together. This allows us to method- 
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ically compare these two processes. Strategy stealing provides us with a 
tool to compare two optimal strategies in different game instances. Some- 
times we compare strategies starting from identical game configurations, 
other times we start in distinct (but similar) game configurations. With 
strategy stealing, we can show that one strategy superior to another. Our 
last technique is to introduce players that use hybrid, non-optimal strate- 
gies. We use these hybrid strategies to prove that a given concrete strategy 
is in fact optimal. We usually refer to a player employing such as strategy 
as a corrector player. A corrector player believes that she knows her oppo- 
nent's optimal strategy. When her opponent diverges from that strategy, 
the corrector player corrects this mistake (at her own expense). 

In addition to finding optimal strategies for Angel and Demon, we also 
study the properties of the expected game length, with respect to the graph 
type, size, starting position of the tokens, and who moves first. 
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in the production of this paper. 



Chapter 2 

Prerequisites 

In this chapter we provide the background necessary to understand the 
main results of the paper. For a more complete introduction to probability 
theory and Markov chains, or graph theory please refer to [Kemeny and 
Snell(1976)l or [West (2000)], respectively. 

2.1 Sets 

We define a set as an arbitrary collection of objects, called elements. If a 
set B contains some but not necessarily all of the elements of another set A, 
we call B a subset of A and denote this relationship by, B E A. If B and A 
contain the same elements we say A equals B, or A = B. Finally, if B G A 
and B # A then we say B is a proper subset of A, or B c A. 

In studying the process of a game of chance, we are naturally concerned 
with the possible outcomes of plausible events in the game. We shall denote 
the set of all logically possible outcomes (logical possibilities) after some event 
by U .  We refer to such a set as a possibility space. 

Example 2.1.1 After flipping a coin the possibility space is Zl = {T, H). 
After flipping three coins the possibility space is 

Zl = {HHH,HHT, HTH, THH, HTT, THT, TTH, TTT). 

We say that, if ul, u2 E U: 

El (read: not ul) is true if and only if ul is false. 
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ul V up (read: ul or u2) is true if and only if either ul is true, u2 is true 
or both ul and u2 are true. 

ul A u2 (read: ul and u2) is true if and only if both ul and u2 are true. 

2.2 Basics of Probability 

2.2.1 Probability Measures 

In defining a probability measure we let S = isl, s2, ss, . . . , s,) be a set of 
logical possibilities. We obtain the probability measure for S by defining a 
function w : S + [O, 11 such that Gsl w(si) = 1. If M s S then we define 
its measure, m (M), as L,EM w(s~).  

Theorem 2.2.1 With any probability measure on a set U, the following (Kol- 
mogorov) properties must hold: 

IfM,N C U and M n  N = 0 then m(M U N) = m(M) + m(N). 

IfM 2 U then m(M) = 1 - m(M). 

The proof of this theorem follows directly from the definition of a prob- 
ability measure. For simplicity of notation, we will denote the measure 
function m (X), by Pr [XI. We refer to Pr [XI as the probability of X. 

Example 2.2.2 Consider the set 

U = {HHH,HHT, HTH, THH, HTT,THT, TTH,TTT) 

containing the logically possible outcomes after each toss of a fair coin 
flipped 3 times. Since the coin is fair we know that for any S 2 U, if s E S: 

Pr[s] = $j, = $ = Q; 

Pr[S] = fl = v; 
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Example 2.2.3 Suppose that a jar has 5 red (R) marbles and 4 blue (B) mar- 
bles from which a blind individual will choose 2 marbles, one at a time,, 
without replacement. The set of logically possible outcomes per reach is 
U = {R, B). Similarly the set of possible outcomes after 2 reaches is U = 
{(R, R), (R, B), (B,R), (B, B)). We deduce that: 

5 . 4  4 3 - 3 2 .  Pr[(R, B) V (B, B)] = Pr[(R, B)] + Pr[(B, B)] = g 8 + g 8 - 721 

Pr [(R, B) A (R, R)] = 0; 

If A = (R, B) V (B, B) then ~ r [ z ]  = 1 - [Pr[(R, B)] + Pr[(B, B)]] = 
32 -40.  
E -  721 

0 
In many experiments (or systems) we often encounter an infinite num- 

ber of possible outcomes. As the following example demonstrates, the set 
of logical possibilities U need not be finite, so long as we choose an appro- 
priate measure function. 

Example 2.2.4 Consider an experiment where we are interested in the num- 
ber of times we must roll a die before we obtain a 2. In this case, U = 

t-1 1 
{1,2,3,. . . ). For t E U, Pr[t] = (g)  g. Since 

we know the probability space is well-defined. 0 

2.2.2 Conditional Probability 

We are often concerned about the probability of some event A occurring, 
given that some other event B has occurred. We call this the conditional 
probability of A given B, denoted Pr[AI B]. We define 

A and B are independent events if Pr [A I B] = P [A], or equivalently 



6 Prereauisites 

Example 2.2.5 Suppose Al, Bill and Carol each roll a fair die. Define the 
events 

A = Alrolls a 1 

B = Billrollsa 1 

C = Carol rolls a 1. 

Clearly Pr [A] = Pr [B] = Pr [C] = 3 and Pr [A A B] = Pr [A] Pr [B] = $. With 
this knowledge we may find the probability of A occurring given that B 
has occurred. 

In this example, Pr [A I B]Pr [B] = Pr [A] P[B], and so A and B are inde- 
pendent. 

Example 2.2.6 Let us consider Example 2.2.3 once again. Let A be the event 
that a red marble is chosen first, and B be the event that a blue marble is 
chosen second. Then 

but 
45 3 4  4 

Pr[B] = Pr[BIA]Pr[A] +Pr[~Iz]Pr[z]  = -- + -- = -. 
8 9  8 9  9  

Hence the events A and B are dependent. 0 

2.2.3 Expected Value and Variance 

Thus far we have assigned probabilities to events in a finite or countably 
infinite set. At times, however, it may be desirable to redefine a set of out- 
comes by assigning numerical values to events. We shall refer to such a 
funtion as a random variable. 

Example 2.2.7 Suppose that we pick 5 marbles out of a jar containing (no) 
red and blue marbles. Let U = {yes/no, yes/no, yes/no, yes/no, yes/no), 
where yes in the nth position, corresponds to the fact that we picked a red 
(blue) marble on the nth pick. If we are only interested in the number of 
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red marbles then we may define a random variable, $, which maps each 
element of U to some element in {O,1, 2,3,4,5). For example 

$ : (yes, yes, no, yes, yes) e 4. 

We refer to random variables that map to a countable number of ele- 
ments, such as the one in the previous example, as discrete random variables. 
Naturally, we may be interested in knowing the average value of a ran- 
dom variable. In order to do this we must consider a weighted average 
which, of course, depends on the probability measure defined. We call this 
weighted average the expected value. For discrete random variables we find 
the expected value is 

E[UI = C $(u)Pr[ul. 
ueu 

One should always recall when working with expected values that they 
are not necessarily the most likely value of the random variable, but the 
weighted average. For example, if a random variable $ : U + (-1, I), and 
Pr[-1] = Pr[l] = $, the expected value is E [$] = $ (-1) + $ (1) = 0. 

The following properties are easily derived: 

We refer to these properties as consequences of the linearity of expectation. 

2.3 Graphs 

We define a graph G as a collection of vertices V(G) and a collection of 
edges E(G), where an edge is a pair of vertices. We say an edge e is incident 
with a vertices v, w if e = {v, w). We say v and w are adjacent if there is an 
edge e = {v, w). The degree of v, denoted deg(v), is the number of vertices 
that are adjacent to it. 

Apath Pn+l is a graph with V(P,+l) = (0,. . . , n) and E(Pn+l) = {{k, k + 
1) I k E (0,. . . , n - 1)). The length of a path is the number of edges. The 
order of a graph is the number of vertices. We shall denote paths of order 
i + 1 by Pi+l. 

Figure 2.1 shows a path of order 6 and length 5. 
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Figure 2.1: P6 with 6 vertices and 5 edges. 

