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Abstract

Computers routinely grade multiple-choice questions by simply matching
them to an answer key. Can they effectively score essay exams? This report
examines an automated technique for grading short answer responses, us-
ing a grading system I have constructed. This system assigns a grade to a
student answer based on its similarity to a model answer provided by an in-
structor. Similarity is measured using 1) the semantic similarity between
isolated words, and 2) the similarity between the order of those words.
The performance of the system was evaluated by scoring actual exam
questions and comparing the computer-assigned grades to those given by
human instructors. In favorable situations, the correlation between the
computer- and the human-assigned grades was only a little less than be-
tween human instructors. Several characteristics of texts can cause the
performance of the system to degrade. For example, the system’s perfor-
mance is poor with answers that contain negations, truly unique phrases
or idioms, misspelled words, or contradictory information.
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Chapter 1

Introduction

1.1 Introduction & Motivation

The classic Bloom’s Taxonomy arranges learning objectives as a pyramid,
with knowing the facts at the bottom, tapering up to comprehension, ap-
plication, analysis, synthesis, and, at the top, evaluation (Bloom, 1969).
A learner needs to attain knowledge and skills at the lower levels be-
fore attaining them at the higher levels. Therefore, the assessment of the
knowledge acquired by the learner is crucial to the learning process. Mul-
tiple choice and true/false questions are appropriate at the lower levels
of Bloom’s Taxonomy since factual knowledge and understanding of vo-
cabulary can be tested in this format in a straightforward way. Addition-
ally, multiple choice questions can be automatically graded without so-
phisticated text understanding (i.e by simply matching to an answer key).
Multiple choice questions, however, might not honestly assess students’
higher order cognitive skills. They assess only student’s ability to choose
an answer correctly from a list of possible answers, rather than to freely
construct one.

Short answer questions, on the other hand, require students to formulate
their own free text response. They reinforce learning at the lower levels of
Bloom’s taxonomy and help develop higher cognitive skills, as they assess
understanding without offering clues or plausible choices. However, the
overhead and logistics of collecting and grading short answer responses
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and, more importantly, the lack of a fully automated system to handle
these tasks, made it harder to use the them, specially in large-scale edu-
cational testing. An automatic grading system could potentially reduce
the difficulties of assessment and decrease grading errors by providing a
“double check” for grades. It would also be consistent in the way it grades,
offering more objectivity in the grading process.

Researchers do not exactly know how humans grade text answers, but
common sense suggests that an instructor grades a text answer by deter-
mining the meaning of the answer. Unfortunately, meaning itself is an ab-
stract idea, requiring sophisticated analysis of the answer text in order to
understand its meaning. Despite the many advances in the field of natural
language processing, full comprehension of natural language text remains
beyond the power of machines. The inherent complexity and flexibility of
natural languages poses a challenge to implementing such a system. For
example, words have multiple meanings; a sentence can be paraphrased in
many different ways and retain the same meaning; the meaning of a word,
a sentence or phrase can change depending on the context surrounding it;
a small change in wording can drastically alter meaning.

Recent advances in natural language processing techniques allow us to
create systems that automatically grade free text responses without hav-
ing to fully understand answers. One such technique assigns grades by
measuring the semantic similarity between short texts. To evaluate the
possibilities and pitfalls of this approach, I have built a system that ex-
amines the similarity in isolated word meaning and word order between
a short essay and a model answer. In this paper, I present my approach
in detail and the results of experiments evaluating the performance of the
system in comparison to human graders.

1.2 Background

For the purposes of this project, I define a short answer question as a ques-
tion which warrants a response from a few phrases up to two sentences.
It has a specific set of answers that the examiner is looking for, and of-
ten has an objective criterion for correct and incorrect answers. Consider
the question: What is the difference between a variable and a "model term”?
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Such a question is constrained to a limited response; hence, it is appro-
priate to automate its grading. On the other hand, consider the following
open-ended question: “"Compare and contrast the course of industrialization
in western Europe v.s Russia”. Such a question might be answers in a vari-
ety of ways not anticipated by the instructors. Additionally, unlike a full
essay in which style and grammar may be important components of the
grade, the grade assigned to each response is primarily based on content
that indicates knowledge and understanding.

An automatic short answer grading system bears similarity to human graders.
Both of them have a grading schema of some form containing acceptable
answers for each question, which we will call model answers. Both of them
compare a candidate answer to the model answer(s) and assign a grade based

on how closely the candidate answer matches the model answer. An au-
tomatic grading system should recognize an answer as correct when it is

a paraphrasing of the model answer. Paraphrases may be due to different
syntax, different inflections of a word, or substitution of synonyms.

Consider, for example, the question What causes day and night?

Model Answer | The Earth spins on its axis,
Answerl The result of the rotation of our planet around itself.
Answer2 Clouds block out the sun’s light.

Table 1.1: Examples of short answer responses

A grading system should recognize that answer 1 is a correct answer de-
spite having very few words in common, as it is a paraphrasing of the
model answer containing different synonyms. It should also determine
that answer 2 is incorrect, as it has a completely different meaning from
the model answer.

One traditional automated approach to this problem is keyword analysis,
which analyzes the text by looking for the presence or absence of prede-
termined keywords, but it would simply fail to recognize correct answers
that do not contain any of predetermined key words, even if the answer
contains synonyms or different inflections of the key words.
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1.3 Aim

In this project, I aim to develop an automated system for grading free-text
responses for short answer questions. By an automated system, I mean a
system that does not require the grader’s manual work beyond construct-
ing one or more model answers. [ frame this problem as a text similarity
task. I develop a system that assigns a grade to a student answer based on
its similarity to a model answer provided by an instructor. I attempt to mea-
sure similarity using 1) the semantic similarity between isolated words,
and 2) the similarity between the order of those words. My objectives
are to evaluate the extent to which this approach can reproduce human
instructor grades and to examine what features of answers support and
undermine the ability to grade automatically.

The next section gives an overview of previous work on text similarity and
automatic grading. Chapter 3 describes my approach to tackle this prob-
lem, a walk-through example and some implementation details. Chapter
4 provides the results of brief experiments and an analysis of the correla-
tions with the human grader in order to evaluate the performance of the
system. Chapter 5 presents my conclusions and proposes future exten-
sions of this work.

1.4 Related Work

Several approaches have been suggested for the general task of measur-
ing the similarity between documents or texts and others specifically for
automatic grading of essays and short answer questions. Previous work
particularly relevant to my task falls into three rough categories:

¢ Information Extraction Approaches
¢ Corpus-Based Approaches
¢ Machine Learning Approaches

Below, I give a quick overview of the most relevant work from each of the
above categories in order to explore their strengths and limitations and
identify the challenges of automatic short answer grading.
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1.4.1 Information Extraction Approaches

Information extraction is a natural language processing technique that
turns the unstructured information embedded in texts into structured data
(Jurafsky and Martin, 2008). For the automatic grading task, information
extraction approaches are conceptually similar to my approach. All of
them attempt to match a student response to a model answer. Most infor-
mation extraction approaches require manually-crafted patterns, which if
matched, indicate that a question has been answered correctly. A pattern
represents all the paraphrases of the correct answer collapsed into one. In-
telligent Assessment Technologies developed a system called Automark
(Mitchell et al., 2002) that represents the content of the grading scheme as
syntactic-semantic templates. Student answers are first parsed and then
intelligently matched against the grading scheme template. Another IE
approach by Sukkarieh et al. (2003) uses information extraction techniques
to extract significant features from answers and match them with hand
crafted patterns. This approach requires skills, labor, and familiarity with
both domain and tools. A different system by Callear et al. (2001) com-
pares model answers with a student’s answer by parsing sentences into
concept dependency groups. Matching is carried out between the con-
cepts and dependencies found in students’ answers and those found in
the model answers. They claim to deal with grammatically incorrect and
ambiguous answers. This approach is programming intensive, and in-
comprehensible to normal instructors, and therefore was not useful for
this project.

