
Macalester College
DigitalCommons@Macalester College
Mathematics, Statistics, and Computer Science
Honors Projects Mathematics, Statistics, and Computer Science

4-30-2010

A Hybrid Genetic Algorithm for the Student-Aware
University Course Timetabling Problem
Ernesto Ferrer Queiros Nunez
Macalester College

Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors

Part of the Computer Sciences Commons

This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at
DigitalCommons@Macalester College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an
authorized administrator of DigitalCommons@Macalester College. For more information, please contact scholarpub@macalester.edu.

Recommended Citation
Queiros Nunez, Ernesto Ferrer, "A Hybrid Genetic Algorithm for the Student-Aware University Course Timetabling Problem" (2010).
Mathematics, Statistics, and Computer Science Honors Projects. 16.
https://digitalcommons.macalester.edu/mathcs_honors/16

https://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors/16?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

A Hybrid Genetic Algorithm for the
Student-Aware University Course

Timetabling Problem

Submitted to the Department of Mathematics,
Statistics and Computer Science in partial

fulfillment of the requirements for the degree of
Bachelor of Arts

By
Ernesto Ferrer Queiros Nunes

Advisor: Prof. Elizabeth Shoop, MSCS Department
Second Reader: Prof. Susan Fox, MSCS Department
Third Reader: Prof. Vittorio Addona, MSCS Department

Macalester College

April 30, 2010

i

Abstract

Traditionally, academic institutions schedule courses using con-
straints that ensure that instructors and courses do not overlap in
available rooms and time periods; students’ planning needs are rarely
taken into account. This problem becomes particularly acute for stu-
dents in liberal arts institutions, because they have multiple grad-
uation requirements in addition to their chosen academic program.
My research builds on the University Course Timetabling Problem
(UCTP) to include students’ scheduling needs. This approach to the
UCTP problem uses a combination of a genetic algorithm and case-
based reasoning.

To improve the performance of the genetic algorithm, I use a group-
based genetic algorithm to place courses into distinct rooms and a
self-fertilization crossover operator to avoid adding duplicate courses
to the timetable during crossover. Case-based reasoning serves as a
system to store and retrieve previous solutions. If a new problem
is given, instead of using a genetic algorithm to produce timetables
from scratch, the system first checks if the case-base has a previous
timetable that solves the problem. I generate test data using knowl-
edge of class scheduling at Macalester College. Although the student
constraint is harder to satisfy than the instructor constraint, my re-
sults show that the genetic algorithm improves the fitness of the pop-
ulation for each generation, and it returns a feasible solution, even for
the most constrained benchmarks.

ii

Acknowledgment

First and foremost I would like to thank Professor Elizabeth Shoop for her
tireless editing and advising efforts. I would like to thank Professor Susan
Fox for the technical help with both the Genetic algorithm and Case-Based
Reasoning systems. I would like to thank Professor Vittorio Addona for
serving as one of the reviewers for this work, and Professors Shilad Sen,
Daniel Kaplan and Andrew Beveridge for the continuous mathematical and
other technical support.

CONTENTS iii

Contents

1 Introduction 1

2 Background 3
2.1 The University Course Timetabling Problem - UCTP 3
2.2 Evolutionary Metaheuristic Approaches to Solving the UCTP 7

2.2.1 Genetic Algorithm . 7
2.2.2 Genetic Algorithm Applied to the UCTP 12
2.2.3 Memetic Algorithms 14
2.2.4 Ant Colony Optimization (ACO) 15

2.3 Local Search Approaches to Solving the University Timetabling
Problem . 18
2.3.1 Simulated Annealing 18
2.3.2 Tabu Search . 21

2.4 Case Based Reasoning - CBR 23

3 Problem Description 27
3.1 UCTP Applied to Macalester College 27

3.1.1 Motivation . 27
3.1.2 Research questions . 30

4 Design of the System 31
4.1 The Hybrid Algorithm . 31
4.2 The Genetic Algorithm . 34

4.2.1 Solution Representation 34
4.2.2 Population Initialization 34
4.2.3 Fitness Function . 36
4.2.4 Selection . 39
4.2.5 Crossover . 41

4.3 The Case Based Reasoning System 44
4.3.1 Case Representation 44
4.3.2 Indexing . 44
4.3.3 Case Retrieval and Case Base Maintenance 45
4.3.4 Database model . 47

4.4 Web Interface - MAP . 47

5 Algorithm implementations 49

iv CONTENTS

5.1 Genetic Algorithm Implementation 50
5.2 Case-based Reasoning Implementation 51

6 Experiments 52
6.1 Test Data . 52
6.2 Experiments on the GA System 55
6.3 Experiments on the case-based reasoning system 58

7 Results and Discussion 59

8 Conclusion and Future Work 69

A Extracts of code 72
A.1 Selection code . 72
A.2 Crossover code . 73
A.3 Constraints Implementation Code 74
A.4 GA Routine Code . 76

B XML files 77
B.1 GA XML file . 77
B.2 Events XML file . 78

LIST OF FIGURES v

List of Figures

1 Example of a timetable . 3
2 Example of a graph representation 5
3 Example of clusters . 6
4 Example of crossover and mutation mechanism 12
5 Graph of classes for the ant algorithm 17
6 Case-Based Reasoning mechanism 24
7 Graph representing the cities 26
8 Hybrid system . 33
9 Extract of a timetable . 34
10 Roulette Wheel Mechanism. With permission of John Dalton

(Dalton, 2010) . 40
11 Entity relation diagram for case-based reasoning entities . . . 47
12 Activity diagram for a student in MAP system 49
13 Best and average fitness values for elitist genetic algorithm . . 60
14 Best and average fitness values for elitist genetic algorithm . . 62
15 Best fitness per generation for population of size 1000 63
16 Best fitness per generation for a 1000 generations 64
17 Figures showing unique elements for all of the benchmark . . . 65
18 Output of the algorithm with fitness of 4.73 66
19 Figures showing unique elements for all of the benchmark and

runtime per benchmarks . 67
20 Student and Instructor penalties for each chromosome in the

search-space . 68

1. INTRODUCTION 1

1 Introduction

Imagine that you are given the task of producing the semester schedule for
your academic department. You would need to schedule courses in such a
way that there would be an instructor, room, time and students for each
course to be offered. This task is called timetabling, also referred to as
academic scheduling. A timetable is a table that shows the time, room and
instructor for a set of courses that are to be scheduled. The task of producing
timetables is for the most part a time-consuming and difficult task, because
people building the timetable need to ensure that no scheduling conflicts will
arise in any timetable.

The problem of scheduling courses is also called the University Course Time-
tabling Problem (UCTP). UCTP is concerned with the allocation of courses,
instructors and students in a room and time slot, in such a way that it
satisfies as nearly as possible the constraints imposed by a particular educa-
tional institution (Burke and Petrovic, 2002). For constrained instances of
the problem, we can approximate the UCTP with the three graph coloring
problem, which is a known NP-complete problem (Sipser, 1996). Conse-
quently, the UCTP can be considered an NP-complete problem. Because of
its characteristics and applicability, this problem has been extensively studied
across the fields of operations research and artificial intelligence, researchers
developed algorithms to solve timetabling problems for various educational
institutions.

Researchers have used evolutionary techniques such as genetic and memetic
algorithms, as well as other techniques such as case-based reasoning and
clustering algorithms and a combination of these techniques to find optimized
solutions for the UCTP. Most of the research efforts focus on how to efficiently
schedule courses and instructors into rooms and time slots, with very little
regard to students’ scheduling needs. This problem becomes more acute for
liberal arts academic institutions.

Students in liberal arts schools need to fulfill many prerequisites inside and
outside their fields of study, and they need to plan their courses in order
to complete these graduation requirements. This is particularly difficult for
students who have more than one area of study. My research differs from
the status quo in that it builds on the UCTP to include students’ scheduling

2 1. INTRODUCTION

needs as well as departments’ administrative needs. In addition, it combines
genetic algorithm and case-based reasoning techniques to estimate a solution
for the UCTP.

In order to test the algorithm I generated benchmark data using knowledge
of scheduling needs at Macalester College. I implemented and tested two
versions of the algorithm: the non-elitist and the elitist version. Both ver-
sions return good results for less constrained benchmarks. The elitist version
returns good quality solutions, even for highly constrained benchmarks. In
order to produce data that is accurate to student needs, we at Macalester Col-
lege have designed the Macalester Academic Planner web-application. This
is a web application program that allows students to plan their classes ahead
of time, giving the academic departments an idea of what classes, prior to
registration, students want to take each semester. I use this data to place
students in the courses to be scheduled into the timetable.

This paper is organized such that Section 2 gives a formal definition of the
UCTP problem and introduces and discusses some of the techniques that
previous studies have used to solve the UCTP. Section 3 describes more
carefully what problem this work is solving, and introduces the research
questions. Section 4 gives a high level account of the design choices for
the system that I have implemented, and Section 5 presents the technical
design and implementation choices I have made. Section 6 explains how I
designed the experiments, and section 7 presents the results and discusses
their implications. Finally, I conclude and present ideas for future research
in section 8.

2. BACKGROUND 3

2 Background

In this section I will introduce some of the concepts that are relevant the
solution models I have created using genetic algorithms and case-based rea-
soning . While I introduce the most relevant points about each concept, this
section is in no way a thorough introduction to the University Timetabling
problem, nor a rigorous technical discussion of genetic algorithms and case-
based reasoning or of any other techniques I present here. For further details
please read (Petrovic and Burke, 2004), (Wang, 2003), and (Watson and
Marir, 1994) as they offer a more thorough coverage of the UCTP, genetic
algorithms and case-based reasoning respectively.

2.1 The University Course Timetabling Problem - UCTP

Formally, the UCTP consists of a set of n events E = {e1, e2, e3, ..., en}; in
our case these events are courses to be scheduled in a set of j time slots T =
{t1, t2, t3, ..., tj} placed in a set of l rooms {r1, r2, r3, ..., rl} and with a set of k
students S = {s1, s2, s3, ..., sk} and a set of j instructors I = {i1, i2, i3, ..., ij}
(Fen et al., 2009). Figure 1 shows an example of a timetable with ten courses,
each with an instructor and an assigned time slot.

.
Figure 1: Example of a timetable

The UCTP imposes two types of constraints, hard constraints and soft con-

4 2. BACKGROUND

straints (Myszkowski and Norberciak, 2003). Hard constraints are those that
a feasible solution should not violate, unless very exceptionally. For exam-
ple, no instructor should be scheduled to teach two classes that are taught at
the same time and no student should be scheduled to attend more than one
class at the same time. Soft constraints are expected to be partially violated
(McCollum et al., 2008). Examples of soft constraints are that no professor
should be scheduled in more than two consecutive time slots. Another ex-
ample is that no student should appear in all the time slots of a particular
day.