Let Pi and Pi be paths such that V(6) = { v ~ ,  . . . ,vi) and V(Pj) = 
{WI, . . . , wj). Pi and Pi are internally disjoint if (~2 , .  . . ~ i - ~ )  fl {w2. . . wj-1) = 
0. In other words, Pi and Pi contain no vertices in common, except for 
maybe the first and last ones in their sequences. A cycle is the union of 
two internally disjoint paths with the same first and last vertices. In other 
words, a cycle is a graph in which exactly two distinct, internally dis- 
joint paths exist from any vertex to another. These paths are subgraphs of 
the cycle. More generally a graph H = (V(H), E(H)) is a subgraph of 
G = (V(G), E (G)) when V(H) V(G) and E (H) E E (G). A cycle of 
order i, is denoted by Ci. Figure 2.2 shows C5. 

Figure 2.2: C5: a cycle of order 5 

A graph is acyclic if it does not contain a cycle as a subgraph. A graph 
G is connected, if for any vertices v, w E V(G), G contains a a path from v 
to w as a subgraph. A connected acyclic graph is a tree. Figure 2.3 shows a 
tree on 7 vertices. 

In a directed graph G, E (G) consists of arcs, (u, v). We denote an arc (u, v) 
on pictorial representations of graphs by an arrow pointing from u to v. If 
we are moving along edges of a directed graph, then we may only travel 
from u to v if there exists an arc (u, v). We define the distance between the 
vertices u, v, d (u, v), as the minimum number of edges we must traverse in 
order to travel from u to v. 
The out-degree of a vertex v in a directed graph is the number of arcs in E (G) 
of the form (v, u), where u E V(G). On a directed graph, a leaf is a vertex 
with out-degree 1. On an undirected graph a leaf is a vertex with only one 
neighbor. 
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Figure 2.3: A tree of order 7 

2.4 Markov Chains 

Graphs and probability intersect in the study of random walks on graphs. 
In a simple random walk on a graph, at each time step we move from the 
current vertex to a randomly chosen neighbor. Random walks on graphs 
are more formally known as Markov chains. As explained in Coppersmith 
et al. (1993a), Markov chains have many applications: electrical network 
theory, estimation of measurements given by approximate measurements, 
finding the volume of a convex body, and on-line algorithms. 

A stochastic process is a non-deterministic sequence of random variables. 
A Markov chain (or random walk) is a stochastic process where the ifh state 
depends only on the (i - 1) th state. In particular, a Markov chain is a se- 
quence of random variables XI, X 2 .  . . , which each have possible outcomes 
{XI,. . . , Xi,. . . ), such that 

We define the transition probability as 

and note that pi,j is independent of n. The transition matrix P of a Markov 
chain has pi,j as the entry in the ifh row and jth column. In particular, if all 
edges are equally likely to be traversed, 

Pi,j = 
if {if i) E E(G)  
otherwise. 

Example 2.4.1 Suppose that A1 is walking on the graph C4 below, starting 
on vertex 0. At each time step, A1 will move to a randomly chosen adjacent 
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Figure 2.4: C4: Four Cycle 

vertex. The transition matrix at the first step is 

where PiJj is the probability of moving from vertex i to vertex j in one step. 
It follows that the transition matrix after t total steps is 

Here, Plj is the probability of moving from vertex i to vertex j in exactly t 
steps. 0 

We define an absorbing state on a graph G to be a vertex that ends a ran- 
dom walk. In other words, for aborbing state vi, the transition probability 
pi,i = 1, and py = 0 for j # i. We naturally refer to Markov chains with 
an absorbing state as absorbing Markov chains. These will be of particular 
concern for the problems we will be considering. 

Example 2.4.2 Let P5 be a graph with absorbing state 0. Figure 2.5 demon- 
strates the potential motion of a token taking a random walk on P5. 

0 
The expected time before a token starting on j reaches some vertex v, is 

called the hitting time, and is denoted by H(j, v). 

2.4.1 Coupling 

Coupling is a tool for relating two distinct random variables (or processes). 
We give an example of how to employ a coupling in order to force the steps 
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Figure 2.5: Trajectory on P5 with absorbing state 0 

Time 

0 

1 

2 

3 

4 

5 

of 2 distinct random walks to correspond. In essence, we use the same ran- 
dom number generator for two different processes so that they evolve in 
tandem. 

Random Walk State 

@-*O-@-@ 
@-*0-@-@ 
@-0-0-*@ 
@-**@-@ 
we@-@-@ 
@I--*@-@-@ 

Example 2.4.3 We consider a random walk on two distinct paths. We let 
a fair coin determine the direction of the token step. For our coupling, we 
let one coin determine the motion of both tokens. If tails, the token moves 
left, if heads the token moves right. Suppose we obtain the the following 
outcomes for 3 coin flips: T, T, H. 

Using these coin flip outcomes, random walks on P5 with tokens start- 
ing at vertices 1 and 3 proceed as shown in Figure 2.6 below. 

Figure 2.6: Aligning tokens 

Note that, as seen on step 3, once the green and blue tokens align, they 
will remain aligned under the given coupling. 0 

Coin Flip 

Starting Position 

T 

T 

H 

Token Starting at 1 

@ 
@-*0--0-@ 
@-@-0--@-@ 
@-0-0--@-@ 

Token Starting at 3 

O -  
W*@-*@ 
@-@-O-@-@ 
0-0-a+@-@ 
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2.5 Combinatorial Games 

A game with positions, in which two or more players take turns altering 
the position, is considered a combinatorial game if all players have pevfect 
information. A player has perfect information if he/she always knows the 
position of the game, and how players can alter it. Connect Four, Chess, 
Checkers, Backgammon and Go are popular examples of combinatorial 
games. Games such as Spades, Hearts and Poker, are not combinatorial 
games, because the player does not know the cards (i.e. position) that the 
other players have. 

We say that a game is solved when we determine a strategy for each 
player that maximizes the probability of achieving some predetermined 
game state, referred to as a winning condition. Games can achieve a large 
degree of complexity and hence we require a set of techniques that allows 
us to work with their complexity. 

2.5.1 Strategy Stealing 

Strategy stealing is often employed in combinatorial game theory in order 
to demonstrate that a player does not have a winning strategy. When em- 
ploying strategy stealing we allow a player to steal the move of another 
player, not necessarily playing the same game. We consider the game tic- 
tac-toe on a 3-by-3 board as an example. 

Example 2.5.1 Anyone who has played tic-tac-toe eventually realizes that 
the first player to move has a notable advantage. We prove, via an employ- 
ment of strategy stealing, that the player who moves second cannot have a 
winning strategy. 
Assume for the sake of contradiction that the player who moves second, 
P2, has a winning strategy, call it S. We have the first player, I$, choose 
his first move at random. After PZfs move, PI steals Sf pretending that 9 ' s  
first move was the first move of the game. If ever S dictates that he should 
move where his first move took place, PI should move randomly. PI plays 
as though he is fi, so this modified strategy is a winning one. This is a 
contradiction. 0 
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Simultaneous Random Walks 

In this chapter we discuss previous work on simultaneous random walks, 
and introduce the game we will study 

3.1 Motivation 

Our work builds on results in Collisions among Random Walks on a Graph by 
Coppersmith, Tetali and Winkler (Coppersmith et al. (1993b)). The original 
motivation for their paper comes from self-stabilizing token management 
schemes. Protocols for distributed networks are self-stabilizing if given any 
unstable, or irregular, state, they eventually return to a stabilized state al- 
lowing for regular operation. In such processor self-stabilizing token man- 
agement schemes, we only allow for one processor to be active at a time. 
When this processor's operations are complete, it passes an ownership to- 
ken along to another processor. The token represents some abstract object 
that is sent from processor to processor. Note that we can consider each 
processor as a vertex on a graph where an edge exists from vertex (proces- 
sor) v to vertex (processor) w if a token can be sent from v to w. 