1.4.2 Corpus-Based Approaches

Corpus-based approaches are based on statistical information of words in
a huge corpus ( a collection of written texts). A well known corpus-based
approach is the Intelligent Essay Assessor (IEA) (Foltz et al., 1999). It ana-
lyzes the textual context using Latent Semantic Analysis (LSA) (Landauer
et al., 1998). LSA is a technique primarily used for information retrieval
tasks. It is based on word-document co-occurrence statistics (such as TF-
IDF!) in the training corpus represented as a matrix. Each document is

'Document Frequency-Inverse Document Frequency
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represented using its words as a vector in n-dimensional space, where n
is the number of words in the document. The matrix is decomposed by
singular value decomposition (SVD) into the product of three other ma-
trices. The dimension of the diagonal matrix is reduced by eliminating
the small singular values. The original matrix is then reconstructed from
the reduced dimensional space. The similarity between two documents is
measured by computing the similarity between the vectors representing
for each the document in the reduced dimension space.

In IEA, LSA is first trained on domain-specific corpus. Based on this train-
ing, LSA derives a matrix representation of the information contained in
the domain. A student essay is then represented by an LSA vector based
on the combination of its words. This vector can then be compared with
vectors for essays in corpus. The angle between the two vectors represents
the degree of their similarity (Foltz et al., 1999). LSA evaluates a text based
on its choice of words. It does not take into account any structural infor-
mation and requires a large corpora as basis for comparison. Additionally,
it relies on the assumption that more similar essays share more of the same
words. However, in short essays, word co-occurrence may be rare. Thus
the LSA is more appropriate for larger texts.

Kanejiya et al. (2003) developed a Syntactically Enhanced LSA (SELSA)
system, which generalizes LSA by considering a word along with its syn-
tactic neighborhood given by the part-of-speech tag of its preceding word,
in order to add context to LSA. They concluded that LSA is slightly better
than SELSA in terms of the correlation with human graders. But SELSA
is at least as good as LSA in terms of the mean absolute difference mea-
sure.

The E-rater system (Burstein et al., 2001) is another corpus-based approach,
designed to produce holistic scores for essays based on the linguistic fea-
tures of effective writing that faculty readers typically use: organization,
sentence structure, and content. It uses actual essays scored by instructors
to predict the holistic score a grader would give to an essay. The system
uses shallow parsing techniques to identify syntactic and discourse fea-
tures. It does not assess text content at the formative level and, therefore,
is not suitable for the short answer questions.

C-rater is another similar system developed by Leacock and Chodorow
(2003) at the Educational Testing Service (ETS). It is based on analyzing
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the logical relations between the syntactic components for each sentence in
the answer. It tries to match the syntactical features of a student response
(subject, object, and verb) to that of a set of correct responses. It takes word.
order into account. Again, this approach is inappropriate for short answer
essays as it doess not assess essays at the formative level.

1.4.3 Machine Learning Approaches

As mentioned before, information extraction approaches require manu-
ally crafted patterns. Constructing these patterns, however, is a labo-
rious process that needs expertise both in the domain of the examina-
tion, and in computational linguistics. To save time and labor, various
researchers have investigated machine learning approaches to learn IE
patterns and automate the writing process. For example, Sukkarieh et al.
(2004) try to improve and refine their earlier system (Sukkarieh et al., 2003)
using machine learning techniques such as the Nearest Neighbor Clas-
sification techniques. They require a corpus to be annotated, indicating
which sentences in a text contain the relevant information for particular
pattern. Then more patterns can be learned by bootstrapping those an-
notated patterns. Pulman and Sukkarieh (2005) compare several machine
learning techniques, including inductive logic programming, decision tree
learning, and Bayesian learning to the earlier information extraction tech-
niques. They conclude that machine learning methods are not accurate
enough to replace the hand-crafted, pattern-matching approach.

Hatzivassiloglou et al. (1999) propose an approach for the more general,
but related task of text similarity. In this approach, a sentence is repre-
sented in a vector consisting of values of primary features, such as word
co-occurrence, matching noun phrases, and composite features, such as a
pair of nouns appear within 5 words from one another in both texts. Sim-
ilarity between two texts is determined using a classifier trained over a
corpus of manually marked pairs of units texts. The drawback of this ap-
proach is that the preparation of a training vector set could be an impracti-
cal, and time-consuming task. Therefore, it is inappropriate the automatic
short answer grading task.
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1.4.4 Semantic Text Similarity

The approaches I listed above have several weaknesses. First, some of
them require the grader’s manual work for preprocessing the text or con-
structing answer patterns. Second, some of them require the availability
of large training data. Specifically some approaches would require large
numbers of graded answers to the particular question the instructor wants
to ask. Hence, they cannot be easily adapted to other domains. Third,
some methods compute similarity according to the co-occurring words in
the texts. They work well for long texts because they have adequate infor-
mation for manipulation by a computational method. But are much less
effective with shorter texts.

To address these issues, I tackle this problem from an arguably simpler
approach. My approach does not require sophisticated analysis and un-
derstanding of the text in the answer, training data or grader’s manual
work, beyond providing a model answer. I frame the problem of automatic
grading as a text similarity task. A candidate answer is assigned a grade
based on its “similarity” to a model answer provided by an expert in the
field (e.g instructor). The similarity between the two pieces of text is mea-
sured as a function of 1) the semantic similarity between isolated words,
and 2) the similarity of the sentence structure, approximated by word or-
der. The next chapter provides details of my approach.




Chapter 2

A Text Similarity Approach

2.1 Overview of the system

I frame the problem of automatic short answer grading as a text similarity
task. Two texts are similar if they convey the same information. Thus, my
approach is to determine the similarity between the candidate answer and
the model answer at the semantic level. The meaning of a sentence is con-
veyed by its component words and their structure (i.e order). Therefore,
my approach is to derive text similarity from semantic and structural in-
formation contained in the compared sentences. I use two similarity func-
tions and combine them together to obtain a single score: 1) Word-to-word
semantic similarity, and 2) word-order similarity that incorporates syntac-
tic information. Figure 2.1 shows the procedure for computing the text
similarity between two texts. Compared texts progress through a number
of preprocessing steps before measuring the text similarity and producing
the final score. These stages include tokenization, part-of-speech tagging,
normalization, and lemmatization. I will go through all of these in detail
in the next section.

After the preprocessing stages, I end up with two list of words represent-
ing each answer. Then, using a word-to-word semantic similarity func-
tion, I derived text-to-text semantic similarity. In order to incorporate
structural information, I measure the similarity of the order of the matched
words in the two texts. I form a word-order vector for each text with re-
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gard to the other text, and then use the a similarity metric as an indicator of
how close the word order is to the answer. Finally, the overall text similar-
ity is derived by combining semantic similarity and word-order similarity
into a single score.