The more interesting instances of the UCTP are those where the system is
highly constrained. As Lewis and Paechter (2007) show, we can approximate
the UCTP with the graph coloring problem. The graph coloring problem is
an NP-Complete problem (Sipser, 1996); by inference, so is the UCTP. As
such, no polynomial time algorithm finds an optimal solution to the problem.
Thus we need to consider the problem as an optimization problem, in which
we find the best solution from the set of all feasible solutions.

Because of the properties of the problem and its applicability in practical life,
the UCTP has earned some popularity among the Artificial Intelligence and
Operations Research community (Lewis and Paechter, 2007). Researchers
have reported a number of solutions using a variety of techniques. Burke
and Petrovic (2002) have divided these techniques into four groups: sequen-
tial methods, cluster methods, constraint based methods, and meta-heuristic
methods. In this paper I present a meta-heuristic hybrid genetic system to
find a feasible solution to the UCTP.

In sequential methods, timetables are usually represented as graphs, where
courses are represented as vertices, and conflicts between vertices are repre-
sented by edges (Burke and Petrovic, 2002). The construction of a conflict
free timetable can be considered a pure graph coloring problem. Each time
slot represents a color in the graph. Adjacent vertices are given different
colors in the graph coloring problem, similarly in UCTP, adjacent classes are
given different time slots (Sipser, 1996). Figure 2 illustrates the concept of
representing a timetable as a graph. In the Figure the arrows pointing in
different directions serve to indicate an undirected graph. We can see that
all the courses but Comp 123 and Comp 240 are connected by an edge, which
is so because these two courses are offered at the same time and have the

2. BACKGROUND 5

same instructor. Referring back to the graph coloring problem, connecting
the nodes representing Comp 123 and Comp 240 with an edge would be the
same as connecting two nodes with the same color. Sequential methods have
been widely employed in timetabling because they are easy to implement.
However, they lack the power of modern intensive search methods, and as
such they are not apt to solve highly constrained timetabling problems.

.
Figure 2: Example of a graph representation

Cluster algorithms assign classes into subsets called clusters, such that no
class in a cluster is in conflict with each other. Cluster algorithms assign
classes to rooms and time periods to satisfy hard constraints first and then
re-assign them in order to satisfy the soft constraints. Each of the clusters
will represent a possible timetable (Burke and Petrovic, 2002). To illustrate
this concept, let us suppose we have the following courses to schedule: Comp
123, Comp 261, Comp 124, Comp 225, Math 155, Math 354,Math 355, Comp
494, Math 237, Comp 480 . Suppose that in our first attempt to schedule the
courses we place Comp 123 and Comp 480, which have the same instructor,
in the same 9:40-10:40AM time slot. Given that an instructor can only be in
one place at the time, placing these classes on the same time slot constitutes
a collision. But clusters cannot contain conflicts, thus, Figure 3 shows us
two clusters that are formed in order to avoid possible collision between the
two classes. In cluster A we move the time of Comp 480 from 9:40-10:40AM
to 3:30-4:30PM. In cluster B we move the time slot of Comp 123 to 3:30-
4:30PM from 9:40-10:40AM. We end up producing two clusters representing

6 2. BACKGROUND

two different timetables. The main drawback of this method is that because
the clusters are formed in a fixed manner, not many configurations are tried
and therefore the quality of the timetables may not be the highest.

.
Figure 3: Example of clusters

Another approach to solving the UCTP is the constraint-based technique.
In this technique the placement of courses and teachers to rooms and time
slots is handled as a satisfiability problem. The method models the UCTP
problem as a set of variables representing the courses and teachers to assign to
rooms and time slots. The assignment is then modeled by a set of rules, if no
rule is applicable to the current assignment the algorithm backtracks until
a solution that satisfies all the constraints is found. the main drawbacks
of this method is that it is difficult to express soft constraints as boolean
expressions, and it is hard to improve the initial feasible solution, because
the rules are predefined (Petrovic and Burke, 2004).

2. BACKGROUND 7

Meta-heuristic methods are more powerful than sequential, clustering and
constraint-base techniques, in that they produce high quality solutions. These
methods begin with one or more solutions and use search strategies to find lo-
cal maxima(or minima depeding on the goal of the problem). These methods
tend to eliminate or add new solutions to the set of current candidates with
the goal of finding the optimum candidate(s) (Burke and Petrovic, 2002).
Meta-heuristic methods have a fitness function to evaluate the pool of candi-
dates, they have some human-defined time limit, and a function that allows
the system to create new candidates. Meta-heuristic methods can produce
high quality timetables, but they are computationally expensive (Petrovic
and Burke, 2004). I am going to discuss meta-heuristic algorithms in more
detail because my work falls into this class of problems.

2.2 Evolutionary Metaheuristic Approaches to Solv-
ing the UCTP

Over the past two decades, a number of researchers have focused on evolu-
tionary algorithms to solve the university timetabling problem (Petrovic and
Burke, 2004). Some of the commonly studied evolutionary meta-heuristic
methods are genetic algorithms, memetic algorithms, ant-colony optimiza-
tion algorithms and the hybridization of all of the above (Petrovic and Burke,
2004).

2.2.1 Genetic Algorithm

A genetic algorithm is an optimization technique based on the natural law
of evolution. As Wang (2003) puts it, the “key idea of genetic algorithm is
the survival of the fittest, as proposed by Darwin.” Before I explain some of
the genetic algorithm concepts, let me define a few important concepts that
will appear in this section:

• A solution candidate or chromosome is a legal solution to the problem.
In the case of the UCTP, a chromosome resembles the timetable in
Figure 1.

• A Population is comprised of all of the chromosomes that the genetic

8 2. BACKGROUND

algorithm produces.

• The Search space is, theoretically, the set of all possible candidate so-
lutions.

• The Fitness is the score or grade that is attributed to a chromosome.
The fitness of a chromosome is inversely proportional to the amount of
constraints the chromosome has violated.

• A Gene is the fundamental unit of the solution to a problem. In the
case of the UCTP the gene is comprised of a course and its instructor,
students and room.

This algorithm uses the biological principles of selection, crossover and mu-
tation to perform a search in often complex and big search spaces and it at-
tempts to find global solutions, while avoiding local optimal solutions (Petro-
vic and Burke, 2004). Genetic algorithms have a set of genetic operators: se-
lection, crossover and mutation. Figure 1 shows the steps of a generic genetic
algorithm:

Algorithm 1: A Generic Genetic Algorithm

Input: Genetic algorithm parameters
Output: Possible solutions to problem
begin

initializePopulation(paramaters)
evaluatePopulation(population)
while currentGeneration ≤ maximumGeneration do

select (listChromosomes)
crossover (matingPool)
mutate (matingPool)
foreach chromossome in matinPool do

if chromossome ≥ desiredChromosome then
addToResultsList(chromosome);

end

end

end
return resultsList

end

2. BACKGROUND 9

A genetic algorithm is comprised of three phases: population initialization,
evaluation and the evolutionary processes (Petrovic and Burke, 2004). In
the population initialization phase a number of chromosomes are generated
in order to encode solutions to the problem. There are two important factors
when considering the creation of a population of chromosomes. The first
factor is randomness. If the chromosomes are not created randomly enough,
the process is biased towards certain types of chromosomes, which might
lead to a local minima solution but not to a global minima as desired (Lucas,
2000). The second factor, a more important one, is the size of the population.
The size of the population affects the convergence of the algorithm: larger
population size leads to slower convergence speed. If the population is too
small, then the search space will not be very useful (Lucas, 2000).

In the evaluation phase a fitness function is used to test each chromosome in
the population to see if the chromosome is a suitable solution to the problem
at hand. For a system with n constraints, a fitness function usually checks to
see if a chromosome violates any of the n constraints imposed by the problem.
The algorithm 2 illustrates the steps of an evaluation process:

Algorithm 2: A Genetic Evaluation Algorithm

Input: A chromosome
Output: List of chromosomes and their fitnesses
begin

foreach contraint in listOfContraints do
booleanViolates = checkIfViolatesContraint(chromosome)
if booleanViolates then

fitness=chromosome.getFitness() - penalty
chromosome.setContraint(penalty)

end

end
return chromosome

end

In the last phase, the algorithm depends on genetic operators to improve
chromosomes for each generation. There are many genetic operators, but here
I will discuss crossover and mutation, because these operators are the most
used across the literature. Crossover is an operation used to generate a new

10 2. BACKGROUND

chromosome from two parents (Wang, 2003). The main aim of crossover is to
mix the genes of two individuals in the hope that the result will be stronger
than either parent. In order to perform crossover, we first evaluate the whole
population and select chromosomes to become parents. During crossover,
we take some of the genes of a chosen chromosome, parent 1, and we place
it into another chromosome, parent 2, and vice-versa. Crossover provides
a mechanism to mix and match through random processes. Algorithm 3
illustrated the crossover mechanism:

Algorithm 3: Genetic Crossover Algorithm

Input: The mating pool
Output: New population
begin

while matingPool 6= empty do
pick two parents randomly pick a division point for each parent pick
the data at the left of the division point from parent 1 pick the data
at the right of the division point from parent 2 place both data
pieces in the child chromosome add the child to the
newPopulationList

end
return newPopulationList

end

Mutation takes a selected parent chromosome from the population and makes
changes to the content of that chromosome. For most implementations of ge-
netic algorithms, mutation happens with a very low probability. This means
that only a few chromosomes in the population get changed in the mutation
process. Mutation is used to increase diversity in the new population and,
thus, avoid local minima (Wang, 2003).

Another very important mechanism in a genetic algorithm is selection, the
process in which parents are chosen for reproduction. One of the simplest
methods is the Roulette Wheel selection. This selection technique calculates
the selection probability of a parent by dividing the fitness of the chromosome
by the cumulative fitness of all chromosomes in the population. There are
other selection methods such as random selection, tournament selection and
best first selection; some are more or less elitist (favoring the fittest) in nature
than others(Russell and Norvig, 2003). The selection process is important

2. BACKGROUND 11

Path Cost
[0,1,2,3,4,5] 600
[0,2,4,1,3,5] 620
[0,2,1,4,3,5] 560
[0,3,1,2,4,5] 540

Table 1: Table of paths and their costs

because a poorly designed selection method will either make the algorithm
find locally good solutions too early, or will make the algorithm return poor
solutions.