Suppose that our distributed network enters an illegal state when there 
is more than one token in the system. In Israeli and Jalfon (1990), the au- 
thors suggest randomly passing tokens between processors until they col- 
lide. On such a collision, the tokens merge, bringing the system back into 
a legal state. We say that equilibrium is achieved when only one token re- 
mains. The processors in this self-stabilizing token management scheme 
are not synchronized. Instead, which processor is activated is determined 
by an entity, which we will refer to as a player. 

Previous work by Coppersmith et al. (1993b) and Tetali and Winkler 
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(1993) considers the case where one player manages the activation of pro- 
cessors. We expand on the results of these papers by considering a game 
version of the token management scheme. In our game, two players alter- 
nate turns until the two tokens collide. 

Unless stated otherwise, we assume that a processor has an equal prob- 
ability of sending a token to any of the neighboring processors. Hence, in 
this paper we are studying multiple, simultaneous, Markov Chains on a 
graph. 

3.2 The Single Player Game 

In Coppersmith et al. (1993b), three types of regulatory players are studied. 

Angel (A): Angel plays to minimize the expected game length. 

Demon (D): Demon plays to maximize the expected game length. 

Random (R): Randomly chooses which token to move at each step. 

We assume that Angel and Demon are both playing optimally, so that they 
are respectively minimizing and maximizing the expected game length. 
Coppersmith et al. (1993b) and Tetali and Winkler (1993) study single player 
games where one player controls every move. We refer to simultaneous 
random walks, where the same player chooses which token moves at each 
time step, as single player games. 

In this paper we only study games where two tokens are placed on a 
graph. If the two tokens, call them TL and TR, are on vertices i, j, respec- 
tively, then we say we are in game state (i, j). We denote the game where 
player S regulates the game on the graph G with initial token position (i, j), 
by 

G = (G,S,i,j). 

The meeting time 
M: (i, j )  

is the expected number of activations before the tokens meet when follow- 
ing strategy S. When it is clear which graph we are referring to, we use the 
notation Ms (i, j) instead of M: (i, j). 
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Known Results for Single Player Games 

Equipped with the necessary understanding of stochastic processes, we 
summarize some of the results in Coppersmith et al. (199313) and Tetali and 
Winkler (1993). 

As shown in Tetali and W d e r  (1993), the expected meeting time of the 
tokens is bounded for the single player Angel, Demon and Random games. 

Theorem 3.2.1 (Tetali and Winkler (1993)) Let G be a graph of order n. Let 

M;(n) = rnax ME(u,v), 
u,v€V(G) 

MZ(n)  = rnax ~ Z ( u , v ) ,  
u,v€V(G) 

MZ(n)  = rnax M ~ ( u , v ) ,  
u,veV(G) 

and 

rnax M E  ( n ) ,  

MA(n)  = rnax M? ( n ) ,  
G:IGI=n 

MR(n)  = rnax ME(n). 
G:IGI=n 

In other words, MD ( n )  is the maximum meeting time over all n-vertex graphs and 
all starting positions, when, at each time step, Demon is choosing the token that 
moves; MA ( n )  and MR ( n )  are similarly defined. 
Then 

Hence, no strategy exists for Demon that will forever keep the tokens from 
colliding. 

A player's strategy is pure if at each turn the choice of token depends 
only on the current locations of the tokens. As observed in Coppersmith 
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et al. (1993b), a pure strategy is equivalent to a tournament on the vertices 
of the graph; at each pair of vertices, the winner is the vertex chosen by the 
player. Both Angel and Demon have pure strategies in their single player 
game. 

Lemma 3.2.2 (Coppersmith et al. (1993b)) In the single player game, on any 
graph G the Demon and the Angel both have a pure optimal strategy. 

A strategy is a degree strategy if whenever the tokens are on vertices i 
and j, and deg (i) < deg (j), the token on j is moved. 

Theorem 3.2.3 (Coppersmith et al. (1993b)) On a path, a strategy for Demon, 
in a single player game, is optimal ifand only if it is a degree strategy. 

We replicate the proof in Coppersmith et al. (1993b) because it is a nice 
example of random walk coupling. 
Proof. Let P, be a path with, V(P,) = {vo, . . . , v,-~). AS a pair of tokens 
moves within G, let us imagine a single distance token moving on a second 
copy, PL, of P, according the following rule: if the tokens on G are at vertices 
vi and vj, then the location vi of the distance token is given by k = 1 i - jl. 

If the demon follows a degree strategy, then the distance token takes a 
uniform random walk on P;, which has an absorbing state vb. Hence, un- 
der a degree strategy, the expected game length is HpA (vi, vb), the expected 
number of steps before a token starting on vi reaches vb. However, if at 
any game state (vi, v,-~) or (vo, vi), where 0 < i < n - 1, the demon has 
probability p > 0 of moving the token on the leaf, then the probabilities 
along the edges leading from the corresponding vertex on G' are skewed 
toward vb, decreasing the expected time to finish. I 

This optimal Demon strategy, for the path, only prescribes what hap- 
pens when one token is on a leaf. Otherwise, Demon may move either to- 
ken. However, the optimal Angel strategy for a single player game is more 
restrictive. A similar argument proves that moving a token off a leaf is ben- 
eficial for Angel. Additionally, a n  intricate argument found in Coppersmith 
et al. (199313) (which we will not provide here) gives us the following: 

Theorem 3.2.4 (Coppersmith et al. (1993b)) Angel need never move a token 
of the center. 

In a hitting time strategy, a token on vertex x is chosen over a token 
on vertex y when H (x, y) < H (y, x). When H (x, y) = H (y, x) a token is 
arbitrarily chosen. 
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Theorem 3.2.5 (Tetali and WinMer (1993)) The hitting time strategy is opti- 
mal on a tree for the Angel. 

3.3 The Two Player Game 

We study a two player process, in which the players alternately choose 
which token to move. We denote a two player game on a graph G by 

The player strategies in G are S1, S2, and S1 moves first; the initial token 
position of G is (i, j). We denote the expected game length by 

The abbreviated notation MsIrs, (i, j) is used when the graph under consid- 
eration is clear from the context. 

We define a trajectory of a game as a potential course of the game de- 
termined by the initial positions, the player strategies, and how the tokens 
move at each time step. 

Example 3.3.1 Let P5 be a path with V(P5) = {0,1,2,3,4). Suppose that S1 
is a player that always moves the token on the vertex with smaller index; 
vice versa for S2. Figure 3.1 illustrates a potential trajectory of the game 
(P5, S1, S2, 1, 3), where coin flips are used to determine how the tokens step 
at each step (either left(L) or right (R)). 0 

3.3.1 A Simple Lemma about Leaves 

For any graph G and strategies S1, S2, let 

where N(u) is the set of neighbors of u; define MslTs2 (u, P )  analogously. 
The following simple Lemma proves useful for the following sections. 

Lemma 3.3.2 Let u be a leaf and v its unique neighbor, that is not a leaf, on some 
graph G. In the game (G, A, D, u, v) Angel moves the token at u. In the game 
(G, D, A, u, v) Demon moves the token at v. 
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Figure 3.1: A trajectory of (P5, S1, S2, 1,3); L (R) moves the selected token 
left (right); S1 (S2) always chooses the token at the vertex with a lower 
(higher) index. 

Proof. 

Hence M D , ~  (u, v) = 1 + MA,D (u, F), meaning that Demon moves the token 
at v. It similarly follows that 

Hence MA,D (0,l) = 1, meaning that Demon moves the token at u. I 

3.3.2 Pure Optimal Strategies 

On any graph, Angel and Demon have pure optimal strategies in our two 
player game. In other words, there is exists an optimal strategy, such that 
each move depends only on the current state of the game, and a particu- 
lar token is chosen with probability 1. Although this may seem evident 
because pure optimal strategies exist in the single player game, this state- 
ment requires proof. 

Lemma 3.3.3 For any game on some graph G, Angel (A) has a pure optimal 
strategy. 

Proof. This proof closely follows the proof of Lemma 3.2.2 given in Cop- 
persmith et al. (199313). Fix an optimal Demon strategy D. Let S(i, j )  be 
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a strategy minimizing Ms(i,j),D (i, j) . Define a tournament T by letting i be 
the winner over j when given a starting game state (if j), S(i, j) moves the 
token at i; similarly for j. If either token may be moved we assign a winner 
arbitrarily. We claim that with the pure strategy Apt corresponding to the 
tournament T, MA,D (if j) = (i, j) , for all i, j. 