Normalized answers

‘ Tokenization !

Madel Answer

2
: "\ h 4 y . R
Lexical s g i Semantic similarity score
l POS Tagging ~«y Semantic

Database | ‘I,
«" Similarity

: - 0 O 1l

) : Normalization  ; - —%}7 vera
Candidate Answer L — [\Corpus T Similarity
[Lemmatizaton /| 222 (Wordorder ]
Similan'ty Word order similarity
A r score

. Normalized answers
Pre-processing

Figure 2.1: Overview of the System’s Structure

The following sections present a detailed description of each of the above
steps.

2.2 Preprocessing

Before measuring text similarity, the incoming text is preprocessed to elim-
inate any extra noise, and focus on the essence of the text. Consider for ex-
ample the following sentence obtained from the dataset used in this study
as described in section 3.1, which I will use throughout this section to il-
lustrate each individual preprocessing step.

Interaction terms included when the role of an explanatory vari-
able is modulated by another explanatory variable
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2.2.1 Tokenization

Tokenization is the process of breaking down a string into identifiable lin-
guistic units that constitute a piece of language data.

First, if the answer text consists of more than one sentence, it is broken
down into separate sentences. Then each sentence is tokenized into words.
Note that tokenizing a string by splitting on whitespace is not sufficient, as
it does not eliminate other non-alphabetical characters attached to words
such as parenthesis or punctuations. For example “(word,” has to be split
by the comma and the parenthesis.

When the string is tokenized, we obtain a list of words representing the
full text in their original order.

[Interaction,
terms,
included,
when,

the,

role,

of,

an,
explanatory,
variable,

is,
modulated,
by,

another,
explanatory,
variable]

2.2.2 Part-of-Speech Tagging

Part-of-speech (POS) tagging is the process of classifying words into their
parts-of speech (nouns, verbs, adjective, etc) and labeling them accord-
ingly. A well known technique for POS tagging, the Hidden Markov Mod-
els, is a statistical model in which the system being modeled is assumed to
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be a Markov process with unobserved state (Jurafsky and Martin, 2008).
The HHM tagger chooses the most likely POS-tag sequence. that maxi-
mize the product of word likelihood and tag sequence probability.

Applying this step results in:

(Interaction, NN), (terms, NNS), (included, VBD), (when, WRB),
(the, DT), (role, NN), (of, IN), (an, DT), (explanatory, NN), (vari-

able, J]), (is, VBZ), (modulated, VBN), (by, IN), (another, DT),

(explanatory, NN), (variable, J])

The labels next to each word identifies the POS tags. For instance NN for
singular nouns, NNS for plural nouns, VBD for past tense verbs, WRB for
adverbs, etc.

2.2.3 Normalization

Normalization involves eliminating all special characters, punctuations,
capitalization, and stop words (such as prepositions, pronouns and help
verbs e.g can, will, may), as they contribute less to the meaning of a sen-
tence than other words. Applying this process to the example,

[(interaction, NN), (terms, NNS), (included, VBD), {when,"ARB),

{the; DT, (role, NN), {efIN), an; BF), (explanatory, NN), (vari-

able, J]), €s-VBZ), (modulated, VBN), by, (another, DT),
(explanatory, NN), (variable, JJ )]

The normalized output is

[(interaction , NN), (terms , NNS), (included , VBD), (role ,
NN), (explanatory , NN), (variable , JJ), (modulated , VBN),
(another , DT), (explanatory , NN), (variable, JJ )]

2.24 Lemmatization

Lemmatization is the process of removing affixes of words to reduce the
word to its base, ensuring that the resulting word appears in the dictio-
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nary. For example, the verb ‘'went’ lemmatizes to ‘go” and ‘'women’ lem-
matizes to ‘'woman’.

[(interact , NN), (term , NNS), (include , VBD), (role , NN), (ex-
planatory , NN), (variable , J]), (modulate , VBN), (another ,
DT), (explanatory , NN), (variable , J])]

2.3 Word-to-Word Semantic Similarity

My model of the semantic similarity of two texts first includes a function
of the semantic similarity of their component words. There is extensive
literature on word-to-word similarity metrics. These range from distance-
oriented measures computed on semantic networks, such as the WordNet,
to statistical metrics learned from large text collections (Budanitsky and
Hirst, 2001). Semantic networks organize concepts into a hierarchical tree
of concepts (see section 2.8.1 for more details on semantic networks).

In distance-oriented metrics, which are based semantic networks, the simi-
larity between two concepts in the hierarchy can be measured as a function
of the shortest path connecting them in that space and/or the their depth
in the taxonomy (Wu and Palmer, 1994; Leacock et al., 1998).

Some statistical metrics use corpora of web content obtained from web
search engines. For example, Turney (2001) defined a Pointwise mutual
information (PMI-IR) measure, using the number of hits returned by a
web search engine, to recognize synonyms. Bollegala et al. (2007) propose
a method which integrates both the number of hits returned for a query
and lexico-syntactic patterns extracted from snippets to measure semantic
similarity between a given pair of words. The number of hits for the query
P AND Q can be considered as a global measure of co-occurrence of words
P and Q, while snippets provide useful information regarding the local
context of the query term.

A number of hybrid approaches have been proposed that combine a knowledge-

based lexical taxonomy, with information content from corpus statistics
(Resnik, 1995; Jiang and Conrath, 1997; Lin, 1998). For example, Jiang
and Conrath (1997) measure the information content of two concepts by
computing their least common subsumer (LCS) in WordNet. Information
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content is a measure of the specificity of a concept, and the LCS of two
concepts is the most specific concept that is an ancestor of both concepts
in the semantic hierarchy. Budanitsky and Hirst (2001) provide an exten-
sive comparison of these approaches and conclude that Jiang and Conrath
(1997)’s approach performed best.

Li et al. (2003) suggest a new approach which outperformed all the pre-
vious approaches. They propose that the similarity between two words
sim(w1,w,) be a nonlinear function of the shortest path length between the
two words (/) and depth in of the least common subsumer in the seman-
tic hierarchical (). The nonlinear function keeps the interval of similarity
between [0, 1].

When the path length decreases to zero, the similarity monotonically in-
creases toward the limit 1; when the depth of the subsumer increases to-
ward infinity, the similarity monotonically increases to the limit 1. They
propose the following formula for similarity:

ePh — g—Bh
" P 1 o=Ph

sim(wy,wy) = e~

(2.1)
where « € [0,1] and B € [0,1] are parameters scaling the contribution
of shortest path length and depth, respectively. The optimal values of &
and B are dependent on the knowledge base used and can be determined
using a set of word pairs with human similarity ratings. They report that
the optimal parameters for WordNet are: « = 0.2 and B = 0.6.

In this project I use the metric proposed by Li et al. (2003) as they reported
the highest correlation with human judges comparing to all the other word
similarity metrics. I also follow Li et al. (2003)’s example of drawing upon
the WordNet (Miller, 1995) as the semantic knowledge-base.

2.4 Sentence-to-Sentence Semantic Similarity

A sentence is composed of words, ordered in a particular way. In the pre-
vious section, I define a metric that determines the semantic similarity be-
tween individual words. Using this metric, I measure the semantic simi-
larity between sentence A and sentence B in the following way. First both
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sentences are preprocessed as described is section 2.2. For each word in
sentence A, I pick the word in sentence B that has the maximum semantic
similarity to that word in A, according the word similarity metric.