Let me walk you through an example of a genetic algorithm, using the fol-
lowing problem: Imagine that a group of tourists want to visit six cities in
the Midwest of the United States. They want to do so in a way to spend
the least amount of gas possible. Thus, they would want the shortest path
from the start city to the end city. Also, they want to go through each city
only once. Let us use the numbers 1,2,3,4 and 5 to designate the cities on
the way between the start city (city 0) and the end city(city 5). We use the
fitness function to calculate the cost of each path from the start to the end
city. Some example paths and costs are given in table 1:

Paths [2,1,4,3,5] and [3,1,2,4,5] are the ones with the lowest costs. Thus,
the genetic algorithm chooses them as parents. Crossover will happen as
illustrated in Figure 4. We pick a random point represented by the dashed
line, and we take the items of parent 1 after the dashed line and place it in
the child, and take the items of parent 2 before the dashed line and place
it in the child, generating a new chromosome. The generated child has a
duplicate city, meaning that it visits one less distinct city than the parent.
In this example mutation is used to fix the child to make it conform to the
“no duplicate city” constraint. If the algorithm is performing well the child
might not attain a better score than its parents, but we are guaranteed that
the overall fitness of the new generation should be greater. If we ran the
algorithm for one generation, then the best feasible solution would be [3, 1,
2, 4, 5]. Although this example is trivial, If we increased the number of cities
to 50 and the number of generations to 100, the problem would very hard
for a human to solve, and then it would make more sense to apply a genetic
algorithm to solve it.

12 2. BACKGROUND

.
Figure 4: Example of crossover and mutation mechanism

2.2.2 Genetic Algorithm Applied to the UCTP

Many research efforts have used genetic algorithms to address the univer-
sity time-tabling problem. Abramson and Abela (1992) proposed a parallel
genetic algorithm to solve the university timetabling problem. This work
is founded in the idea that biological mating is highly concurrent, in that
chromosomes reproduce with little regard of the rest of the population. The
algorithm uses a shared memory multiprocessing model to speed up both
population creation and mating. A barrier level synchronization at the end
of each generation is required in order to avoid chromosomes overriding each
other.

Burke et al. (1994) developed a genetic algorithm for the university timetabling
problem, which differs from Abramson and Abela (1992) in that its solution is
sequential rather than parallel. Also, the proposed solution included a graph-
ical user interface, which enabled users of the system to contribute towards
the scheduling process by letting them change the parameters of algorithm
to attain desired results. This work exemplifies earlier efforts to solve the
university timetabling problem that were not fully automated.

Burke et al. (1995) proposed a hybrid genetic algorithm for highly constrained
timetabling problems. This work differs from Burke et al. (1994) in that it
applies two algorithms in order to solve the problem at hand. The first
algorithm finds a non-conflicting set of courses, while the second algorithm
assigns a room to each selected course event.

2. BACKGROUND 13

Ross et al. (1998) suggested that genetic algorithms should not be used as a
method to find solutions, but rather as a way to search for the best algorithm
to solve a given instance of the university timetabling problem, an approach
that leans towards hyper-heuristic, where a set of algorithms is searched
by a high level algorithm (Qu et al., 2006). The main idea behind such an
approach is that the genetic algorithm has available a set of solutions and the
methods that have generated these solutions (for example, genetic algorithm
or tabu search). When a new problem arises, the genetic algorithm retrieves
previous solutions that solved problems similar to the new problem. Then,
the genetic algorithm evaluates the previous solutions to pick the fittest. In
the last step, the genetic algorithm returns the technique that was used to
solve the strongest solution.

Wilke et al. (2002) published a hybrid genetic algorithm for the university
timetabling problem. The genetic algorithm included a number of hybrid op-
erators. These operators consisted of adapted mutation and repair operators.
If the solution attained by the genetic algorithm does not yield the desired
fitness, then the system resorts to the hybrid operators. These operators
change room assignments, and class sequences in order to find the correct
time slot for a class, among other capabilities.

Lewis and Paechter (2005) proposed the use of grouping genetic algorithms
in order to solve the university course timetabling problem. Their genetic
algorithm differs from other genetic algorithms in that theirs treats the prob-
lem of solving hard constraints as a grouping problem. A grouping problem
is one where the task is to partition a set of objects into a collection of mu-
tually disjoint subsets. The union of all the subsets add up to the size of
the set. Moreover, there is no intersection between any subset. Applying
this concept to the UCTP, a feasible solution is one where all of the events
(classes) have been partitioned into feasible time slots and none of the time
slots are in conflict, and where all the events can be placed in their own
suitable room.

In addition, Lewis and Paechter (2005) presented an elegant grouping genetic
algorithm that represents the timetable as a matrix. The idea of the grouping
algorithm is to create time slots for all possible classes, and if there are
remaining un-scheduled classes, then we create more time slots in the matrix,
and the penalty function is equivalent to the amount of newly allocated space

14 2. BACKGROUND

(Lewis and Paechter, 2007). My work uses the same representation for the
UCTP as this work’s. I also create time slots for all possible events, however
I do not create more time slots in the matrix, because I use a fixed number
of course events, consequently, I do not allow the size of the timetable to
change during the execution of the algorithm.

Perzina (2006) presented a self-adaptive genetic algorithm that solves the
UCTP. In addition, the paper also offers an algorithm to find feasible solu-
tions for the student enrollment problem. The author defines a self-adaptive
genetic algorithm as one in which the parameters of the algorithm are op-
timized during the same evolution cycle as the problem itself. The author
implemented a parallel version of the self-adaptive algorithm that follows
the master-worker model. The “master” genetic algorithm is responsible
for running the genetic operators (crossover, mutation and others), while
the “worker” genetic algorithms are responsible for measuring the fitness of
the chromosomes that the master gives them. The enrollment problem that
this paper presents is similar to my student constraint problem; however my
method differs from this authors’ in that the author solves the student en-
rollment problem separately from the UCTP, while I incorporate the student
enrollment problem into my UCTP instance.

Wang et al. (2009) presented a genetic algorithm that is novel in that it intro-
duces the concept of self-fertilization. Parent chromosomes do not exchange
genetic materials, that is, timetables do not exchange time slots, instead, a
parent self-reproduces to generate its children. The parent does so by apply-
ing a crossover operator that works the same way as a heavy mutation op-
erator, it exchanges time slots within itself and not with any external entity.
The advantage of using this method is that it keeps the integrity of the sched-
ules, thus no further computing resources need to be spent in repairing the
child schedules after recombination. I have implemented a similar crossover
operator. It made sense to use this technique because of its improvement in
time complexity, especially for highly constrained benchmarks.

2.2.3 Memetic Algorithms

Like genetic algorithms, memetic algorithms are population-based algorithms,
which find feasible solutions for hard problems. Instead of following a bio-

2. BACKGROUND 15

logical route, memetic algorithms are founded in the “meme” concept, which
signifies the basic unit of cultural transmission or imitation (Burke et al.,
1996). Instead of genes, memetic algorithms operate with agents. Another
significant difference from genetic algorithms is that memetic algorithms em-
ploy local improvement as one of their operators. Memetic algorithm opera-
tors are problem aware, and the solutions are not only globally optimized but
also locally aware (Cotta and Fernandez, 2007). The algorithm follows every
step of a genetic algorithm, but it adds local improvement to each generation
of the population. Because of this, it reduces the search space in which to
find the optimal solution (Burke et al., 1996). Though my project does not
implement a memetic algorithm, the elitist genetic algorithm that I imple-
mented is similar to memetic algorithms in that my algorithm gets the best
solution per generation (which is a local solution), and it keeps that solution
until It finds a better local solution. My algorithm repeats this procedure
until It finds the best chromosome in the system.

Burke et al. (1996) and Cotta and Fernandez (2007) proposed a generic
memetic algorithm as a solution to the UCTP. Burke et al. (1996) set up
the theoretical approach to solving the UCTP using Memetic algorithms.
The study produced a memetic algorithm that implemented hill climbing as
selection method; the algorithm was applied to fixed size timetables. In their
paper, Cotta and Fernandez (2007) offer guidelines on the best ways to design
effective memetic algorithms. Rossi-Doria and Paechter (2004) proposed a
more specific memetic algorithm. In this algorithm, solutions are represented
as a matrix with r rows and t columns. The number of rows is dictated by
the number of time-periods available, while the number of columns depends
on the number of rooms available. Each cell of the table holds a list of
courses that are scheduled in that time-period and room. This algorithm
uses a stochastic local search algorithm that improves the feasibility of the
timetable by reducing the number of time slots used.

2.2.4 Ant Colony Optimization (ACO)

Ant optimization is another form of evolutionary optimization technique.
Dowsland and Thompson (2005) and Socha et al. (2003) present yet another
evolutionary technique, the ant colony optimization technique. Ant algo-
rithms are based on the observation of how real ant colonies find the shortest

16 2. BACKGROUND

path to their food. Both real and artificial ant colonies are composed of
a population of chromosomes that work together to achieve a certain goal
(Dorigo and Socha, Dorigo and Socha). In order to find the solution, the
algorithm uses n cycles. During the cycles, m ants construct a feasible solu-
tion for each of the n cycles. Ants decide which solution to adopt based on
the number of other ants that have chosen a given trail. Thus two heuristic
methods emerge: constructive heuristic and pheromone trails heuristic.

The Constructive heuristic uses techniques such as randomized nearest neigh-
bor. In this technique, the decision of which trail to follow favors the nearest
neighbors, and the trail is picked at random among the nearest neighbors.
The probability that an ant will follow a trail is determined by the amount
of scent in the trail. In order to know the amount of scent, the scent is stored
in a matrix t which is initialized to 0 for every trail. The values of the matrix
are updated each time an ant chooses the trail. The most chosen trails are
then favored.

One can use a graph structure to represent the problem instance. Each node
in the graph is a possible solution. The graph is a complete graph as the
artificial ants have access to every possible solution, thus there needs to be
an edge from and to every node (Dorigo and Socha, Dorigo and Socha). We
initialize the algorithm by randomly assigning an ant to a node or solution.
Then the ant accesses the scent trail matrix to get the current scent of a
given edge in the graph (the trail). The probability of an ant moving from
one node in the graph to another is given in equation ??. In equation ??,
Pik is the probability of moving from current node i to next node k, τik is
the scent on the edge i, j, ηik is the weight of the edge, α is a constant that
controls for the influence of the scent and β is the constant that controls
for the influence of the weight of the edge. F represents the set of feasible
solutions.