Assume for the sake of contradiction that MA,D(i, j) < MAp,D(i, j) for 
some vertices if j. Let 

Of all pairs of vertices x, y such that a = (x, y) - MA,D (x, y), choose 
one with the minimum distance. Assume without loss of generality that x 
beats y in T and that with tokens starting at x and y, S(x, y) moves x with 
probability p > 0. We claim that 

If d(x, y) = 1, then the probability that the game (G, Apf D, X, y) ends after 
one move is 1/ deg(x) > 0. If the game has not ended, then Demon takes 
his turn. Afterwards, we are in the game (G, Ap, D, u, v) for certain pairs 
u, v E V. For each such game, we have (u, v) - MA,D (ur V) I a. 

Let Z,,  denote the event that the tokens did not collide after the first 
move of Ap and that the tokens are at u, v after Demon's next move. Note 
that Pr [ V ~ , , ~ ~ Z ~ , , ]  = Cu,,,v Pr [Z,,] = 1 - I / deg(x) . We have 

so equation (3.1) holds in this case. 
The case d(x, y) > 1 is similar. In this case, the game cannot com- 

plete after the first move of Ap. There exists a pair x1,y' E V such that 
P~[Z,I,~I] > 0 and d(xl, y') < d(x, y). Indeed, the token moved in each 
round could move along the shortest path towards the other. For this pair, 
we have (x', y') - MA,D (XI, y') < a since x, y were taken to be at min- 
imal distance. Let Z,,  denote the event that the tokens are at u, v these two 
moves. We have 
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so equation (3.1) holds in this case as well. 
Recall that x beats y in T and that with tokens starting at x and y, S (x, y) 

moves x with probability p > 0. We have 

because S(x,y) is supposed to be optimal at x,y. Additionally, we must 
have that 

MS(~,~),D(X,Y) = 1 + MD,A(%Y) 

since otherwise moving y would be optimal. 
Hence, 

where the inequality is due to equation (3.1). However, this strict inequal- 
ity gives a contradiction, so it must hold that MA,D (x, y) = MA~,D (x, y) . 
Therefore, Ap is a pure optimal strategy. I 

Lemma 3.3.4 For any game on some graph G, Demon (D) has a pure optimal 
strategy. 

Proof. The proof is analogous to the previous one. We let S(i, j) maximize 
MD,s(i,jl (i, j), and assuming that M D , ~  (x, y) > MDplA(x, y) for Some ver- 
tices x,y. I 



Chapter 4 

Results Using Naive Methods 

In this chapter we use some naive methods to prove our first results. We 
start with optimal Angel and Demon strategies on the star. This simple 
example gives a first glimpse into the characteristics of optimal strategies. 
We also find optimal strategies on small paths by solving systems of linear 
equations. This method is intractable for larger paths. 

While reading the chapter note that there are two distinct games to an- 
alyze on a path or star. This is a direct consequence of the bipartite nature 
of these graphs. In one game, Angel controls the odd distances between 
tokens. In the other game, Demon controls the odd distances. 

4.1 Optimal Play on the Star 

Star graphs are trees that contain exactly one non-leaf vertex. Figure 4.1 
provides an example of a star of order 9. The optimal strategies for Angel 
and Demon are easy to identify. 

Theorem 4.1.1 O n  a star graph, when a choice exists, Angel should always move 
the token on a leaf, and Demon should always move the token not on a leaf. 

Proof. There are two cases to consider. The case where only one token is on 
a leaf, and the case where both tokens are on a leaf. Lemma 3.3.2 gives us 
the optimal strategy in the first case, and the symmetry of positions gives 
us the optimal strategy in the second case. I 
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Figure 4.1: Star Graph of order 9 

4.2 The Path on 3 Vertices 

We will begin our exploration of our Angel versus Demon game on paths 
by considering P3. We find optimal strategies for both Angel and Demon, 

Figure 4.2: &, the path on 3 vertices. 

and then use them to find the expected number of steps until the 2 tokens 
collide. We use these results to determine the expected winner of the game, 
by using the random game as a benchmark. Angel (Demon) wins if the 
expected game length of the two player game is less (greater) than the ex- 
pected game length with only the Random player. 

4.2.1 Random Game 

In order to establish the "victory" thresholds we create a system of linear 
equations for the expected length of the random game. Observe that for 
any given graph this system is of the form 
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Expanding and using the symmetry of the path, we find that 

Solving this system of equations gives 

giving us the victory thresholds for each starting position. 

4.2.2 Optimal Play: Demon Controls Odd Distances Between To- 
kens 

Now we consider the expected game length when Angel and Demon are 
employing their optimal strategies. Iden-g an optimal strategy is easy 
in such a small system. As with the random game, we will exploit the 
symmetry of the graph in order to simplify the system of equations. 

On a path, the same player always moves when the tokens are an odd 
distance apart. In this section, we study the games, (P3, A, D, 0,2) and 
(P,, D, A, 0,l) = (P,, D, A, 1,2), in which Demon moves when the tokens 
are an odd distance apart. 

Notice that in positions such as (0,2) it does not matter which token is 
moved and that positions (0,l) and (1,2) are equivalent. 
Therefore, 

and, by Lemma 3.3.2, 

Solving for the system of equations, 

we find that M D , ~  (0, 1) = M D , ~  (1 , 2) = 3 and MA,D (0, 2) = 4. 
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4.2.3 Optimal Play: Angel Controls Odd Distances Between To- 
kens 

It remains to study the games in which Angel moves when the tokens are 
an odd distance apart. We proceed as before, first noting the symmetry of 
the path which yields that 

Thus, we obtain the following system of equations 

from which we find that MA,D (0, 1) = MA,D (1, 2) = 1, MD,A (0, 2) = 2. 

4.2.4 Expected Winners 

From our previous results we gather the expected winners of each game on 
the path, on 3 vertices. 

Table 4.1: The winner for games on P3. 

4.3 The Path on 4 Vertices 

Let us now consider the more complicated case of a path of length 4. 

Figure 4.3: P4, the path on 4 vertices 
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4.3.1 Random Game 

Observing the symmetries in the given graph we find: 

Solving this system of equations yields 

4.3.2 Optimal Play: Angel Controls Odd Distances Between To- 
kens 

We now find the optimal strategies for Angel and Demon. Once again we 
establish a system of linear equations which will yield the expected game 
lengths. It clearly must hold that 

It only remains to find 

max { 1 ( M A , D ( ~ , ~ )  + M A , D ( ~ ~ ~ ) )  = M ~ , ~ ( o , ~ )  - 1. 
MA,D (1, 2) 

We claim that 
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In other words, it does not matter which token Demon moves at (0,2). 
Using the symmetry of position (1,2), 

Solving the system of linear equations 

we find that 

4.3.3 Optimal Play: Demon Controls Odd Distances Between To- 
kens 

We have already established in Lemma 3.3.2 that MD,A (Of 1) = 1 + ;MA,D (0,2). 
Due to the symmetry of the path 

It only remains to find the optimal move for (P4, A, D, 0,2). We have 
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We claim that (MD,A (0, 1) + MD,A (0, 3)) > M D , ~  (I/ 2). Indeed, 

and thus MA,D (0, 2) = 1 + M D , ~  (1 , 2). Solving for the system of linear 
equations 

1 
MD,A (0, 1) = 1 + -MA,D (0, 2) 2 

yields that MD,A (0,3) = 5/ M D , ~  (1 , 2) = 3/ MA,D (0, 2) = 4/ MD,A (0,l) = 3. 

4.3.4 Expected Outcomes 

We summarize our results about the winner of the game for each initial 
position. Recall that Angel wins if the game finished faster (on average) 
than the random game, and that Demon wins if the game takes longer (on 
average) than the random game. 