Each word has an information content, which I use to scale its contribution
to the sentence’s semantic similarity. Information content is a measure
of specificity of a word, derived from its probability in a corpus. Words
that occur with a higher frequency in a corpus contain less information
than those that occur with lower frequencies (Resnik, 1995). Specific words
have more content, hence contributing more to the meaning of the whole
sentence. Based on this intuition, I weight a word using the information
content derived from the Brown corpus. By doing so, I can give a higher
weight to a semantic matching identified between two specific words (car,
motorcar) and give less importance to the similarity measured between
generic concepts (entity, object).

The similarity scores are multiplied by their respective information con-
tent. The results are then summed up, and normalized by the sum of all
individual information content scores.

The same process is repeated to determine the most similar words in sen-
tence A starting with words in sentence B. Finally the resulting similarity
scores are combined using a simple average of the similarity score of each
sentence with respect to the other.

To formalize this process, consider the following two sentences:

A= [wl,...,w,-,...,wm],Bz [vl,...,v]-,...,vn]

I construct an m X n semantic similarity matrix, where m is the number of
words in sentence A, and 7 is the number of words in sentence B, after
they have been preprocessed.

o1 .. 0'1,]' ceo Oin

Sim_Matrix = | 0y ... Oij ... U0Oig

Umll oo Um/] PR Um,n
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The 0;; entry in the matrix is the semantic similarity score computed be-
tween w; in A and w; in B using the method presented in section 2.3, for
alli = 1..m and j = 1...n. More specifically, the score is determined in the
following way:

e If w; is the same word as v, then the score is set to 1.0, indicating
perfect match.

e If both words are tagged as proper nouns, the score is determined
using a string matching algorithm which determines the similarity
of two strings based on the longest common sequence. The rea-
son I used string similarity here is that semantic similarity based on
the WordNet can not provide any similarity value between proper
nouns, because they do not exist in the dictionary. Also, if one proper
noun is slightly misspelled, the string similarity metric will still be
able to recognize it and a give a fairer score.

e If the score obtained from the semantic similarity metric is less than
a preset threshold, then score is set to 0.

e Otherwise, the score is set to the same score obtained from the se-
mantic similarity metric.

[ use a threshold because that the similarity scores may be very low, indi-
cating that the words are highly dissimilar. In this case, I would not want
to introduce such noise to the metric.

After the similarity matrix is constructed, for each word w; in A, I pick a
word v; in B that has the highest semantic similarity score. The similar-
ity score is then weighted with w;’s information content. Next, the same
process is applied for each v; in B. These weighted similarities are then
summed up and normalized with the sum of the information contents. Fi-
nally the resulting similarity scores are combined using a simple average.
The formula below summarized the semantic similarity function between
the two sentences A and B.

137, Sim(wy, B) * ic(w;) N Yo Sim(vj, A) * ic(vj)
2 ioic(wi) S ic(v))

semanticSim(A, B) =

(2.2)
where Sim(w, X) is the highest semantic similarity between a word w in
another in the text X. The term ic is a function for obtaining the informa-
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tion content of the given word.

This semantic similarity score has a value between 0 and 1, with a score
of 1 indicating identical sentences, and a score of 0 indicating no semantic
overlap between the two sentences.

2.5 Word Order Similarity in Sentences

In order to incorporate the basic structural information carried by a sen-
tence, I take into account the similarity in word order in the two sentences.
The idea here is to compare the order of words in each matching word-
pair. Each word in A is assigned an index from 1 to m, based on the posi-
tion of that word in A. The process is repeated for B. Based on matching
word-pairs (determined in the previous section), I create two word-order
vectors. The first vector simply represents the words in A. The second vec-
tor’s components are the positions in B of the words that pair with those
in A. Consider, for example, the following matches have been determined
between sentence A and sentence B:

Sentence A | Sentence B
w1 %!
w» U3
w3 U5
Wy v7

Then I end up with vectors r; = and rp = representing the word

1
3
5
7

B> W N =

order of the two sentences.

Then to compute the similarity between the two word order vectors I used
the cosine similarity, which is defined in the following way:
-n

OrderSim = ————~—
1]l {l72]]

The cosine similarity metric basically calculates the geometric angle be-
tween these two vectors, which corresponds to score of similarity between
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the two samples. The resulting similarity ranges from 0 meaning com-
pletely different order, to +1 meaning exactly the same order, and in-
between values indicating intermediate similarity or dissimilarity.

The overall word order similarity score combines the word order similar-
ity of each sentence in turn with respect to the other in a simple average.
That is, I first compute the word order score for words from A matched to
words from B, and the other way around, words from B matched to words
from A. The two scores are then averaged.

Intuitively, structural information carried by the sentence contributes less
to the overall meaning conveyed by the sentence. When determining the
overall similarity between two sentences, then, word order similarity will
be weighted less compared to the semantic similarity.

2.6 Overall Measure of Similarity

The main goal in this study is to automatically compute a score between
0 and 1 that indicates the similarity between the model answer M and the
candidate answer C at the semantic level for the automatic grading task.
Semantic similarity represents the lexical similarity. Word order similarity
provides information about the relationship between words: which words
appear in the sentence and which words come before or after other words.
Both semantic and structural information (in terms of word order) play

-a role in conveying the meaning of sentences. Thus, the overall sentence
similarity is defined as a combination of semantic similarity and word or-
der similarity:

Sim(M,C) = («)SemanticSim(M,C) + (1 — a)OrderSim(M,C)  (2.3)

where « decides the relative contributions of semantic and word order in-
formation to the overall similarity computation. Since the structure plays
a less important role for semantic processing of text, (1 — a) should be a
value less than 0.5.

An answer text may consist of multiple sentences. In that case, the answer
text is first broken down into its sentence components. Then for each sen-
tence in the model answer, I find the maximum similarity score that can
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be obtained by evaluating it against each sentence in the candidate answer
using equation 2.3. The final similarity score is then computed by taking
the average of all maximum sentence similarities.

Overall, the similarity method requires two parameters to be determined
before use: a threshold for word semantic similarity (below which the
similarity score is set to 0) and a factor a for weighting the significance
between semantic information and structural information. Since syntax
(approximated by word order) plays a less important role for semantic
processing of text, I weight the semantic part higher, 0.85 for a. For the
word similarity threshold, I need a threshold that eliminates any unneces-
sary noise and, at the same time, captures the semantic similarity between
words. If the threshold is too small, it will introduce a lot of noise. If it
is too large, it may not capture some important similarities. Both cases
will worsen the performance of the system. After several empirical ex-
periments I found that 0.40 to be a good threshold for the word-to-word
semantic similarity.

2.7 A Walk-Through Example

In this section I illustrate how the system works as a whole by walking
through a simple example. Given a model answer and a candidate answer
for a question, as shown below, the system determines a score for the can-
didate answer that reflects its similarity to the model answer. Consider for
example the question “What does a function signature in Java include?” A
model answer M and a candidate answer C for this question are:

M = “The name of the function and the types of the parameters”
C = “It includes the name of the method and the types of its arguments”.

Note that answers differ in both details that are proponent to meaning (e.g.
”of the” v.s ”of its”) and in using synonym pairs- e.g (“method /function”
and “parameter/argument”).