Pik =

{
ταikη

β
ik∑

ik∈F

0 else

Let me walk you through an example of ant algorithm applied to a trivial
instance of the UCTP. Consider the nodes in the graph in Figure 5 to be
courses to be scheduled and the edges the time slots in which the connected

2. BACKGROUND 17

courses are placed. The weights of the edges represent the cost of placing the
two particular classes (nodes) in the same timeslot. The cost is proportional
to the number of constraints the combination of courses violate. Each ant
starts in a randomly selected node. Let us track the movement of an ant
randomly placed in node A1. At the beginning all the trails (paths between
nodes) have a scent of zero. Using constructive heuristic, our ant randomly
picks course A2 and places both A1 and A2 in the same time slot, say
in time slot 1, it then records the cost of scheduling these courses together
(which is 2 from the graph). Before moving to the next node it calculates the
scent and updates the scent matrix. It does the same until it has visited all
the vertices in the graph. In the next iteration another ant will chose which
classes to put in the same time slot depending on the scent of the trail. Any
ant will know that courses A1 and A5 can be put in the same timslot, but
A2 and A5 cannot.

Figure 5: Graph of classes for the ant algorithm

Dowsland and Thompson (2005) built an ant colony heuristic that represents
an instance of the UTCP problem as a graph coloring problem. The authors
state that at each stage the option of coloring vertex i in color k is selected
with the probability given in equation 4. For their algorithm they used a con-
structive heuristic. Socha et al. (2003) uses a similar approach, however their
approach departs from that of Dowsland and Thompson (2005) in the way
they build the graph that represents an instance of the UCTP problem.

In order to build the graph, Dowsland and Thompson (2005) create a set
of virtual time slots with the same length as the number of existing events.

18 2. BACKGROUND

Note that in reality the number of time slots available is usually much smaller
than the number of events. Each virtual time slot maps to one of the actual
time slots. To find the best solution, ants walk through the virtual time
slots and assign them an event and then use a general ant algorithm to build
the optimal trail. The authors found that the success of the most effective
meta-heuristic implementations depends on getting the right balance between
searching for good solutions - and allowing for exploration of new areas of the
search space. This is a balance that I too had to consider when I designed
my genetic algorithm.

2.3 Local Search Approaches to Solving the Univer-
sity Timetabling Problem

2.3.1 Simulated Annealing

Simulated annealing (SA) is a Monte-Carlo technique used to find solutions
to optimization problems. Its main aim is to find the global minimum or
maximum of a function in a large search-space (search-space here means the
same as in genetic algorithms), however this method is not guaranteed to
find the optimum solution to a problem (Abramson, 1991). This system
simulates the behavior of the cooling of particles: when particles have high
temperature, they move around with random displacements, as the system
cools, the particles move less randomly, and usually make smaller movements.
Before continuing let me define a few terms:

• State or configuration, this is a possible solution to the problem, much
like a chromosome for a genetic algorithm. For the UCTP a state is a
course event in a time slot

• Temperature (T) is a parameter that is inspired from the physical tem-
perature of an object. It represents a number and that number changes
as the system evolves

• Neighborhood is the set of possible states to which a particular state
can move.

• Transition probability is a probability with which we pick the next

2. BACKGROUND 19

neighbor.

• Acceptance probability is the probability that a change to a next state
is accepted or not. That depends on whether the move from one state
to the other lowers the system energy or not.

• Cooling rate is a constant that dictates the rate by which temperature
should fall throughout the simulation.

A simulated annealing system relies on a number of parameters. The more
important parameters are the search-space of the problem, the temperature
of the system (often called T), the transition probabilities, and the accep-
tance probabilities (Fleischer, 1995). In order to specify the state space of a
problem, we need to define the neighbors of each state, which is done by the
user (Fleischer, 1995). In the case of the UCTP, the neighbors of each state
are represented by the course events scheduled in a timetable.

On the other hand, the temperature of the system is a global time-varying
parameter; the choice of how the temperature decreases depends on the user
choices (Schaerf, 1999). It is important that the temperature is well chosen,
as the evolution of a state depends on the temperature. The dependency
is such that if the temperature is high, the next state is chosen almost at
random, otherwise, the choice of the next neighbor is performed with a prob-
ability chosen to decrease error as T goes to zero (Fleischer, 1995).

The transition probability is the probability that the system will move to a
next state S’ given that the current state is S. This probability depends on
the current temperature, on the order in which the neighbors are generated
and on the acceptance probability. The acceptance probability function is
defined as follows:

P =

{
1 if e′ < e

exp(e−e
′)/T if e′ >= e

(1)

The probability of acceptance is one if the energy of the next state (e’) is less
than the energy of the current state (e), or else the probability of acceptance
is defined by the exponential difference in energy. A careful consideration
of these parameters is essential for the efficiency of the system (Schaerf,

20 2. BACKGROUND

1999).

Let us apply this technique to the UCTP problem. In this case, a particle
is replaced by course event that we want to schedule (courses, their instruc-
tors, and students). The system energy is replaced by the timetable fitness
function. The initial temperature is computed from the difference in cost
for moving the course event from one time slot to another, over the number
of swaps performed during the motion. Algorithm 4 describing the general
procedure for a simulated annealing system that solves the UCTP:

Algorithm 4: Simulated Annealing algorithm applied to the UCTP

Input: UCTP paratemeters
Output: Possible timetables
begin

initiatePopulation()
calculate the cost (cost = fitness-1) of a timetable
calculate the initial temperature of the system
foreach iteration i do

randomly choose a from and to time slot
calculate(cost of removing the from cost from its time slot)
calculate(cost of inserting the from into the to time slot)
calculate(cost of inserting the from course event into the to time
slot)
calculate(difference in costs between the two costs above)
calculate the acceptance probability
Either accept or reject the change depending on the probability

if cost of timetable = 0 then
stop

end
else if cost is not changing then

stop
end

end

end

Abramson (1991) and Liu et al. (2009) used simulated annealing to solve
the UCTP problem. Abramson (1991) used simulated annealing to devise

2. BACKGROUND 21

a general-purpose algorithm to solve an instance of the UCTP applied to
an Australian high school. The proposed solution optimizes groups of ob-
jectives and solves the problem in multiple-stages. On the other hand, Liu
et al. (2009) took on the more specific task of developing a new neighbor-
hood structure for the simulated annealing. The neighborhood structure is
obtained by performing a sequence of swaps between two time slots, instead
of only one move in the standard neighborhood structure. Another tech-
nique that follows the local neighborhood search model is the tabu search
algorithm. Next, I am going to briefly introduce this technique and the body
of research that used it for the UCTP.

2.3.2 Tabu Search

Like simulated annealing, tabu search is a local optima mathematical opti-
mization technique (Hertz et al., 1992). Unlike simulated annealing, tabu
search does not have a temperature parameter. The performance of the tabu
search algorithm is dependent largely on the chosen neighborhood, thus the
subset neighborhood is the most important parameter. Neighborhood is de-
fined as the set of all the neighbors generated by performing an atomic change
within state s. Tabu search relies heavily on a memory system, called the
tabu list, holding every visited solution, including those that are no longer
to be considered during the search. The tabu list is important, because it
enables the algorithm not to visit states already seen (Hertz et al., 1992). A
reasonable way to implement the tabu list is to use a queue of fixed size k,
when a new move is added to the tabu list, the oldest one is discarded.

Let us apply this technique to a general UCTP problem. Like simulated
annealing, a tabu search starts with a random initial population. The popu-
lation is generated by creating random timetables. This is done by randomly
placing every course event into a time slot. The algorithm picks a timetable
in the population and creates a new timetable by making an atomic change
to the previous timetable. The atomic change happens when a course event
is changed from its original time slot into a new time slot, just like what
happened in simulated annealing. The algorithm evaluates the created solu-
tions, and makes the one with the least cost the current solution. It adds all
of the solutions it creates in each iteration of the algorithm into the tabu list
(Gaspero and Schaerf, 2001).

22 2. BACKGROUND

Algorithm 5 shows a high level description of a tabu search procedure:

Algorithm 5: Tabu search algorithm applied to the UCTP

Input: UCTP parameters
Output: Possible timetables
begin

foreach timetable in Population do
choose(initial timetable)
generate(new timetables by changing a course event in previous
timetables)
choose(best solution in the subset of new timetables)
if best chromosome is satisfies the stopping criteria then

stop

end
else

place(the newly generated timetables into the tabu list)
end

end

end

Costa (1994) and Kendall and Hussin (2005) used tabu search as a tech-
nique to solve the UCTP problem. Costa (1994) developed a generic tabu
search algorithm with various requirements (or constraints), while Kendall
and Hussin (2005) developed a tabu search algorithm to solve the MARA
University of Technology scheduling problem. According to Kendall and
Hussin (2005) their work is novel because of the weekend constraints that
were added due to the administrative needs of the university also because
the data-set for this university has never been used before to model the uni-
versity timetabling problem.

Looking across the meta-heuristic techniques I have introduced previously,
one common theme is that most of these methods rely on a random generation
of an initial population. Moreover, all of the techniques choose their chro-
mosomes depending on a fitness or cost function. Also, all of the techniques
create a new population that replaces the old one, and all of the techniques
aim at creating fitter or cheaper new population. Most of the algorithms
have parameters such as population size, and probability of choosing a state.

2. BACKGROUND 23

My genetic algorithm is not any structurally different from the other meta-
heuristic techniques

The technique I will introduce next does not depend on exactly the same
parameters and processes as meta-heuristic techniques. Instead, this method
relies on past information to give answers to present problems. This tech-
nique is called case-based reasoning.

2.4 Case Based Reasoning - CBR

According to Qu (2002), Case-Based Reasoning is “a Knowledge-Based rea-
soning technique that solves problems by retrieving the most similar previous
cases from a store called the case base and by reusing the knowledge and ex-
periences from these cases.” A case is a piece of knowledge that represents
a solution within a context (Watson and Marir, 1994). For example, in the
UCTP problem a case could be a timetable representing a feasible arrange-
ment of classes. Before continuing this discussion, allow me to introduce few
concepts that will appear later:

• A Case or solution a case represents a solution to a problem. It is
similar to a chromosome for a genetic algorithm.

• The Case-memory or case-base is a storage unit that contains all the
cases for the case-based reasoning system.

• An Index is a programmable object that contains information about
parameters that are used to compare two cases.

• A New problem is the new problem that needs to be solved.

• The Target case is usually the new case, it is the case we are comparing
to the ones in the case-base.

The CBR mechanism is comprised of the four “REs” (Watson and Marir,
1994): Retrieve, reuse, revise and retain. Figure 6 shows the case-base rea-
soning cycle (Qu, 2002). In the retrieve phase the system finds and returns
the case in the system’s memory that is the most similar to the target (or
new) case (Watson and Marir, 1994). In the reuse phase we use the retrieved

24 2. BACKGROUND

case to solve the target case. In the revise phase we revise the solution to as-
sure that it satisfies the constraints imposed by the target case. Lastly, in the
retain phase the system adds the new case to the case-base (Qu, 2002).