Table 4.2: Angel Controls Odd Token Distances 

MD,A (01 3, 
A 

MD,A (0, 1) = MD, A (2,s) 
D 

Table 4.3: Demon Controls Odd Token Distances 

MA,D (0,2) = MA,D (1 3) 
A 

MD,A (1, 2) 
A 
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Resolving the min/max relations becomes quite challenging for P, n 1 5. 
Therefore, in Chapter 6 we turn to more sophisticated methods to iden* 
optimal strategies for general paths. 



Chapter 5 

Lazy One-way Cycle 

Establishing optimal strategies requires techniques from probability theory 
as well as combinatorial game theory. In particular, we will make use of 
random walk coupling and strategy stealing. In this chapter, we identlfy op- 
timal 2-player game strategies on the lazy one-way cycle and the biased cycle. 
The proofs follow a similar structure as the proofs for the path, and so this 
chapter provides some intuition and familiarity before encountering the 
more convoluted proofs for paths. 

A lazy one-way cycle is a weighted directed cycle, where for each vertex 
v, there exist unique arcs of the form (v, v), (v, w),  (u, v), where v, w, u are 
distinct vertices. We define the weight on an edge as the probability of 
traversing it. Letting a E [0,1], we designate the transition probabilities 
that make up the transition matrix as follows. 

i f j = i + l  

otherwise. 

Figure 5.1 shows such a lazy-one way cycle of order 6, where a = g. We 
will always assume that a lazy one-way cycle G of order n + 1, has 

V(G) = {i 1 i E (0,. . . , n}}  
E(G) = {( i , ( i+ l )mod(n+l ) )  I i €  {0, ..., n}}U{(i,i) 1 i €  {o,...,n}}+ 
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Figure 5.1: Lazy One-way Cycle of Order 6 with a = $ 

5.1 Optimal Strategies for Angel and Demon 

It does not take long to develop an intuition of the optimal strategies for 
both Angel and Demon. Angel should try to decrease the distance between 
the tokens and vice versa for Demon. Assume without loss of generality 
that the two tokens are placed on vertices 0 and j, on a graph G of order 
n + 1, where j 5 1 9 1 .  When n + 1 is even and j = 9, the choice of 
tokens does not matter. In all other cases, our intuition is that A should 
move the token at 0 and D should move the token at j. 

Let A (D) denote this concrete strategy for Angel (Demon). We now 
provide a formal proof that A and D are the optimal strategies. We use a 
fruitful technique from combinatorial game theory. In order to establish a 
relationship between A and A, we introduce a third strategic player. The 
player serves as an intermediary to bridge the gap between A and A. 
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Let CA (CD) be the Angel (Demon) corrector player. We have CA (CD) 
play against A (D). CA plays like D unless Angel's pure strategy in some 
position deviates from A's; CA then "corrects" optimal Angel's move by 
moving the token that a would have moved in the previous step. Similarly, 
CD plays like A unless Demon's move deviates from D's, in which case it 
"corrects" Demon's move. 

Lemma 5.1.1 I f  G is a lazy one-way cycle of order n + 1 then MA LS (i, j )  5 
MA,D (ir j). 

Proof. Since 
MA,CA (irj) 5 MA,D 

it suffices to show that 

MA,D ( i d  = MA,c~ (i, j). 

Assume that i = 0 and j 5 [?I. We consider two cases. 
Case 1: j = 1. 
Considering optimal Angel versus optimal Demon, we have 

since M D , ~  (0, 2) > 0. For our concrete strategies we have 

In other words, the optimal strategy A moves the token at i. This is the 
same token chosen by the concrete strategy A in the same configuration. 
Case 2: j > 1. 
Let 61 = (GI A, D, 0, j) and & = (GI A, CAI 0, j). We may assume that each 
token has its own random, predetermined, bit-string. We couple & and 
G2 by using the bit-string B1 = {blfl, blj2,. . . ) for the tokens on 0 and the 
bit-string B2 = {b2,11 bZJ2,. . . ) for the tokens on j. With this coupling, the 
games play out identically unless there is deviation between A and A. It 
follows from Case 1, that such a deviation does not occur when j = 1. Thus, 
the distance between the tokens at a deviation will be at least 2. 

Suppose strategies A and A move different tokens for game state (0, j ) ,  
j > 1. Note that the games cannot end after this move since j - 1 > 1. 
We claim that the games will once again have identical token positions one 
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move after this deviation. Indeed, in the move following the deviation, CA 
will move the token A moved, and b will move the token A moved. Recall 
that we chose a coupling of G1 and & that uses the same bit-strings for the 
corresponding tokens. Therefore, after this second move, the tokens retake 
identical positions in the two games. 

From Case 2 we gather that G1 and G2 will reach token positions of the 
form (k, k + 1) at the same time. From Case 1, A and A both move the same 
token at this point. This covers all possible positions, so the games will end 
at the same time, giving MA D (if j) = MA,CA (i, j). I 

Lemma 5.1.2 I f  G is a lazy one-way cycle then  ME,^ (i, j) 2  ME,^ (if j). 

Proof. The proof is analogous to Lemma 5.1.1 using G1 = (G, B, A, i, j) and 
G2 = (G,D,CD,~,~). I 

Theorem 5.1.3 I f  G is a lazy one-way cycle of wder n + 1 then ~ z , ~ ( i ,  j) = 

MA,b (if j) and M;,~ (if j) = MDgA (if j). In other words, A and are optimal 
strategies for Angel and Demon, respectively. 

Proof. First we Show MA,D (if j) =  MA,^ (i,j). Assuming that i = 0 and 
j I [YJ, we have 

MA,D (01 j) 5 MA,D (01 j) 
5 1 + ~MD,A (11 j) + (1 - a) MD,A (01 j) 
- < 1 + aMDrA(l, j) + (1 - a)MDtA (0, j) 
= MAJb (0, j) r 

where the first and third inequalities hold by Lemmas 5.1.1 and 5.1.2, re- 
spectively. Each relation must hold with equality, so MAJD ( i f  j) = MA,D (if j) . 
Similarly, it follows that MD,* (il j) = M D , ~  (il j) because 

MD,A (0, j) 2 MD,A (0, j) 
2 1 + ~MA,D (Of j + 1) + (1 - ~)MA,D (0, j) 
2 1 + &MA,D (0, j 1) (1 - a) MA,D (0, j )  
= Mb,A(if j). 

I 
The use of a corrector player is crucial in relating optimal and concrete 

strategies. We use this proof technique throughout the paper, as we did in 
this section, to prove strategies optimal. 
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5.2 Game Length for a = f 
In this section, we find the expected game lengths for games on a lazy one- 
way cycle, with & = $. In order to gain insight into expected game length 
under optimal strategies, we construct a distance digraph, GI, as we did for 
the proof of Theorem 3.2.3. Let 

Here the set {a!) ({de)) corresponds to all token distances Angel (Demon) 
can move on. For example, d3 means that it is Demon's turn and the tokens 
are at distance 3. We note that the node do corresponds to token collision 
on the original graph G. We let E (GI), be the set of weighted arcs indicating 
how to move on V(Gt) to maintain the distance and player correspondence 
between the games. Specifically, 

l < i < [ q J ,  weight = 1 - a  
1 s i s  [y], weight = a  
l i i l  [YJ, weight = 1 - a  

1 2 i 2 Ly] - 1, weight = a  
weight = a 

See Figure 5.2. 
We couple the game on G and a random walk on G' in a natural way. If 

the distance between the tokens on G is ! and it is Demon's (Angel's) turn 
then place a token on dd (ad). This establishes an explicit correspondence 
between the game on G and a random walk GI. The token on G' will reach 
the absorbing state, do, at the same time that the tokens collide on G. We 
further simplify G' into the graph GIr by combining vertices d,q,-l and 

d l ~ ~  into the single node d;q,-l (see Figure 5.3). A game on G is nat- 

urally coupled with the uniform random walk on G" with absorbing state 
do. The token on G" reaches db when the tokens on G collide. In particular, 
optimal play on G corresponds to a random walk on G" with absorbing 
state db. 