First, the two texts are preprocessed. This step includes tokenizing the
text, tagging parts-of-speech , eliminating all special characters and punc-
tuations, removing all stop words and lemmatizing the rest of the words.
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After the preprocessing we end up with the following list of words. Note
that the order of the words is retained:

M = [(name , NN), (function , NN), (type , NNS), (parameter , NNS)]
C = [(includes , VBZ), (name , NN), (method , NN), (type , NNS), (argument , NNS)]

Once the texts are preprocessed, an m x n semantic similarity matrix is
constructed, where m is the number of words in M and # is the number of
words in C, using the word-to-word semantic similarity metric described
in section 3.3. The resulting matrix is shown below. As mentioned before,
I used 0.40 as a threshold for word-to-word semantic similarity. In other
words, if the similarity score obtained from the metric is < 0.40, the score
is converted to 0 to eliminate unnecessary noise. Consider for example
the word pair type and function. The similarity score obtained from the
metric is 0.18, which is < 0.40, and therefore, the score is converted to 0.
On the other hand, the similarity score between parameter and argument is
1.0, so it is returned. Note that if Wordnet were made specific for computer
science language uses, then function and method would have a much higher
similarity

includes name method type argument

name 0.0 1.0 00 - .55 0.0
function 0.0 0.0 047 0.0 0.0
type 0.0 0.63 0.0 1.0 0.0

parameter 0.0 0.0 0.0 0.0 1.0

After the matrix is constructed, for each row, the column with the highest
value is selected. Then the score is weighted using the information content
of the row’s word. After that the information content scores (measured
from the probability of encountering an instance of concept c in a large
corpus) and the weighted similarity scores are summed together. Table
2.1 illustrates these steps.

The same process is repeated but this time starting with words in each
column representing words in the candidate answer.Table 2.2 summarizes
these results. '
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Using equation 2.2, the overall semantic similarity score is computed. As
shown below:

. 1\ 3041 29.59
SemSim = <§> 3499 + a1 0.85

The next step is to compute word-order similarity between the two sen-
tences in order to incorporate basic structural information. The system
then assigns each word a word-order based on its position in the lists.
Each word in M is assigned an order value from 1 to m, based on the po-
sition of that word in M. For example, the word type is assigned 3 and the
word parameter is assigned 4. The same process is done for C. So the word
name is assigned number 2, etc. Based on the word-to-word semantic sim-
ilarity results from table 2.1, the system creates two word-order vectors.
The first vector simply represents the words in M. The second vector’s
components are the positions in C of the words that pair with those in M.
This is illustrated in the table below:

Word1 | Order| Word2 | Order
name 1 name 2
function 2 method 3
type 3 type 4
parameter 4 argument 5
1 2
So we end up with vectors r; = ; and rp = Z representing the word
4 5

order of the two sentences.

Word 1 Word 2 SimScore | Information Content | Weighted Score
name name 1.0 8.50 8.50
function | method 0.47 8.65 4.07
type type 1.0 7.91 791
parameter | argument 1.0 9.93 9.93

Sum 34.99 30.41

Table 2.1: Word-to-word semantic similarity scores weighted with information content
for rows representing words in the model answer.
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Word 1 Word 2 SimScore | Information Content | Weighted Score
includes | parameter 0.0 1.0 0.0
name name 1.0 8.50 8.50
method | function 0.47 6.77 2.46
type type 1.0 791 791
argument | parameter 1.0 9.93 9.93

Sum 35.11 29.52

Table 2.2: Word-to-word semantic similarity scores weighted with information content
for columns representing words in the candidate answer

I then use Pearson’s correlation to compute the similarity between the two
vectors, which in this case is OrderSim; = 1.0

Again, the same process is repeated but now using the word-to-word se-
mantic similarity results from table 2.2 as shown below.

Word1 |order|{ Word2 | Order
name 2 name 1
method 3 function 2
type 4 type 3
argument 5 parameter 4
2 1
We obtain the vectors r{ = i and rp, = g , and their similarity score is
5 4

OrderSim, = 1.0.

The overall word order similarity score is the average of these two scores,
which is OrderSim = 1.0

Finally, the overall sentence similarity is defined as a combination of the
semantic similarity and word order similarity. Since semantic similarity
plays a more important role than word order similarity, it is weighted
more heavily. Using Eq. 2.3, the overall similarity score is

(a)SemSim + (1 — a)OrderSim
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where &« = 0.85, which decides the relative contributions of the semantic
similarity and word order similarity to the overall all similarity. Therefore
the overall similarity score is 0.87.

2.8 Implementation Details

I implemented the system with Python because it is a simple yet powerful
programming language with excellent libraries for natural language pro-
cessing. I also use a third party library called Natural Language Toolkit
(NLTK) (Bird et al., 2009) that supplies basic classes and standard inter-
faces for performing the preprocessing tasks such as tokenization, part-of-
speech tagging and lemmatization. It also provides an efficient interface
to access the WordNet corpus.

2.8.1 WordNet Lexical Database

For the word-to-word similarity metric, I use the WordNet lexical database.
WordNet is a manually-constructed lexical system developed by George
Miller et al. (1990) at the Cognitive Science Laboratory at Princeton Uni-
versity. Originating from a project whose goal was to produce a dictionary
that could be searched conceptually instead of only alphabetically, Word-
Net evolved into a system that reflects current psycholinguistic theories
about how humans organize their lexical memories.

The basic object in WordNet is a set of strict synonyms called a synset. By
definition, each synset in which a word appears is a different sense of that
word. WordNet consists of four main divisions, one each for nouns, verbs,
adjectives, and adverbs. WordNet 3 (2006), the version of WordNet used in
this study, contains 117, 659 synonym sets and 20,6941 senses in all of the
4 divisions. Because synsets contain only strict synonyms, the majority of
synsets are quite small. Similarly, the average number of senses per word
is close to one. Figure 2.2 illustrates a fragment of the semantic hierarchy
of WordNet.
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Object
Artifact
Instrumentality Articie
Conveyance '
l Ware
Vehicle ‘
/\ Table Ware
Motor Vehicle Wheeled Vehicle ‘
l Cutlery
Cycle l
l Fork
Bicycle

Figure 2.2: An example of WordNet Lexical Database, from most abstract to most specific

2.8.2 Information Content

As discussed in section 2.4, information content is a measure of specifici-
ty /significance of a word. The value of the information content of a word
is derived by estimating the probability of occurrence of this word in a
large text corpus. Hence, words that occur with a higher frequency in a
corpus contain less information than those that occur with lower frequen-
cies (Resnik, 1995). Following this notation, Jiang and Conrath (1997) sug-
gested the following formula to quantify the information content (IC) of a
word:

IC(w) = logP™1(C) (2.4)

where P(w) is the probability of encountering an instance of a word w.
NLTK provides a utility, called WordNetICCorpusReader , which reads in
a file of a precomputed probabilities of all word in the WordNet based on
their occurrence in a given corpus. In this case, I used the Brown corpus.
Below I provide more detail about it.
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Algorithm 1 Pseudo-code to computer information content of a word

Input: corpus C, word w
Output: The information content of w based on C corpus statistics.

corpusStats « WordNetICCorpusReader(C)
P = corpusStats|w)

ic « —log(P)

return ic

Brown Corpus

The Brown Corpus (Francis and Kucera, 1979) of Standard American En-
glish was the first of the modern, computer readable, general corpora.
Compiled by Francis and Kucera of Brown University, it was the first
million-word electric corpus of English. The corpus contains text from
500 sources. Sources were sampled from 15 different text categories, such
as news, editorial, government, and so on, which provided a wide variety
of vocabulary.