.
Figure 6: Case-Based Reasoning mechanism

In order to design and implement an efficient CBR system, one needs to
consider five aspects of this system: Case representation, indexing, case-base
maintenance and management, and case adaptation (Qu, 2002). In choosing
the representation of the cases, we need to know what the relevant aspects
of the underlying problem are, and what aspects differentiate one case from
another (Burke et al., 2001).

The maintenance of the case-base relies heavily on the retain phase of the
case-based reasoning cycle (Watson and Marir, 1994), since new cases are
added to the case-base during this phase. The management of the system
is dependent on the level of sophistication of the system. It can be done
manually by having a human subject looking at the cases in the case-base
and either add or delete cases, or it can done dynamically by writing a
computer program that looks through the cases in the case-memory and
decides to adds new cases or deletes old cases (Qu, 2002). This phase is

2. BACKGROUND 25

very important because it determines the quality of the case-memory, and
therefore the quality of the case-based reasoning system.

Adaptation, as Watson and Marir (1994) put it, “looks for prominent dif-
ferences between the retrieved case and the current case and then applies
formulas or rules that take those differences into account when suggesting a
new solution.” Adaptation is the hardest phase of the case-based reasoning
cycle (Qu, 2002). This is so because the system needs to understand how to
change the contents of the current case to resemble the goal solution.

In addition, adaptation is difficult because the system might need to have
the context of the contents of the current and goal cases before it can change
them. For example, in the school timetabling example, in order to adapt a
new timetable to a goal timetable we would need to know what a perfect
goal timetable should look like, and this is a piece of information that we do
not have readily available to us. Adaptation is the underlying mechanism
behind the revise phase (Watson and Marir, 1994), because during revision
the system changes the retrieved case to satisfy the constraints that the new
case imposes (Burke et al., 2001).

In order to better illustrate this problem, let us apply it to a route finding
problem similar to the one I have used during the discussion of genetic al-
gorithms. Say we have 10 cities spread over the map as shown in Figure 7.
Imagine that three different friends want to go to destinations 6, 9 and 10.
Then, using some algorithm we calculate all the distances from the starting
point to each target distance. We save the different routes from city 1 to
city 6, from city 1 to city 9 and from city 1 to city 10 and their respective
weights. So to increase the quality of the case-base, we should only add the
most promising routes to each of the end destinations.

Say that the optimal paths to each destinations are [1,2,4,6] for the route
to 6, [1,5,9] for the route to 9 and [1,3,8,10] for the route to 10. We add
these routes to the case-base. If a friend three months later asks how do I
get from city 1 to 10, the case-based reasoning system answers the question
by retrieving the path [1,3,8,10]. If however the friend says that she wants
to pass through cities 5 and 8 to get to 10. Then we need to revise [1,3,8,10]
to include the new requirement, which is to pass through 5 and 8. The
algorithm uses adaptation to learn about the new case. After adaptation
the algorithm will return the route [1,5,8,10]. Then the case-based reasoning

26 2. BACKGROUND

system saves this new solution as a case of going from 1 to 10 through 5
and 8. Though this is a simplistic example, it depicts the core mechanisms
behind case-based reasoning.

.
Figure 7: Graph representing the cities

There is a body of research investigating the use of case-based reasoning to
solve the UCTP. Burke et al. (2000) and Burke et al. (2001) proposed a case-
based reasoning approach to solving the UCTP. The authors used attribute
graphs as form of representing cases. In attribute graphs, nodes represent
events and edges represent the relationship between any two events. In the
UCTP, nodes represent courses, edges represent hard constraints, or soft
constraints. The only disadvantage of this method of representing cases is
that matching it to other cases becomes a graph isomorphism problem, which
is an NP-Complete problem (Burke et al., 2000).

Qu (2002) proposed another case-based reasoning system that departs from
the one described previously. Instead of using the CBR system to retrieve
solutions to cases, it rather looks to find the most appropriate heuristic to
apply to a case in order to solve it. The system stores an attribute graph for
the cases, and their respective heuristics. When a new case emerges, we take
the new case and perform a nearest neighbor between the new and each of
the existing cases. Once the closest case is found, the system retrieves the
heuristic applied to solve the retrieved case, in turn, the heuristic is applied
to the new case. This approach has advantages over the previous one in that

2. BACKGROUND 27

it allows for general timetabling problem solving, rather than just particular
instances of the UCTP.

The techniques I have chosen to combine in my research are a genetic algo-
rithm and case-based reasoning. The main motivation for my choice is that
properly coded genetic algorithms can be very effective in solving the UCTP.
In order to avoid the cost of producing timetables from scratch, I decided to
use case-based reasoning as a system to save and retrieve previous solutions
from gentic algorithms. Table 2 provides a summary of selected literature
works and the methods they have used to solve the UCTP.

28 2. BACKGROUND

Study GA CBR MA PSO ACO SA TS COBR
(Abramson, 1991) X
(Burke et al., 1994) X
(Costa, 1994) X
(Burke et al., 1995) X
(Rich, 1996) X
(Burke et al., 1996) X X
(Goltz and Matzke,
1999)

X

(Lucas, 2000) X X
(Burke et al., 2000) X
(Burke et al., 2001) X
(Wilke et al., 2002) X
(Qu, 2002) X
(Socha et al., 2003) X
(Rossi-Doria and
Paechter, 2004)

X X

(Lewis and Paechter,
2005)

X

(Kendall and Hussin,
2005)

X

(Dowsland and
Thompson, 2005)

X

(Perzina, 2006) X
(Cotta and Fernandez,
2007)

X

(Raghavjee and Pillay,
2008)

X

(Wang et al., 2009) X X
(Fen et al., 2009) X
(Liu et al., 2009) X
(Nunes, 2010) X X

Table 2: Studies of the UCTP and their methods. GA stands for genetic
algorithms, CBR for case-based reasoning, PSO for particle swarm optimiza-
tion, ACO for ant colony optimization, SA simulated annealing , TS Tabu
Search and COBR for constraint-based reasoning

3. PROBLEM DESCRIPTION 29

3 Problem Description

In this section I present the central problem that this research attempts to
solve. I formulate the research questions that this paper answers, and I
contextualize them to the timetabling needs of Macalester College, which is
the institution of primary interest in this case. I then formulate some of
the constraints that need to be put in place to ensure the usefulness and
feasibility of the timetables.

3.1 UCTP Applied to Macalester College

3.1.1 Motivation

The UCTP problem arises in a number of diverse academic institutions with
differing structure and timetabling needs (Burke and Petrovic, 2002). There
is a line of research that aims at solving the UCTP problem in a generic
manner, regardless of the unique needs of every institution (Petrovic and
Burke, 2004)(Wang, 2003) (Lucas, 2000) (Qu et al., 2006) (McCollum et al.,
2008). On the other hand,the case studies accomplished by Wang et al.
(2009) and Wilke et al. (2002) are examples of research projects that have
applied the UCTP problem to specific institutions.

My research focuses on Macalester College’s timetabling needs. There are
many motivations for my choice of this college. The first reasom, and the
most obvious, is due to my matriculation at this school, and I feel that
contributing towards timetabling automation might prove invaluable to the
institution. But more importantly, Macalester’s academic planning needs
are very different from those of larger research universities, making it an
interesting case study. One of the reasons for this difference is that Macalester
is a liberal arts college, and as such students are required to take classes from
a variety of disciplines outside of their area of study.

In addition, because of the small student to professor ratio, and the relatively
small set of classes offered per department, scheduling classes should take into
account students’ needs to take the necessary classes to fulfill their academic
program. This is an important difference between liberal arts and non-liberal

30 3. PROBLEM DESCRIPTION

arts schools. A student registered to pursue a Bachelors of Science in a non-
liberal arts school is primarily concerned with the course load for that major.
However, a liberal arts student is required to take classes outside of her area
of study to satisfy the multiple requirements that the school imposes. If
the student decides to do multiple majors and minors, then the chance of
scheduling a collision between two needed classes increases.

Another factor that makes the Macalester case-study compelling (and can be
more widely applied to other liberal arts schools in general) is its many hybrid
programs called interdepartmental majors. These programs require students
to broaden their academic interests beyond one specific academic department,
thus making it challenging to coordinate classes across disciplines. I call this
conflict the student enrollment collision problem.

In my research, however, I do not use assigned classrooms as a variable that
promotes conflict. Because of the limited number of classrooms at Macalester
due to its small size, it isn’t necessary to incorporate room choice as a con-
straint in scheduling conflicts. In a larger institution, room assignment may
present a larger problem.

Applying the UCTP problem to Macalester College is a difficult task and
probes important research questions. In the next subsection I will present
some of these questions.

3.1.2 Research questions

At the end of each semester, students at Macalester College register for classes
for the following semester. Each student has a unique personal timetable.
Sometimes, students want to take two classes that are scheduled at the same
time, and thus are forced to choose one class over the other. Often, this does
not cause many problems, but in some circumstances this causes planning
conflicts and consequently students must drop one their majors, minors or
inter-departmental concentrations because of the inability to take a required
class that coincides with another requirement.

To solve the UCTP given the contraints at Macalester, I formulated the
following research questions:

3. PROBLEM DESCRIPTION 31

• Research question 1: Is it possible to produce schedules that are feasible
to both academic departments and student planning needs?

• Research question 2: Can such feasible schedules effectively accommo-
date instructors’ scheduling preferences, while not increasing collision
in students’ academic schedules?

• Research question 3: How challenging is it to address student planning
constraint compared to the instructor constraint?

• Research question 4: How many free time-periods must one put aside
in order to assure high quality timetables?

• Research question 5: What is the numerical threshold for student en-
rollment overlap between two classes before it should be decided that
those classes should not be offered during the same time slot?

In this work, I seek to answer the first four questions, while leaving the
fifth question for future research. In order to address these questions, it is
important to define the constraints that I need to place on the system such
that it produces feasible schedules. Below are some of the hard constraints
relevant to Macalester College:

1. No two classes scheduled during the same time-slot should share more
than a given percentage of their pre-enrolled student set.

2. No two classes scheduled during the same time-slot should share the
same instructor.

Below are some of the soft constraints that may be relevant to the chosen
solution implementation:

1. Students who strongly favor one class instead of the other should get
their top choice.

2. Computer Science 124 has to be taught in periods after 8:30 AM.

Though I present every constraint, I am more interested in the hard con-
straints and leave the inclusion of soft constraints for future work.

32 4. DESIGN OF THE SYSTEM

4 Design of the System

In this section, I introduce the algorithm I wrote to solve the UCTP problem.
For the rest of this section, I analyze the genetic algorithm and the case-based
reasoning systems separately, and then explore how to combine them together
to produce the method I used to solve the problem at hand.