Therefore the expected game length on G, 

MA,D (0, e) = k - 1 1  (at, 0) 

MD,A (0, e) = HGH (de, 0) 

when the tokens are distance ! apart. This gives the following theorems. 
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Figure 5.2: distance digraph GI 

Figure 5.3: G" path 

Theorem 5.2.1 On a lazy one-way cycle G of order n + 1, where n is odd and 
& = I  

2' 
2 MATD(i, j )  = n2 - ( n  - (2 x dG (i, j )  - I ) )  , 

and 

n2 - ( n  - 2  x dG(i,j))2 
MD,A (ir j )  = 

dG(i, j )  # y 
n2 - ( n  - (2  x dG(i, j - 2)) )2  otherwise. 

Proof. Since IV(Gl1) I = n + 1, this theorem follows directly from the well- 
known fact that 

2 Hp,+,(j,O) = n - ( n  - j )2 .  

I 

Theorem 5.2.2 On a lazy one-way cycle of order n + 1, where n is even and 
a = l  

2' 



Biased Cycle 35 

and 

( n  - I ) ~  - ( ( n  - 1)  - 2 x dG(i, j ) ) 2  
MD,A = 

d G  (irj) # 
( n  - 1)2 - ( ( n  - 1) - (2  x dG(i, j - 2))12 otherwise. 

Proof. This proof is analogous to the proof of Theorem 5.2.1, with (V(G1') ( = 
n. I 

5.3 Biased Cycle 

We define a biased cycle of order n + 1 as a directed graph G with 

V ( G )  = { i l i ~ { O  , . . . ,n )} ,  
E(G) = { ( i , i + l m o d n + l )  I i E {0 ,..., n ) ) ~ { ( i , i - l m o d n + l )  I i E {0 ,..., n ) ) ,  

where 
IY j= i+l  

1 - I Y  j = i - 1  
0 otherwise. 

We assume that a 2 i. Figure 5.4 demonstrates a biased cycle of order 6.  

Theorem 5.3.1 IfG is a biased cycle of order n + 1 then in position (0, v) ,  where 
v < L?], an optimal strategy for Angel is to move the token at vertex 0, and an 
optimal strategy for Demon is to move the token at v. 

By rotational symmetry, Theorem 5.3.1 yields optimal strategies for Angel 
and Demon at every position. The proof of Theorem 5.3.1 is analogous to 
that of Theorem 5.1.3. In positions of the form (0,v) we set a to move the 
token at 0, and b to move the token at v.  CA and CD follow the correcting 
strategy defined in section 5.1, but with respect to the redefined and b. 
The proof of Theorem 5.3.1 requires the following 2 lemmas. 

Lemma 5.3.2 On a biased cycle G of order n + 1, ~ 2 , ~  (0, v )  5 M:,, (0, v )  

whenv 5 LYJ. 
Proof. Since , 

MA,c~ (0, v )  < MA,D (0, v )  

it suffices to show that 



36 Lazy One-way Cycle 

Figure 5.4: Biased Cycle of Order 6 

We consider 2 cases. 
Case 1: v = 1. 
We have 

Indeed, since M 2 4, we have 

by rotational symmetry. 
Therefore optimal Angel moves the token at 0. This is the same token 

chosen by the concrete strategy A in the same configuration. 
C a s e 2 : 1 < v <  1 9 1 .  
The argument for this case and the rest of the proof is identical to the one 
found under Case 2 in the proof of Lemma 5.1.1. 1 
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Lemma 5.3.3 On a biased cycle G of order n + 1, M X , ~  (0, V) 5 M;,, (0, v) 
when v 5 [YJ. 
Proof. This proof is analogous to the proof of Lemma 5.3.2. 1 

Now we can provide the proof of Theorem 5.3.1. 
Proof of Theorem 5.3.1 

First we show MA,D (i, j) =  MA,^ (i, j) . We have 

where the first and third inequalities hold by Lemmas 5.3.2 and 5.3.3, re- 
spectively. Each relation must hold with equality, so MA,D (i, j) = MA,D (i, j). 
Similarly, it follows that MD,, (i, j) = MD A (i, j) because 

In this chapter we established a methodology for solving our game on 
two distinct graph structures. In the following chapter, we will use a similar 
methodology to find the optimal strategies on any path. 



Chapter 6 

Path 

In Chapter 3, we characterized the game on P3 and P4. We now consider 
the game played on the path P,+l. We prove that if Angel (Demon) always 
moves the token closest (furthest) to a leaf then he is playing optimally. We 
begin by introducing the necessary terminology. 

6.1 Alignment Locking Pairs 

Strategy Stealing 

We revisit strategy stealing and coupling by considering games where two 
tokens are involved. 

Example 6.1.1 Consider the two games GI = (P,+l, S1, a, b), G2(Pn+lr S2, cr a). 
We have two infinite bit-strings BL = {bl,. . . ) and BR = {bi, . . . ), where 
bi, bi E {O,l) .  Every time the left (right) token is moved, we use the next 
element in BL (BR) as the coin flip. 

S1 steals the moves of S2 as follows. We will say that games are normally 
coupled when tokens of the same relative position (left or right) share a bit- 
string. At each time step, S1 waits for S2 to choose the token to move (left 
or right) and S1 chooses the same token in his game. The tokens are then 
moved simultaneously using the same bit from BL or BR. The advantage 
to this coupling is that if the token positions in GI and G2 become identical, 
then the games maintain identical token positions for the rest of play. In 
particular, if the tokens align then GI and G2 will finish at the same time. 0 
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Normally Aligned games 

We play two games simultaneously, G1 = (Pn+lr Sll, S12,a, b) and G2 = 
(Pn+l, S21, Sz, a, b). Since the games have the same starting position, they 
are normally aligned. For a strategy S we use u(S) to denote stealing S's 
strategy, using a normal coupling. 

Example 6.1.2 If S12 = u(SZ1) and Sz = u(Sll) then 

because these coupled games are always in identical states. Hence, 

This example plays out trivially since the games are always in identical 
states and using identical strategies. We consider more complicated strat- 
egy stealing configurations below. 0 

Mirror aligned games 

Tokens in position (a, b) have a natural mirror symmetry with tokens in 
position (n - b, n - a). We can use coupling and strategy stealing so that the 
two games, 91 = (P,+l, S11, S12, a, b) and G2 = (&+I, S21, SZ, n - b, n - a), 
play out identically. We allow for 2 random bit-strings, BL and BR. We use 
BL when moving tokens starting on a in GI and n - a in &. We use BR when 
moving tokens starting on b in G2, n - b in G2. In this case, the coin flips are 
reverse coupled. When a token in GI moves left (right), the corresponding 
token in & moves right (left). We use $(S) to denote stealing strategy S 
under a reverse coupling. 

Example 6.1.3 Let Sll = U ' ( S ~ ~ )  and Sz = u'(S12). Note that (Pn+l, ~ ( S Z I ) ,  S12,a, b) 
and (Pn+1, SZl, U' (S12), n - b, n - a) mirror each other. Hence, 

M'"+' (a, b) = ~ 2 : + ( ~ ~ ~ )  (n - b, n - a). ~ ( S Z I ) ~ S I Z  

Starting out of alignment 

Two games are aligned if they are either normally or mirror aligned. In this 
section we study pairs of games whose starting positions are not aligned. 
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We consider strategies that react to the first time that the games become 
aligned. We note that one game may complete before alignment occurs. 
However, if the two games do align at some point, then our choice of strate- 
gies will guarantee that they remain aligned thereafter. 

Consider the games (P,+l, S1, L2, a, b) and (P,+l, L1, S2, c, d) starting in 
arbitrary initial locations (a, b) and (c, d). S1 and S2 are some fixed strate- 
gies. We choose L1 and L2 (as described below) to be strategies that will lock 
the games in alignment if the game states become aligned. In particular, let 
Tn (Tmn) be the first time the games align (mirror align), T = min{T,, T,,), 
and let t be the current time. If one of the games finishes before aligning 
then we set Ta = co and Tmn = co. Define locking strategies 

These strategies have 2 phases: pre-alignment and post-alignment. If we 
achieve an alignment while both games are active, we are assured that 
they will remain aligned thereafter and finish together. We call coupled 
games with this property alignment locking games. (Note that the strategies 
for t < T could be replaced with an arbitrary strategy, and the games main- 
tain the alignment locking property.) 