2.8.3 Program Structure

The program has 4 main classes:

e Word: represents an individual word in the text. It has attributes
such as the actual string representation of the word, its part-of-speech
tag, sense (meaning) and specificity (its information content). It also
contains the logic measuring the semantic similarity between this
word and another using the method described in section 3.3 and the
string similarity.

e Response: represents the candidate answer and the model answer.
A response object is made up of word objects representing the individ-
ual words in the answer text. The response class also has attributes
such as the string representation of the answer text, grades assigned
by humans, grades assigned by the system and problem ID it be-
longs to. As well it contains the logic for the preprocessing step and
computing overall similarity with another response object.
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e Utils: contains mainly utility functions for reading-in and parsing
input files.

e GradingEngine: puts everything together. It has the logic for au-
tomatically grading a list of answers by calling the text similarity
function in the response class. It also has a function for evaluating the
performance of the program, such as computing the Pearson corre-
lation efficient.

2.8.4 Semantic Word Similarity Function

The function semanticSimilarity() in the word class measures the se-
mantic similarity between this word and a given word. It returns a score
between [0, 1]. As discussed in section 3.3, it uses Li et al. (2003) word sim-
ilarity function with WordNet Lexical database. Each word (sense) in the
WordNet has one or more synonyms. This function find the maximum se-
mantic similarity score that can be obtained by pairing up each synonym
from the first with another synonym from the other word. Algorithm 3
shows the pseudo-code for this function.

Algorithm 2 Pseudo-code for the semantic word similarity function

Input: word1, word2
Output: Semantic score between Word1 and Word2 between [0,1]

highestSim «— 0
for all synl in wordl.synonyms do {//synonyms from the WordNet}
ie—i+1
for all syn2 in word2.synonyms do
similarity «— Li_Similarity(synl, syn2)
if similarity > highestSim then
highestSim «— similarity
end if
end for
end for
return highestSim
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2.8.5 String Similarity Function

The function stringSimilarity () in the word class measures the “similar-
ity” of two word strings. It is used to determine the similarity between
proper nouns identified in the text. It returns a score between [0,1], where
as a rule of thumb, a value over 0.6 means the strings are close match.
To implement this function, I used the built-in string similarity function
in Python called sequenceMatcher, which finds the longest contiguous
matching subsequence. The same idea is then applied recursively to the
pieces of the sequences to the left and to the right of the matching subse-
quence. The algorithm then computes the sequences similarity score by
dividing the 2 x the total number of matches found by the total number of
characters in both sequence. More formally, %, where S is the number of
matching sequences and L is the sum of length of the two strings.

Algorithm 3 Pseudo-code for the string similarity function

Input: word1, word2
Output: String Similarity score between word1 and word2

totalLength — len(wordl) + len(word2)

matches — SequenceMatcher(wordl, word2) {//a Python function re-
turns list of matching sequences}

simScroe «— 2 x matches /totalLength

return simScroe

2.8.6 Sentence Similarity Function

The function SentenceSimilarity(), in the Response class, measures the
similarity between two sentences. It returns a score between [0, 1]. Recall
that a sentence is made up of Word objects. The function takes two sen-
tences, the value of « (which decides the relative contributions of semantic
and word order similarity to the overall similarity computation), and word
similarity threshold value as inputs. Then it computes the similarity of the
two sentences using semantic word similarities and word order similari-
ties. It firsts constructs an m x n semantic similarity matrix, where m is the
number of words in sentencel, and # is the number of words in sentence2,
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after they have been preprocessed. The i, entries in the matrix are the
semantic similarity score computed between each word in sentencel and
sentence2. After that, aggregate_similarity() function aggregates the
similarities for each sentence with respect to the other, as described in
section 2.4. aggregate_similarity() then returns the semantic similar-
ity score and word order similarity score. The semantic similarity scores
and the order word similarity scores are then averaged. The final score
returned by SentenceSimilarity() is defined as a combination of the se-
mantic similarity and word order similarity. Algorithm 4 and 5 illustrates
this function.

Algorithm 4 Pseudo-code for the sentence similarity function

Input: sentencel, sentence2, «, word similarity threshold
Output: Overall sentence Similarity score between sentencel and sen-
tence2

m «— len(sentencel)

n « len(sentence?)

similarityMatrix « BuildMatrix(sentencel, sentence2, threshold)
semSim1, orderSiml « aggregate similarity(similarityMatrix, sentencel)
semSim2, orderSim2 «— aggregate_similarity(T (similarityMatrix), sentence2)
{

the matrix transposed }

semSim «— (semSim1 + semSim2) /2

orderSim «— (orderSim1 + orderSim2) /2

B—1—u

overallSim «— o * semSim + B * orderSim

return overallSim
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Algorithm 5 Pseudo-code for the aggregate_similarity function

Input: The similarity matrix (similarityMatrix) and the sentence T.
Output: Semantic similarity score and word order similarity score

simSum « 0.0
icsum < 0.0
r1 = [] {/ /word order vectorl}
rp = [] {/ /word order vector2}
for row in similarityMatrix do
max «— getMaxIndex(Matrix, row) {/ /returns the column index with
maximum similarity value in row row}
sim «— similarityMatrix[row|{max]
if simScore > 0 then
ic - T[row].ic() {//information content for the word in row row}
simSum+ = sim * ic
icSum+ = ic
rl.append(row)
r2.append(max)
end if
end for
simScore < simSum/icSum
orderScore «— cosSim(rl,r2)
return simScore, orderScore
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Chapter 3

Experiment & Results

In order to evaluate the performance of the system, I conducted several
experiments designed to answer the following research questions:

1. How does the system perform in comparison to human graders?

2. What features of an answer made it easy or difficult to grade auto-
matically?

3.1 Datasets

To answer these questions, I used two datasets. The first dataset con-
tained four short answer questions from an introductory statistics course,
with answers provided by undergraduate students taking the course at
Macalester College. The second dataset I obtained from a similar study?,
contained questions from an introductory course in computer science with
answers from an undergraduate class as well. In both datasets, each ques-
tion had at least 30 possible answers. '

Questions in the datasets had slight variations in the degree of openness
(i.e required different answer lengths). However, all of them fell under the

IThis dataset can be downloaded from http:/ /lit.csci.unt.edu/index.php/Download
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short answer question category. Some of them required short phrase re-
sponses (2-5 words in length), and others required the generation of short
explanatory responses (1-2 sentences in length).

Table 3.1 shows a sample of the dataset and includes the grades that were
assigned by the two instructors.

Question: Why would you want to include an interaction term in a
mode]?

Model Answer: When one explanatory variable is modulated by the || 4 | 4
value of another explanatory variable.
An interaction term is necessary when one explanatory variable influ- || 4 | 4
ences how another explanatory variable affects the model.
when one model term modulates how another model term affects the || 4 | 4
response variable.
Because we want see whether there is certain relations between our || 1 | 0
explanatory variables

Question: What does a class definition includes?
Model Answer: Data members (attributes) and member functions

Data members and member functions
Data and functions
A class definition typically includes function definitions.