4.1 The Hybrid Algorithm

The algorithm I developed is hybrid because it combines genetic algorithms
with case-based reasoning. Moreover, the genetic algorithm in itself is a hy-
brid algorithm because it combines group-based operators with self-fertilization
operators during the crossover stage. I chose to combine genetic algorithms
and case-based reasoning because scheduling time tables can be constructed
based on previous schedules (Burke et al., 2001), and case-based reasoning is
designed to solve current problems using past information. I used the genetic
algorithm for two reasons: I needed a mechanism to populate the case-based
reasoning system, and because if the case-based reasoning system fails to
retrieve a good solution, then I would generate a feasible solution using the
genetic algorithm.

In addition, for the genetic algorithm I chose to use the self-fertilization tech-
nique of Wang et al. (2009) as a crossover mechanism because that keeps the
consistency of the solutions and improves the convergence of the algorithm.
This occurs because it reduces duplicate classes in the schedule, and it does
not completely change the position of the classes (as the genetic algorithm
would have to do if it had implemented the traditional crossover operator).
Consequently, using self-fertilization reduces the number of checks needed to
move a class to a new time slot, thus, speeding up the system. Using self
fertilization has another advantage: I do not need to mutate the solutions,
as self-fertilization is much like a heavy mutation operator.

I also used concepts from group-based genetic algorithms - in the solution
construction, both during population initialization and children generation.
This approach does not allow more than one event to be scheduled to a cell
of the matrix representing a given schedule – a matrix cell is either empty

4. DESIGN OF THE SYSTEM 33

or contain at most one event. Events are not allowed to be inserted into a
position that causes conflict (Lewis and Paechter, 2005).

The activity diagram in Figure 8 illustrates the mechanism behind the hybrid
system that I implemented.

.
Figure 8: Hybrid system

34 4. DESIGN OF THE SYSTEM

4.2 The Genetic Algorithm

4.2.1 Solution Representation

The timetables are represented as a m × n matrix. where m is the number
of available time slots and n represents the number of rooms available. Each
cell in the matrix represents an event object. Events are comprised of the
ID of the course, the ID of the instructor, the course and instructor names,
the class size and the set of students pre-enrolled in that particular course.
An event is a class without a time slot, and it represents the genes of the
chromosome. As such, a cell in the chromosome matrix represents a class with
a specified time slot and room assignment. Because I am not interested in
the room assignment problem (as it is trivial to Macalester), the room’s role
in the matrix is to place a timetabling event to a virtual room and no actual
room assignments are made. The matrix representation ensures that there
will not be any room clashes (Raghavjee and Pillay, 2008). Figure 9 shows
an illustration of a part of a possible schedule with two class events.

.
Figure 9: Extract of a timetable

4.2.2 Population Initialization

I began by collecting the courses to be scheduled, the number of available
time slots, the number of available faculty, and the students who plan to
take each of the offered courses. Before initializing the genetic algorithm, I

4. DESIGN OF THE SYSTEM 35

formed course events for each data piece using each of the courses. In the pre-
processing phase, I produced as many of these events as the benchmark data
allowed. Using the initial set of events, I then randomly picked a position in
the schedule for each of the events. Note that if the position is taken, the
algorithm looks for the closest free time slot for the event at hand. Algorithm
6 is a description of this process:

Algorithm 6: Genetic Algorithm Initiate Population Algorithm

Input: Set of events
Output: Initial population
begin

foreach event in setOfEvents do
random pickSlot1=randomNumber()
random pickSlot2=randomNumber()
checkIfAvailable(time slot[pickSlot1][pickSlot2])
if checkIfAvailable == true then

placeEvent(event)
end
else

lookForNearestFreetime slot(time slot[i][j])
if foundFreeTimeSlot == true then

placeEvent(event)
end
else

return Null
end

end

end

end

Though I sought to avoid room and time slot conflicts during the initial-
ization phase, the randomness of the process does not avoid the problem of
student and instructor collision. Initializing the population at random was
intentional so as to allow that infeasible timetables are improved upon during
the evolution process Wilke et al. (2002).

36 4. DESIGN OF THE SYSTEM

4.2.3 Fitness Function

The fitness of the chromosome timetable is determined by the number of
constraints the solution violates (Raghavjee and Pillay, 2008). In this case,
I am interested in two particular constraints: the student and the instructor
constraints, which are the hard constraints in this system. The fitness of
any schedule is found by iterating through the classes in the timetable, and
seeing if any of the course event placements violates the hard constraints. In
this system, I chose to look for the global maximum, instead of the global
minimum position and chose to attribute five points to a timetable that does
not violate any constraint (two and a half points per constraint). Thus, the
best solution will be one that at the end of the number of generations still
has most of its points, preferably five or close to that. In order to assess the
fitness of a timetable, I used a variation of the Jaccard similarity coefficient to
calculate the penalty between two classes. The Jaccard similarity coefficient
is used to measure the similarity and diversity of sample sets. The index is
calculated by dividing the size of the intersection between the two sets by
the size of the union (Goodall, 1966). Equation 2 shows the mathematical
expression for the coefficient, where A is one set and B is the other set.

J(A,B) =
|A ∩B|
|A ∪B|

(2)

This similarity index, however, has a shortfall in that it gives the same weight
to both sets while calculating the index. To illustrate this point, let us build
an example using the UCTP. Let us say that class A has 6 students and class
B has 53 students, and imagine that the size of the intersection between the
two classes amounts to 3 students. Then the Jaccard index will calculate
the similarity to be 3/56, which is 0.054. This number would penalize these
classes lightly because the intersection represents a small percentage of the
total students for class B. Thus a more fair measure is to find the maximum
of the ratio between the size of the intersection to the size of the chromo-
some classes. The equation 3 shows the mathematical representation of the
modified penalty calculation, where SP is the penalty function between two
courses(i and j) with a number students in common.

4. DESIGN OF THE SYSTEM 37

SP (i, j) = Max(
|i ∩ j|
|i|

,
|i ∩ j|
|j|

) (3)

Below is the algorithm describing the evaluation process for a population:

38 4. DESIGN OF THE SYSTEM

Algorithm 7: Algorithm to measure fitness of candidates in the population

Input: The population
Output: The population with their fitnesses
fitness=5.0

foreach candidate in population do
studentIntersectSize=0.0
foreach row in candidate do

foreach column in candidate-1 do
class1Students = courseEvents[row][column].getStudents()
class2Students = courseEvents[row][column+1].getStudents()
instructor1=courseEvents[row][column].getInstructor()
instructor2=courseEvents[row][column+1].getInstructor()
foreach student1 in class1Students do

foreach student2 in class2Students do
if student2 == student1 then

studentIntersectSize=studentIntersectSize+1
end

end

end
if instructor1 == instructor2 then

instructorPenalty = instructorPenalty + 1
end

end

end
fitness=fitness-max(studentIntersectSize/class1StudentSize,
studentIntersectSize/class2StudentSize)

fitness = fitness - (instructorPenalty/size(candidate.getTimetable()))
candidate.SetFitness(fitness)
populationFitness.add(candidate)

end
return populationFitness

The fitness function in mathematical form is shown in equation 4, in which
n represents the number of courses in a timetable, SP is the student penalty,
and IP is the instructor penalty(the number of courses that had the same
instructor and were offered during the same time slot).

4. DESIGN OF THE SYSTEM 39

chromosomefitness = 5− (
∑
i,j

SP (i, j) +
n∑
i=1

IP (i)

n
) (4)

I measure the instructor constraint by counting the number of classes that
are scheduled in the same time slot and have the same instructor. I find
the number of classes in conflict, and divide by the total number of classes
in that particular timetable. The instructor penalty is bound to be smaller
than the student constraint, unless there are very few instructors teaching
many classes. Five is the experimentally set maximum fitness value for a
candidate solution. I decided to use five because it was the maximum fitness
value that returned the least number of negative or zero fitnesses during my
experiments. A maximum fitness value is important because the selection
process needs to evaluate all the candidate solutions using the same scale,
the maximum fitness sets the upper limit of the scale.

4.2.4 Selection

For the selection step of the genetic algorithm, I use the roulette wheel selec-
tion method. The roulette wheel is a fitness-proportionate selection method.
As the name suggests, each candidate chromosome is given an area in the
wheel according to its fitness. The mechanism is illustrated in Figure 10.
Thus, chromosomes with higher fitness have a higher probability of being
picked than chromosomes with lower fitness. The probability of an chromo-
some being selected to be among the parents that are allowed to reproduce
(pi) will take the form of the expression seen below:

pi =
fi∑m
i=1 fi

(5)

40 4. DESIGN OF THE SYSTEM

Figure 10: Roulette Wheel Mechanism. With permission of John Dalton
(Dalton, 2010)

In the equation fi is the fitness of a chromosome, and the fm represents the
fitness of the population added over each candidate’s fitness.

One of the advantages of the roulette wheel selection is that it gives less fit
chromosomes an opportunity to be selected unless their fitness is insignifi-
cant. To implement roulette wheel, I used an easy algorithm and chose a
chromosome and its selection probability to check if its fitness is bigger the
random number produced. If so, I placed it in the mating pool. If not, I
added its fitness to the next candidate until the cumulative was a number
that was greater than the random number, and then added the last parent
(whose fitness made the cumulative bigger than the random number) to the
mating pool. Algorithm 8 describes the algorithm I used for my selection
mechanism:

4. DESIGN OF THE SYSTEM 41

Algorithm 8: Selection algorithm for the genetic algorithm

Input: Population size and Set of chromosomes and their fitness
Output: Mating pool
matingPool=new matingPool()
foreach chromosome in populationWithSelection do

random randomNum=random() parent=null partialSum=0
foreach chromosome in populationWithSelection do

partialSum=partialSum+chromosome.getSelectionProbability()
if checkIfAvailable == true then

parent=chromosome matingPool.add(parent)
end

end

end
return matingPool

This implementation of the roulette wheel will benefit more fit chromosomes,
but it is not hierarchical in nature. This is true because, depending on the
value of the random number, some chromosomes with poorer fitness might
be admitted into the mating pool. I purposefully decided to opt for this
implementation because it widens the search space of the algorithm, and
also helps measure how much improvement there is in terms of fitness per
generation.

Selection is very important because it chooses the next chromosomes for pro-
creation; however, it is the crossover mechanism that allows for procreation
to take place. In the next subsection, I discuss the crossover mechanism I
used in this genetic algorithm.

4.2.5 Crossover

I used the self-fertilization concept of Wang et al. (2009). In order to perform
self-fertilization, the algorithm picks a time slot at random and extracts the
class in it. It then iterates through the timetable matrix in order to place
the class in an empty time slot. This process is different for a timetable
with exactly the same number of time slots as the number of class events.
In this case, because there will be no more available time slots, other than
the one that the class has left opened, the best approach is to choose two

42 4. DESIGN OF THE SYSTEM

random classes out of two distinct time slots and swap their places. After
swapping time slots takes place, the algorithm goes on to evaluate the child
that was produced during crossover. There are two versions of the crossover
mechanism. The first version accepts any child regardless of their fitness
while the second version, the elitist approach, only places the child in the
new population if the child has a better fitness than the parent.