Example 6.1.4 Let S1, S2 be arbitrary strategies. The games (P5, Sl, L2, 0,3) 
and (fi ,  L1, S2, 1,4) start in mirror alignment (Tmn = 0). In other words, 
they start in phase 2 (post-alignment). With the reverse coupling in place, 
the coupled games proceed under the strategies above as shown in Figure 
6.1. 

The games remain aligned and finish at the same time. 0 

Example 6.1.5 Let S1, S2 be arbitrary strategies. Consider the play of the 
games (P6r S1, L2, 0,4) and (P6, L3, S2, I, 3), shown in Figure 6.2. We have 
Tmn = 3, Tn = 4, and so the games are not aligned at t = 1. Hence, at 
t = 3, opposite tokens are chosen. Pre-alignment, both games proceed 
under arbitrarily chosen strategies and distinct bit-string. 

0 
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Figure 6.1: (P5, SI, L2,0,3) and (%, LI, S2,1,4) 

6.2 Optimal Strategies on the Path 

We use alignment locking games to iden* optimal strategies for Angel 
and Demon. We employ corrector players as in the proof of Theorem 5.1.3 
and Theorem 5.3.1. Recall that A, D are the optimal Angel, Demon strate- 
gies, respectively. Consider the games (Pn+l, D, A*, a, b), (Pn+1, D*, A, c, d) 
where A*, D* are the locking strategies 

u(A) : t  2 Ta 
A * = {  U' (A) : t 2 Tma 

u(A) : t 5 T, 

and 

Figure 6.2: Trajectory of (P6, Sl, L2,0,4) and (P6, L1, Sg, 1,3) 
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Before alignment, A* steals A's strategy using a normal coupling. If the 
games align, then A* reacts to the type of alignment. D* behaves analo- 
gously. With these strategies, (P,+l, D, A*, a, b) and (P,+l, D*, A, c, d), are 
an alignment locking pair. 

First we identify the behavior of the optimal strategies for adjacent to- 
kens. This case (which must occur directly before a collision) will be crucial 
to characterizing the strategies for the other positions. 

Lemma 6.2.1 ifa + 1 5 then M?; (a, a + 1) = 1 + l ~ P " + l ( a  D,A - 1,a+ 1). 

This lemma states that if the tokens are adjacent, then moving the token 
with the minimum distance from a leaf is optimal for Angel. 
Proof. We have 

In addition, 
MD,~(a  - 1,a + 1) = MD,A*(~ - 1,a + I),  (ball 

and 
MD*,A (a, a + 2) = MD,A (af a + 2) (6.2) 

because A* (D*) cannot be better than the optimal strategy A (D). 
The case a = 0, follows directly from Lemma 3.3.2, and is clear since it 

ends in one step. 
Now suppose 0 < a I - 1. By 6.1 and 6.2, it suffices to show that 

The games = (P,+l, D, A*, a - 1, a + 1) and G2 = (Pn+l, D*, A, a, a + 2) 
are an alignment locking pair. If the games become aligned then they meet 
at exactly the same time. So we need only consider the cases where no 
game alignment occurs before one of the games completes. 

A token on a leaf can bounce. A bounce occurs when a token on a leaf 
is chosen, and the bit corresponding to it indicates one should move off 
the path. For example, if a token on the left leaf of path is chosen, and 
the corresponding bit indicates a step left, then a bounce occurs: the token 
"bounces" one step right. We will see that bounces are advantageous to 
Angel. 
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Suppose no alignment occurs before the tokens meet. Let /3 be the total 
number of bounces in both games before either game ends. Let 7~ and 7f. 

(-cR and 7;) be the left-hand side (right-hand side) tokens on GI and G2, re- 
spectively. Recall that we are assuming without loss of generality that, in 
starting positions, r~ and 7f. are at least as close to leaves as the right-hand 
side tokens, 7~ and 7;. 
Case 1: /3 is even. 
If no bounce occurs then the expected collision times of both games are 
equal since la - bl = Ic - d 1 (Theorem 3.2.3). If the first bounce occurs with 
4, then token positions (k, m) and (n - m, n - k) must occur prior to the 
bounce. In other words, we must encounter a mirror symmetry (contra- 
dicting our assumption), which aligns the games thereafter. Therefore, the 
first bounce on each path must occur with r ~ .  

We claim that the token distances in G1 and G2 are equal when /? is 
even. Immediately after the first bounce, the game states are (1, k) in G1 
and (0, k + 1) on G2, where k E (2, n - 1). We have not yet attained a sym- 
metry lock, so TL, rf. are still normally coupled and TR, 7; are still normally 
coupled. In addition, the locations of tokens in the first game are interior 
to the locations of the tokens in the second game. Therefore, a token on G2 

must bounce next. 
If rL bounces first, this yields token positions (0, m) on GI and (1, m + 1) 

on G2, where m E [2, n - 11. The tokens are once again in positions that 
occur when no bounce occurs and reestablish an equal distance between 
tokens. 

If 7; token bounces first, we simply reverse the indexing of the path, 
and the argument in the previous paragraph holds, again re-establishing 
an equal distance between tokens. In other words, on every second bounce, 
the configuration is consistent with a game pair in which no bounces have 
occurred. 
Case 2: /? is odd. 
As established above, when /? becomes odd, the tokens are in positions 
(1, k) in G1 and (0, k + 1) in & and they are normally coupled. Therefore, if 
the game ends after an odd number of bounces, and no alignment occurs, 
then GI will finish faster than G2, since the tokens in GI are closer. 

In each case GI finishes at least as fast as G2. Therefore, 

SO M D , ~  (I' - 1, i + 1) 5 M D , ~  (i, i + 2) for i. Hence, MA,D (a, a + 1) = 
l + M ~ , ~ ( z , a + l ) .  1 
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1 Mp71+1 Lemma 6.2.2 Ifa + 1 5 151 then M?; (a, a + 1) = 1 + 7 A,D (a, a + 2). 

Proof. The proof is analogous to that of Lemma 6.2.1 with 61 = (Pm+l, A*, Dl a - 
l , a + l )  andG2 = (Pn+1,D*,A,a,a+2). 1 

We let A (D) be the angel (demon) player that always moves the token 
closest (furthest) to (from) an leaf. We prove that these concrete strategies 
are optimal. The crucial work occurs in the next 2 lemmas. 

Lemma 6.2.3 MA,D (i, j) 1 MA,b (if j) 

Proof. This proof is similar to that of Lemma 5.1.1. Let CA be the angel 
corrector player. CA plays like until A does not move like A, in which case 
CA responds by making the move that A would have moved. By Lemma 
6.2.1, we know A moves like A in token position (if i + 1). Furthermore, 
MA,D (if j) 2 MA,c~ (if j) . SO we prove MA,c* (if j) 2  MA,^ ( i f  j) . 

Consider the first instance, with token positions (i, j), where GI = (Pn+1, A, CAI if j) 
deviates from G2 = (Pn+1, A, D, i, j). By Lemma 6.2.1 and Lemma 6.2.2, 
j 2 i + 2. Recall that we are assuming i 5 n - j and so A must have moved 
7 ~ .  There are 2 cases to consider. Assume we have moved 7~ a total of r - 1 
times and 7~ a total of s - 1 times. 
Let B L ( ~ )  (BR(s)) denote the rfh (sth) bit of BL (BR). 
Case 1: BR (s) = 0 
The resulting token position in GI is (if j - 1). Because d(i, j) 2 2 the game 
continues. On the following move CA will move 7 ~ .  The resulting position 
is ( i+l , j - l )or( i -1 , j - l ) i fBL(r)  =OorBL(r) =l,respectively. 
Since we have predetermined bits for each token it must hold that after 
these two moves, the token position for G2 is (i + 1, j - 1) or (i - 1, j - 1) 
if BL (r) = 0 or BL(r) = 1, respectively. In other words, the games realign 
after 2 moves. 
Case 2: BR (s) = 1. 
Again the games realign after 2 moves. One move after the deviation, 
the resulting token position for G1 (&) is (i + 1, j + 1) or (i - 1, j + 1) if 
BL (r) = 0 or BL(r) = I, respectively. We argue similar to Case 1 to show 
realignment. 