WG aiff
NG| Gif| O1

Table 3.1: Two sample questions from the dataset used in these experiments, with the
grades assigned by the two instructors

3.2 Inter-Rater Agreement

To address the first question: How does the system perform in comparison
with human graders? each candidate answer in the dataset was indepen-
dently graded by two instructors, and automatically graded by the sys-
tem using the corresponding model answer provided by the course in-
structor. Then, in order to evaluate the results, I measured the inter-rater
agreement, which reflects the degree of agreement among graders. Sev-
eral measurements that can determine the inter-rater agreement. The most
common measure is the Pearson Correlation Coefficient (r), which reflects
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the degree of linear relationship between two variables. It ranges from +1
to —1. A correlation of +1 (and —1) means that there is a perfect positive
(and negative) linear relationship between variables. A correlation of 0
means no correlation at all.

The correlation was computed between the two instructors; between each
instructor and the system; and between the average of the two instruc-
tors and the system on a per question basis. Every candidate answer for a
particular question is considered an independent data point in the corre-
lation, which places more emphasis on the accuracy of the grade given to
each answer.

For example, let

X =
Xn

be the grades assigned by the first instructor to all answers in a question,
so that each entry represents a grade for an answer. Let

Ll

Y=|:
Yn

be the grades assigned by the second instructor for the same question.

Then the Pearson Correlation Coefficient is computed in the following
way:

e (i = X) (v - Y)
VI (v = X)2 /T (v — V)2

Where X and Y are the mean of X and Y respectively. Note that (X; —
X)(Y; — Y) is positive if and only if X; and Y; lie on the same side of their
respective means. Thus the correlation coefficient is positive if X; and Y;
tend to be simultaneously greater than, or simultaneously less than, their
respective means.

(.1)

A weakness in the Pearson correlation to keep in mind is that it is sensitive
to the data distribution. That is, it always assumes normally distributed -
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values. However, in the datasets at hands, sometimes all candidate an-
swers scored a narrow range, e.g all answers were pretty good. At one
extreme, where all answers have the same score, the correlation would be
close to zero even if the two sets of score being compared were identical.
This would not correctly reflect the actual level of agreement.

3.3 Results and Discussions

Table 3.2 summarizes the correlation results for each of the categories ex-
plained above. The correlation between the two instructors was measured
on average at 0.65. This correlation can be thought of as an upper-bound
for the performance expected from the system on this dataset. The system
achieves a Pearson correlation of 0.51 with the average instructor grading.
Considering that the upper bound was measured at 0.65, it reasonable to
say that it is performing well at 0.51. The value of correlation between the
system and human grader ranged from 0.26 to 0.8. A closer examination
of these results explains why some correlations were high and why some
were too low.
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[ Problem ID [ HI-H2 | HI-S | H2-5 [ Avg(H1&H2)-S |

Q8 095 | 0.74 | 0.74 0.74
Q1 091 | 0.68 | 0.74 0.74
Q14 0.88 | 0.64 | 049 0.57
Q16 087 | 05 | 04 0.41
Q17 0.86 | 0.44 | 051 0.45
Q2 073 | 0.71 | 0.71 0.71
Q10 0.73 | 0.66 | 049 0.62
Q11 072 | 022 | 04 0.33
Q12 0.67 | 059 | 046 0.54
Q4 066 | 05 | 0.8 0.34
Q7 0.58 | 0.57 | 0.44 0.45
Q13 054 | 0.38 | 0.12 0.3
Q9 047 | 0.56 | 0.82 0.8
Q5 046 | 0.29 | 027 0.26
Q3 041 | 023 | 0.29 0.32
Q6 036 | 0.61 | 0.72 0.68
Q15 034 | 049 | 087 0.56
[ Average | 0.65 [ 0.52 | 0.52 | 0.51 |

Table 3.2: Summary of the correlation results. H1-H2 refers to inter-human correlation,
H1-S: human1-system correlation, H2-S: human2-system correlation, Avg(H1&H2)-S:
average human-system correlation

Figure 3.1 shows a scatter plot of the average of human grades versus
the system grades assigned for question 1 from the dataset. The plot also
shows a straight line. This is called the best-fit line because it comes as
close to all the points on the plot as possible. If both graders agreed on all
the grades, this line would be diagonal and would touch every point in
the plot, giving a perfect correlation score of 1.

One observation that can be made is that there are only 4 visible data clus-
ters. Initially, the points in each of the clusters were stacked above each
other, indicating high level of agreement. So I added a little bit of jitter to
each point to make them more visible (as can be seen in the graph). Also
notice that the 4 visible points are spread out on the grading scale result-
ing in a fairly diagonal line, which is why the resulting correlation value
is high (r = 0.80).
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System's Grades

T T T T T T
1 2 3 4 5

Average Humans' Grades

Figure 3.1: Correlation between Average Human and the system for a question

Figure 3.2 shows another plot similar to figure 3.1 but for question 3. No-
tice how all grades are heavily skewed toward the high end of the scale,
and no grades at all are in the low end of the scale. Although the dif-
ferences between the system grades and average human grades are less
than one, the correlation score is very low (r = 0.32). This is because the
grades are not well spread along the scale (i.e all of grades are within a
very narrow range).
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System's Grades

Figure 3.2: Correlation Between Average Human and the system for a question

Figure 3.3 shows the scatter plot in figure 3.2 but with a new data point

Average Humans' Grades

added to the lower end of the scale. Notice after the new point is added,

the best-fit line is more diagonal, indicating a better correlation (r = 0.76).
This emphasizes the point that the Pearson Correlation is very sensitive to

the distribution of the data. In order to reflect the good results, the data

has to be spread out.
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System's Grades

T T T T T T
0 1 2 3 4 5

Average Humans' Grades

Figure 3.3: Correlation Between Average Human and the system for a question

3.3.1 Distribution of the Difference in Grades

Because of the weakness in the Pearson Correlation described above, I
used an additional measure to evaluate my data. I computed the differ-
ence between the average human grades and the system grades for every
individual candidate answer for all questions. Then I plotted the results
in histogram to show the distributions of the differences.

Figure 3.4 shows a histogram of the distribution of the differences between
the average of the two humans’ and system’s grades for all the candidate
answers from all the questions. On the x-axis is the difference between
the average of the two humans and system grade. Along the y-axis is the
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density of data points within that bin.

Notice that an envelop of the histogram is Gaussian distribution with a
mean of approximately 1 and with inter-quantile range from 0.0 to 1.0.
That is, the differences seem to follow normal distribution, which implies
that the errors are random and do not follow systematic patterns. The
histogram also shows some outlier cases, in which difference is larger than
1.0. I will examine some of these cases in details in the next section.
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Figure 3.4: Histogram of the distribution of the differences between the average human
grades and system grades for all candidate answers
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3.4 System Weaknesses

There are times when the system did not reach a high level of correlation
with human graders. This is evident by figure 3.4, which shows that there
are cases with large difference between human and system grades. From
the system’s standpoint, there are several recognizable sources of errors,
which may account for these large differences. Below I discuss these er-
rors, addressing the third research question: “What features of the answer
undermine and support the ability to grade automatically and accurately?”