Algorithm 9 describes the steps taken during crossover for the non-elitist
version:

Algorithm 9: Non-elitist version of crossover

Input: Mating Pool
Output: New Population
listNewGeneration=new List()
foreach i in matingPool.size() do

rand=random(matingPool.size) chosenParent=matingPool.get(rand)
child=chosenParent.copy()
foreach i in child.ChromosomeSet.size() do

randIndex=random(parent.ChromosomeSet.size())
chosenCourseEvent=parent.ChromosomeSet.get(randIndex)
placeCourseinTimetable(chosenCourseEvent)

end
listNewGeneration.add(child)

end
return listNewGeneration

Algorithm 10 the steps taken during crossover for the elitist version:

4. DESIGN OF THE SYSTEM 43

Algorithm 10: Elitist version of crossover

Input: Mating Pool
Output: New Population
listNewGeneration=new List()
foreach i in matingPool.size() do

rand=random(matingPool.size()) chosenParent=matingPool.get(rand)
child=chosenParent.copy()
foreach i in child.ChromosomeSet.size() do

randIndex=random(parent.ChromosomeSet.size())
chosenCourseEvent=parent.ChromosomeSet.get(randIndex)
placeCourseinTimetable(chosenCourseEvent)

end
child.fitness=evaluate(timetable) if child.fitness ≥ parent.fitness then

listNewGeneration.add(child)
end
else

listNewGeneration.add(chosenParent)
end

end
return listNewGeneration

The crossover operator is very important both for population diversity and
fitness improvement. To ensure that I received the best results, I first used
the non-elitist method and then switched to the elitist method. This caused
an immediate improvement in the resulting timetables. However, the elitist
method narrows down the search space, and though I might have received
a very good solution, the solution could be a local maximum, instead of a
global maximum.

During crossover, to improve the chances of convergence in reasonable time,
I decided to allow any parent in the mating pool to create only one child in
each generation. This is important because it guarantees that the population
size will stay the same. This design choice is particularly important because
the genetic algorithm is to be integrated with a web system, and web system
can easily time out if a computation takes longer than the web framework
time threshold.

Another design choice was to take the whole mating pool for the crossover

44 4. DESIGN OF THE SYSTEM

process, instead of the usual 80% that the literature advises. This change
is related to the fact that parents are only allowed to generate one child.
Thus in order to diversify the population and create a search space that is
interesting, it is important that I include the whole mating pool in choosing
parents for crossover. In addition, I chose not to use the mutation opera-
tor. Self-fertilization crossover is in its essence similar to a heavy mutation
operator.

4.3 The Case Based Reasoning System

In this section, I describe the higher level design of the case-based reasoning
system.

4.3.1 Case Representation

A case in the case-based reasoning system is represented by its ID. The list
of course events (including courses, their time slots, and instructors), the
number of slots available in the timetable, the number of rooms available in
the timetable, the number of instructors available and weight or fitness of the
case were all taken into account to distinguish one case from another.

4.3.2 Indexing

In order to measure the similarity between two cases, I chose not to design a
whole new index, as an index is not organically different from a case. Thus,
in this system the index is the same as the case itself. After comparing a
new case to an existing case, I changed the similarity index of the old case to
reflect the similarity between the new and old cases. Algorithm 11 describes
the mechanism to compare two cases:

4. DESIGN OF THE SYSTEM 45

Algorithm 11: Algorithm to measure similarity between two cases

Input: New case and Old case
Output: Cases and their respective similarity indexes
begin

oldCaseCourseEvents=oldCase.events()
newCaseCourseEvents=newCase.events() score=0
foreach i in oldCaseCourseEvents.size() do

foreach i in newCaseCourseEvents.size() do
if oldCaseCourseEvents.contains(newCaseCourseEvents.get(i))
then

score=+0.25
end

end
if oldCase.getNumberInstructors() ==
newCase.getNumberInstructors() then

score=+0.25
end
else if oldCase.getNumberRooms() == newCase.getNumberRooms()
then

score=+0.25
end
else if oldCase.getNumberSlots() == newCase.getNumberSlots()
then

score=+0.25
end
oldCase.setWeight(score) listRetrieved.add(oldCase)

end
return listRetrieved

end

4.3.3 Case Retrieval and Case Base Maintenance

The case-based reasoning memory is represented by a database table and the
retrieval of cases is done through SQL queries. An example of such a query
is:

select * from cbrcase

46 4. DESIGN OF THE SYSTEM

where numslots= 12

AND numrooms= 8

AND numprofs= 9

Note that this query requires an exact match of the parameters between
the new case and the retrieved case. This means that the algorithm finds
two cases similar if they have exactly the same parameters. Moreover, the
query is too broad, as it returns all the cases that match the criteria, more
parameters are required to make this query more accurate. This makes the
similarity measure too narrow, improvement is needed.An easy improvement
over this query would be a more complex query that matches partially on
different parameters.

Because of the data model discussed in the next section, this query returns
the case and its attached course events when executed. This result is a
slightly different form to represent a timetable than the genetic algorithm
solution format. Algorithm 12 describes the retrieval process:

Algorithm 12: Algorithm to retrieve previous cases

Input: New case
Output: Retrieved solutions
begin

List similarCases= new List List
results=selectSimilarCases(newCase.numSlots,newCase.numRooms,
newCase.numInstructors)
foreach oldCase in results do

computeSimilarity(newCase,oldCase) similarCases.add(oldCase))
end
return similarCases

end

I chose to do the case maintenance automatically by having the genetic al-
gorithm populate the case-based reasoning memory. To do so, I ran some
training trials, in which the genetic algorithm produces the best fitness chro-
mosomes for every generation, and used these chromosomes as the old cases
in our memory, which I compared against new cases.

4. DESIGN OF THE SYSTEM 47

4.3.4 Database model

In order to store the cases into the database, I devised a database model
that is comprised of two entities: course event and the case-based reason-
ing memory. The former is used to stored the courses and their respective
times and instructors, while that latter is used to store the numeric param-
eters for the case-based reasoning system. The relationship between a case
and its respective course events is a one-to-many, because a case contains a
timetable, which contains many course events. Figure 11 shows a database
entity diagram that illustrates this relationship.

Figure 11: Entity relation diagram for case-based reasoning entities

4.4 Web Interface - MAP

The Macalester Academic Planner (MAP) is a web-application written in
Groovy on Grails. This program creates a centralized system in which stu-
dents can keep track of their academic plans, and departments can plan the
courses to offer. The main advantage of this system is that under the lay-
ers of the web system, our algorithms extract both student and department
course offering information to produce semester schedules that are compat-
ible to both departments’ timetabling needs and with students’ plans. It
is this automation that I hope will contribute to less laborious timetabling

48 4. DESIGN OF THE SYSTEM

activities.

MAP has three distinct functionalities: the student portal, the administrator
portal, and the advisor (instructor) portal.

The student portal allows students to create, edit and share their major, mi-
nor and interdepartemental concentration plans. In the create interface, the
student is exposed to every class of a particular major and all the respective
course offerings during the students’ four year matriculation. Thus, in order
for a student to create a plan, the student will only need to click on the radio
buttons to choose their respective classes and save that information.

After creating a plan a student has the option to either edit the plan or add
advisors to her list of advisors. After adding the advisor(s), then the student
can choose to share the plan with one or more advisor so the advisor can
provide feedback. Figure 12 shows the actions that a student interacting with
MAP can perform. The solid lines indicate activities that are in sequence
while the dotted lines indicate alternative actions that the user could have
taken from a given step.

The administrator can create new academic programs, such as majors, mi-
nors and interdepartmental concentrations. The administrator can also enter
information about the semester and year in which courses will be offered.
Lastly, the administrator will also use the make-schedule functionality to in-
put the genetic algorithm parameters, run the algorithm on the parameters,
and then view the results of the algorithm. This is the interface that inter-
acts with the hybrid genetic algorithm, both to provide the algorithm with
data and to display the results of running the algorithm.

5. ALGORITHM IMPLEMENTATIONS 49

Figure 12: Activity diagram for a student in MAP system

Next, I turn back to the algorithms and I present some of the programming
and design choices I made while programming the genetic algorithm and the
case-based algorithm.

5 Algorithm implementations

All the implementations were written in Java. I chose Java mostly because
the hybrid algorithm is to be integrated with a web framework that sits on
top of Java libraries. For the rest of this section I will discuss the design
choices I have made in implementing the algorithms.

50 5. ALGORITHM IMPLEMENTATIONS

5.1 Genetic Algorithm Implementation

I have chosen to make a course event the basic unit of this system or the
gene of the genetic algorithm. An event is represented by a Java class that
serves solely as a data holder, and has no other functionalities. The instance
variables for the course event class are the course ID (an integer)and name
(a string), the instructor ID (an integer) and name (a string), the capacity
of the class (an integer) and the set of students for the course event. The set
of students is represented using a Java integer typed list, where the integers
represent the student ID. Course event is similar to the traditional concept
of an academic class.

Another important Java class is the ScheduleChromosome class. This is a
class that holds all the data related to a timetable. It contains a 2D array
that holds the actual timetable. The array is of type event. It also contains
instance variables such as the fitness and the selection probability, which are
double, and the number of rows and columns which are integers. In addition,
it contains a list of events, which is used as a history data structure that keeps
track of all the course events in the timetable.

The implementation of the genetic algorithm can be divided into two ser-
vices: the algorithm helper services and the evaluation service. The algorithm
helper functionalities are comprised of methods that implement the stages
of the genetic algorithm: population initialization, selection and crossover.
These functionalities are contained in the Java class GaUtil (for further de-
scription see appendix A).

To initialize the population I chose to take the list of course events and
randomly assigned these events to the timetables for each chromosome. Fol-
lowing this process I created as many chromosomes as the population size
parameter allowed.

For crossover I decided to implement two versions: the non-elitist and the
elitist version. The elitist version is useful,because it always converges and
returns the best possible timetable, even though it strongly biases the evo-
lutionary process (it cuts out the least fit chromosomes in early genera-
tions).

The children created during crossover are deep copies of the parent Java

5. ALGORITHM IMPLEMENTATIONS 51

objects. I chose to make deep copies so that the changes in the child would
not affect the parent. In doing so, I make sure that each Java object points
to different memory locations in the Java heap.

The second group of services are represented by the GaConstraint Java class
and these are the evaluation functions. The student and instructor constraint
functions build the fitness function, with which we evaluate chromosomes in
the population (see appendix A).