Hence, we may deduce that any deviation of & from G2 results in the 
tokens realigning on the very next move, prior to the next deviation. 

To complete the proof, we must take into account the parity of d(i, j). 
If d(i, j) is odd then both games will always reach token position (k, k + 

1) at the same time. By Lemma 6.2.1, we know that in these positions 
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they will move the same token. Therefore, it must hold that in this case 
MA,c* (if j) = MA,D (if j) . 

If d(i, j) is even then tokens in the game maintain an even distance. 
Thus, in the step after a deviation, both games will either end or realign 
and continue. So in this case too, MA,CA (if j) = MA,D (if j). We conclude 
that MA,D (if j) 2 MAJD (if j) . I 

Lemma 6.2.4 MD,A (if j) 5 MDTA (if j) 

Proof. The proof is analogous to that of Lemma 6.2.3 with & = (Pn+l, D, CD, i, j) 
and 61 = (pn+l1 D, A, i, j) I 

We now prove our main results. 

Theorem 6.2.5 M?; (if j) = M?; (if j). 

Proof. We first show that MY; (if j) = M% (if j) . We must consider 3 cases. 
Casel: j = i + 1. 
If i = 0, then MA,D(OI 1) = 1 = MA,~(OI 1) by Lemmas 6.2.1 and 6.2.2. If 
i > 0, it follows from Lemma 6.2.1, Lemma 6.2.3 and Lemma 6.2.4 that 

So we have equality throughout. 
Case2: i = O a n d j z  i+2.  
We have a similar sandwiching of inequalities. Using Lemma 6.2.3 and 
Lemma 6.2.4 
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Case3: i > Oandj 2 i+2 .  
Employing Lemma 6.2.3 and Lemma 6.2.4 yields 

1 
5 1 + j (MD,A(~ + 1, j) + MD,A(~ - 1. j)) 

1 
1 + 5 ( M " ~  (i + I, j) + MDJA (i - I, j)) 

= MA,D(i,j). 

I 

Theorem 6.2.6 Mpntl (i, j) = ~22 (i. j) 
D,A 

Proof. As in the previous proof, we must consider 3 cases. 
Case 1: j = i + 1. 
We have 

1 2 I+-MAtD(i,i+2) 
2 

= MD,A(i,i+l)/ 

where the first inequality follows from 6.2.1 and the third inequality is due 
to Lemma 6.2.3. 
Case2: i = O a n d j >  i+2 .  

MD,A (Or j) 2 MD,A (0, j) 
2 1 + MA,D (1. j) 
L 1 + j) 
= MD,A(O,j). 

Case3: i > O a n d j >  i+2.  
We have 

1 
2 1 + 2 ( M ~ , ~ ( i , j + 1 ) + M n , ~ ( i / j - 1 ) )  

1 > 1 -I- ( M ~ , ~  (i. j + 1) + MlrD (i. j - 1)) 
- - M -  -(i ' D,A / I ) ,  
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where the first inequality follows from Lemma 6.2.4 and the third inequal- 
ity follows from Lemma 6.2.3. 1 

We hav,e shown that, when a choice exists, an optimal strategy for Angel 
is to always move the token closest to a leaf, and an optimal strategy for 
Demon is to always move the token farthest from a leaf. 
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6.3 Implications for Meeting Times 

With pure strategies for Angel and Demon established we can begin to de- 
rive expected game length relations. In particular, we can construct a graph 
G, on which we will place a distance token, as we did in the proof of Theorem 
3.2.3 and Section 5.2. 

Consider (Pn+l, A, D,i, j), where V(Pn+l) = (0,. . . , n) and li - jl is 
odd. We let 

V(G) = {a(i,j) I b' if j E V(Pn+1) where li - jl is odd) u 
{d(id) I if j E V(Pn+l) where 1 i - jl is even). 

As a pair of tokens moves within Pn+l, a single distance token moves around 
G according the following rule: if the tokens on are at vertices i and 
j, with li - jl odd, then the location ak,(dk,) of the distance token is given 
by k' = li - jl. We let E(G) be the set of arcs with the smallest cardinal- 
ity allowing the token to move along the vertices according to the rule. 
The distance token takes a uniform random walk on G, which has the 
same expected game length as (Pn+l, A, D, if j). We similarly construct G 
for (Pn+l, D,A,i, j) and li - jl even. 

We use the random walk of the distance token in order to find the ex- 
pected game lengths. 

Example 6.3.1 Let 

In particular, (M?) i,j is the expected game length on P5 when Angel moves 
last and the initial token position is (if j). ( M Z ) ~ , ~  is defined similarly. We 
calculate M? = {(M?), 1 i,j E {0,1,2,3,4)} and M? = {(M?), I i, j E 
{0,1,2,3,4)) through a system of linear equations. 
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We encounter some interesting patterns when comparing M?+' and 
MPn+~ (or equivalently M$ ( i ,  j )  and MZ ( i ,  j ) ) ,  for odd n and even 1 i - j  1 .  

Example 6.3.2 Let n = 7. We define a matrix A = {AiTj I 0 < i, j  < n),  
where AiJj = (M? ) i,j - ( M Y  

Note that for all even li - j l ,  

( M P B  ) ., . - ( M P B  ) . . - MPB 
A I ]  D l , ] -  A , D ( i l j ) - M ~ A ( i l j ) = O .  

In other words, when li - jl is even, then 

MPn+1 
A,D ( i ,  j )  = MZ ( i ,  j ) .  
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As we continue to examine these types of matrices, for odd n and even 
1 i - jl , we find that the pattern of M?; (i, j) - M ~ L  (if j) = 0 continues. 

Lemma 6.3.3 Suppose n is odd. For all even li - jl, M$ (if j) = M% (i, j). 

Proof. We normally couple = (Pn+1, A, D, i, j) with G2 = (Pn+l, D, A, i, j). 
In other words, we assign identical random bit-strings to the tokens on i 
and on j. 

Note that if i = n - j, li - jl is odd, and so the tokens do not begin in 
this position. The token closest to a leaf does not change unless we enter 
a symmetry position after our initial move. If there is a symmetry we may 
determine which token is moved; we choose to move the token not moved 
in the previous time step. 

In the first two moves, opposite tokens are moved by Angel and Demon 
in GI and G2. Therefore the tokens realign after the first two moves. Hence, 
the games continue to realign in every even round. In other words, if the 
token distance in GI is even, then the token positions are identical in GI and 
G2. This includes times when the tokens meet, which must occur in an even 
round. I 

Corollaly 6.3.4 Ifn is odd and i = n - j then MPn+l A,D (i, n - i) = M ~ L  (if n - i). 

Proof. Note that (n - i) - i = n - 2i is odd. We have 

where the second equality follows from Lemma 6.3.3. The potential token 
positions are the same regardless of which token is chosen. I 
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Open Problems 

In this paper we found optimal strategies for Angel and Demon on a va- 
riety of graphs. Our research began with the path, in hopes of finding op- 
timal strategies for Angel and Demon on a variety of tree structures. We 
conjecture that an optimal strategy for Angel and Demon on any tree is 
analogous to the optimal strategy we found for Angel and Demon on the 
path. Angel should always move the token closest to a leaf, and Demon 
should always move the token farthest from a leaf. Below we provide a list 
of open problems we obtained from Coppersmith et al. (1993b), Tetali and 
Winkler (1993), and our own research that the interested reader can pursue. 

In the two player game, what are optimal strategies for Angel and 
Demon on m-ary trees? 

In the two player game, what are optimal strategies for Angel and 
Demon on any tree? 

In the two player game, what are optimal strategies for Angel and 
Demon on any graph? 

Find more accurate bounds for game length on trees of order n. 

In the single player game, does there exist a graph such that a clair- 
voyant Demon can force the game to never end with probability > O? 

In the single player game, what are optimal strategies for Angel and 
Demon on any graph? 
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