3.4.1 Unique Answers

Two source of failures are when the answer is truly original and com-
pletely different from the model answer, and sometimes it contains id-
ioms that make it hard for the system to infer the actual meaning. For
example, one question from the dataset asks “What is the scope of static
variables?”. The model answer provided is “File scope”. One student re-
sponded with “The whole code” and therefore received a grade of 0 from
the system, whereas both instructors awarded it a grade of 4.5.

Certainly, the model answer may be edited to include that unique phrase,
but the chances of it ever being encountered again are slim. More impor-
tantly, the more open-ended a question is, the more difficult it is to build a
model. When the concept sought by the instructor is imprecise, then there
are sure to be ways of stating it that are not similar at all to the model
answers.

On the other hand, one could look at this problem as if the system is in-
sisting on greater accuracy, offering less leniency than humans, which may
not necessarily be a bad thing. Instead of trying to make the system clever
enough to accept divergent responses, we can then constrain the student
to give more accurate answers.
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3.4.2 Misspelled Words

The system cannot recognize misspelled words, while a human can easily
recognize them and deduce what the student is trying to say. For example,
a question has the word function in its model answer. Both instructors
accepted the word funtions as a variant of function and awarded the answer
full score, whereas my system did not recognize the misspelled word, and
hence awarded the answer partial score.

This problem may be overcome by incorporating a spell checker and cor-
rector into the system, which would detect misspelled words and try to
replace them with reasonably close words. However, this may not fully
solve the problem. Some misspellings happen to be perfectly good English
words. For example, in looking for the word Data in a response, both in-
structors accepted Date as a variation. But since Date is a correctly spelled
English word, a spell checker will not attempt to “correct” it to match a
word in the model answer. So the system is not able to recognize the an-
swer as correct. One way to avoid this problem is measure edit distance
for words that have very low semantic similarity score in the candidate
answetr.

3.4.3 Contradictory Information

Some answers included a correct statement supplemented by an incorrect
statement that disqualifies the answer. In such cases the student is re-
sponding with a ‘list’ of possible answers, implying that he/she does not
know the actual answer and trying to “hit the target”. Incorrect statements
that negate a correct statement should result in a reduction of the grades
awarded.

For example, one part of a question asked about the “scope of local variables”
in programming languages. The model answer was “Local variables can
only be accessed in its member function”, and one student responded with “a
local variable is declared inside a function and has to be static”. Although the
first part of the answer is correct, the second part, that “a local variable has to
be static”, negates the first statement. Both instructors took into account the
additional incorrect element and gave the answer a lower grade. On the
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other hand, the system failed to detect such contradiction, and as a result
awarded the answer a higher grade; because its wording is very similar to
the first part of the model answer.

Approaches to this problem require a more sophisticated textual analysis
to be able to make inferences and detect contradictions.

3.4.4 The use of Negations

Some answers contained negations, such as not. In such cases, the wording
of the candidate answer is very similar to the model answer, but it has
opposite meaning to the model answer, for example by adding (not). For
example, one question asked about the “declaration of global variables”. One
student responded with “global variables may not be declared inside the class”.
Neither instructors accepted this answer, whereas the system ignored the
negation and award the answer a higher grade. To avoid this problem, the
system needs to be able to recognize negations and make inferences.

To summarize, the performance of the system degraded when it encoun-
tered answers with:

e Truly unique phrases and idioms.
¢ Misspelled words.

¢ Contradictory information

e Negations

With further development, most of these problems can be overcome. I will
discuss possible solution in section 4.2. However, the problem of contra-
dictory information is probably the most challenging one. It requires the
computer be able to reason and make inferences, which in turn require a
more in-depth analysis of the answer text.

Opverall, the system performed quite well when the model answer was
very concise and did not repeat words from the question statement, as
well as when the question require the shorter response (1-2 phrases).




Chapter 4

Conclusions & Future Work

4.1 Conclusions

In this work, I developed an automated system for grading free-text re-
sponses for short answer questions. The system automatically assigns a
grade to a candidate answer based on comparisons with a model answer. The
comparison is based on the similarity of the two texts at the semantic level.
It determines the semantic similarity between the two texts by examining
the similarities in isolated word meaning and word order between a short
answer and a model answer.

Semantic word similarity is derived from the WordNet lexical database,
which models how humans organize their lexical memories. A corpus
reflects the actual usage of language and words. Thus, the semantic sim-
ilarity not only captures common human knowledge, but it is also able
to adapt to an application area using a corpus specific to that application.
Word order similarity is derived by measuring the correlation between
the two word order vectors, formed based on the relative position of each
word in each text. The overall similarity is a combination of semantic sim-
ilarity and word order similarity.

To evaluate the performance of the system, I computed the correlation be-
tween human-assigned grades and the system assigned grades using the
Pearson correlation coefficient. The correlation between the two instruc-
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tors was measured on average at 0.65. Considering the correlation be-
tween human graders as upper bound, the system achieves a good Pear-
son correlation of 0.51 with the average human grader.

At the same time, my system is not perfect. It failed to capture the similar-
ity in certain cases, such as answers that contained negations, truly unique
phrases or idioms, misspelled words, or contradictory information.

Automatic grading offers the potential of speed and consistency of grad-
ing decisions; human grading adds professional judgment and inference
which gives credit to badly expressed understanding. The question is
which one is more “objective”? While most of the answers were graded
correctly by both human and the system, it is the ambiguous borderline
responses that pose problems to both.

In conclusion, automatic grading of short answers using semantic text sim-
ilarity is a promising approach and deserves further development.

4.2 Future Work

The overall semantic text similarity approach can, with further develop-
ment, lead to accurate grading of short answer responses across a range of
item types and complexities. Below I discuss directions for future work.

4.2.1 Incorporating Spell Checker

Future development can include incorporating a spell checker, so that it
can recognize misspelled words.

4.2.2 More In-Depth Analysis

I can expand the analysis of the text to include more sophisticated rep-
resentations of sentence structure, such as semantic parse trees, which
should may allow for more effective measures of text similarity. I can also
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incorporate basic logical features in the text (i.e., AND, OR, NOT) to help
detect negation and potential contradictory information

4.2.3 Investigating Semantic Word Similarity Metrics

There is extensive literature on semantic word similarity. In this project I
used Li et al. (2003). I can compare the performance of the system with
other word similarity metrics and see which one might do better job.

4.2.4 Investigating Other Correlation Metrics

I used the Pearson Correlation Coefficient to measure correlation with hu-
man graders. I can expand this analysis to include other correlation met-
rics such, Kappa Coefficient or Spearman’s Rank Correlation Coefficient
to see if they better reflect the performance of the system.

4.2.5 Investigating Other Word Order Similarity Metrics

I used the cosine similarity to determine the similarity between the two
word order vectors. I can investigate other metrics such as the longest
monotonically increasing sequence, and the “edit distance” algorithm at
the sentence level, to consider how many changes it would take to re-tag
or re-order a sentence to make it similar to another sentence.

4.2.6 Expanding the Dataset

In this study, the datasets used to evaluate the system were only from the
Statistics and Computer Science fields. I can include questions from other
fields such as Biology and Physics, and compare the performance of the
system across multiple domains
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4.2.7 Implementing a Parallel System

Many tasks in this system, such as determining sentence similarity, can be
concurrently simultaneously. I can incorporate multi-threads so that these
independent tasks can run in parallel.
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