5.2 Case-based Reasoning Implementation

In implementing the case based reasoning system two important features
were considered. First, the mode of storage of the cases, second, the retrieval
process.

As previously discussed, cases in the case-based reasoning system are perma-
nently stored to a database. In order to implemet this design choice I used
Java JDBC library. This library allowed me to get a database connection,
to execute queries and get the results of the database queries.

Each entity in the database corresponds to a java class, the course event
table corresponds to the course event class. As I defined previously, the
course event class is the Java class that encapsulates information about a
course event, that is the course name and the time that course meets. The
cbrcase table corresponds to the CBRCase Java object. The CBRCase class
encapsulates all the pieces of information about a case. This includes the
actual timetable for the case, which is comprised of a list of course events.
It also contains other fields such as the number of rooms and number of
instructors for that given timetable.

The implementation of the case-based system can be divided into two parts:
The case-base initialization services and the case-based reasoning fuction-
alities. I decided to use the genetic algorithm as a training tool for the
case-based reasoning system. In order to attain variety in the cases in the
case-memory I decided to use different benchmarks and ran these on the ge-
netic algorithm. The CBRTraining class is responsible for calling the genetic
algorithm, which in turn saves its feasible chromosomes into the case-base

52 6. EXPERIMENTS

(see appendix A).

There are many classes supporting the case-based reasoning mechanism, but
the main ones are the CaseBase, CaseMemory and CBRCase classes. The
CaseBase class offers services to save and retrieve cases, while the CBRCase
class is a data-holder class with no additional functionalities. The Case-
Memory class implements the Java JDBC services and persists cases to the
database, and manages the database. It allows us to retrieve, save and delete
case-based reasoning cases.

During the implementation of the algorithms active testing was crucial in
fine-tuning parts of each algorithm. The goal of these implementations was
to perform experiments that would either support or refute the use of these
algorithms for the task of production of timetables for Macalester College.
Next, I am going to discuss some of the experiments I set up to answer the
research questions.

6 Experiments

In order to answer the research questions, I designed experiments that mea-
sure the performance of the case-based reasoning system and the genetic
algorithm. The case-based reasoning experiments only test the retrieval pro-
cess, further testing is needed in order to thoroughly test the system. For
the genetic algorithm, I have prepared a number of experiments that reveal
the different properties of this algorithm.

6.1 Test Data

I designed testing benchmarks using knowledge about scheduling at Macalester
College. I selected twenty courses from the Mathematics, Statitics and Com-
puter Science Department, as well as the teachers for these courses. I also
assigned a number of students to each of these courses. I generated the stu-
dent IDs randomly. These IDS are used to check whether a student is in more
than one class or not. In order to assign students to the classes, I randomly
selected student IDs and placed them in the course. Assigning students to

6. EXPERIMENTS 53

classes is not realistic because students are likely to pick classes with a prob-
ability that is proportional to the priority of the class. Below is a snippet of
the Events.XML document, which is the document that holds course event
data for the 20 courses I have chosen. The variables in this document define
a course. A course is comprised of a suject course that has an ID and name,
an instructor that also has an ID and name, the number of students that
intend to take the course, and the number of times the course is offered each
week. To view the whole document refer to appendix B.

Events.XML

<events>

<event id="1">

<courseID>1</courseID>

<courseName>Comp 120</courseName>

<instructorID>1</instructorID>

<instructorName>Elizabeth Shoop</instructorName>

<classSize>20</classSize>

<frequency>3</frequency>

</event>

<event id="2">

<courseID>2</courseID>

<courseName>Comp 121</courseName>

<instructorID>5</instructorID>

<instructorName>Eric Theriault</instructorName>

<classSize>36</classSize>

<frequency>3</frequency>

</event>

</events>

Here is the simple algorithm that assigns students to course events:

54 6. EXPERIMENTS

Algorithm 13: Algorithm to assign students to courses

Input: listOfCourses
Output: listOfCoursesAndStudents
begin

foreach course in listOfCourses do
classSize = course.classSize foreach i in classSize do

Random rand = new Random() studentID =
rand.nextInt(classSize) course.listOfStudents.add(studentID)

end
listOfCoursesAndStudents.add(course)

end
return listOfCoursesAndStudents

end

In addition to the course event XML document, I designed the XML doc-
ument that holds the parameters for the genetic algorithm. I called this
document the GAbenchmark document. This document is comprised of four
numbers that define the behavior of the genetic algorithm. These numbers
are the population size, the number of generations, number of available course
times and the number of available rooms. Below is a sample GAbenchmark
document:

GA_benchmark.XML

<parameters>

<parameter id="1">

<parameterName>POP_SIZE</parameterName>

<value>100</value>

</parameter>

<parameter id="2">

<parameterName>NUM_GENERATIONS</parameterName>

<value>100</value>

</parameter>

<parameter id="3">

<parameterName>NUM_time slotS</parameterName>

<value>6</value>

</parameter>

6. EXPERIMENTS 55

<parameter id="4">

<parameterName>NUM_ROOMS</parameterName>

<value>6</value>

</parameter>

</parameters>

Next I am going to show how I used these files to perform the experi-
ments.

6.2 Experiments on the GA System

In order to test the performance of the genetic algorithm, I designed a few
instances of the UCTP problem with the aim of testing different aspects of
the genetic algorithm. Here are the problem instances from which I designed
the testing benchmarks:

1. An instance when the number of available time slots is much higher
than the number of course events we need to schedule. This setup
helps us see how hard the algorithm works for very easy problems.

2. An instance when the number of time slots is slightly higher than the
number of classes to schedule. In this experiment I chose to allocate
five more time slots than the number of classes. This choice seemed
realistic enough to mimic a real-life scheduling situation. This tests
how much improvement the algorithm offers when the problem is more
constrained. However, in this case the problem is not very hard either.

3. An instance when the number of time slots available is exactly equal to
the number of classes to schedule. This is the most constrained case,
as the algorithm has no extra room in which to place conflicted class
arrangements. This tests not only fitness improvement, but also the
algorithm solution quality for extremely hard problems.

4. An instance when the population grows. This tests how population of
solutions growth affects the time and the quality of the solution that
the algorithm returns.

5. An instance when we leave the algorithm running longer. In this case

56 6. EXPERIMENTS

I test whether a greater number of generations result in better quality
solutions without increasing computation time.

Using the XML files I described in the previous subsections, I have prepared
six different benchmarks using six different GABenchmark documents and
only one Events.XML file. I chose to use only one Events.XML file, because
I want to use the same twenty courses across all the experiments. This is
a reasonable choice because the twenty classes I picked are reflective of a
variety of courses that Macalester College offers (in terms of size).

• Benchmark 1: the population size is set to 100 chromosomes this is
the number of chromosomes that the genetic algorithm has to randomly
produce in the initialization phase. The number of generations is set
to 100. This means that the algorithm will run at least 100 times,
it may run up to 400 iterations if the fitness of the best individual
for each generation is lower than my threshold of 4.70. There are 20
courses to schedule, each with 1 instructor, two courses may share the
same instructor. The number of available rooms was set to 6 and there
are 6 possible time slots in which we could place any course event.
Putting together the number of rooms and the number of available
times, there are 36 different combinations of rooms and times that
could be generated, thus 36 time slots would be available for the 20
courses we want to schedule.

• Benchmark 2: I only changed the number of rooms available to 6
and the number of times available to 5. This means that the number
of available time slots were reduced from 36 to 30 in total. This is a
harder problem than the one in benchmark 1, because there are less
free time slots in which the algorithm could place conflicted classes.

• Benchmark 3: I further reduced the number of available times to 4
and the keep the number of available rooms as 6, this produces the
a total of 24 available time slots for 20 classes. This is a harder case
the previous one, however, it still gives the algorithm some freedom to
move solutions to free spaces.

• Benchmark 4: I further reduced the number of of available rooms to 4
and the change the number of available times to 5, this produces the a
total of 20 available time slots for 20 classes. This is a very constrained

6. EXPERIMENTS 57

situation as the algorithm has no free room in which to place courses
that clash.

• Benchmark 5: I increased the population number parameter to 1000,
while maintaining the number of generations to 100. The aim of this
change is to evaluate timing and computational needs of the algorithm
as the initial population increases.

I divided this benchmark into two parts:

– Benchmark 5A: is comprised of the instance of the UCTP in which
there are 36 timeslots for 20 courses.

– Benchmark 5B: is comprised of the instance of the UCTP in which
there are 20 timeslots for 20 courses.

I predicted that benchmark 5 would give us better insight on the per-
formance of the algorithm , as it allows us to compare this performance
with the performance of the algorithm when the population is smaller.
My prediction was that benchmark 5B would produce both lower pop-
ulation fitness average, as well as the best solution found would have
lower fitness than that of the instance in benchmark 5A.

• Benchmark 6: I set the population size to 100 and increase the gen-
eration number to a 1000, while keeping all the other parameters the
same in bechmarks one though four. The aim of this change is to test
how the quality of solutions change as the algorithm runs for longer
time. Similar to benchmark 6, I decided to divide this benchmark into
the same two parts: A and B, similar to what I used in benchmark 5.

I designed the experiment such that the algorithm ran on each benchmark. I
measured the average fitness per generation, the best fitness per generation,
and the number of new chromosomes the algorithm generates per generation.
The average fitness per generation is measured by adding the fitness of all
the chromosomes in a generation and dividing it by the number of chromo-
somes in the population. Below is the mathematical representation of this
calculation. In the formula fav(i) is the average fitness function, i is the
chromosome in the population and there are n of them in a generation.

58 6. EXPERIMENTS

fav(i) =

∑n
i=1 fitness(i)

n
(6)

I calculate best fitness per generation by finding the fitness of the best chro-
mosome of a generation, and I do that for every generation. The distribution
of fitnesses is measured by counting how many chromosomes in the popu-
lation have that particular fitness value for every generation. The number
of new chromosomes per generation is measured by counting the number of
unique chromosomes (new Java objects of type chromosome) in each gener-
ation.

6.3 Experiments on the case-based reasoning system

In order to evaluate the case-based reasoning system I used the same bench-
marks as the ones described in the previous subsection and ran the genetic
algorithm in order to populate the database. I wrote an algorithm that ran-
domly picked a combination of course events and genetic algorithm parame-
ters to produce optimized schedules. Then I used these optimized schedules
to populate the case-base. Below are the steps to populate the case-base
memory.

1. Randomly choose an events.xml document - these documents are num-
bered from 0 to 4.

2. Randomly choose a GA benchmark XML document (I created one per
benchmark)

3. Initiate the GA to create solutions

4. Save solution in the case

5. Repeat the steps above for the number of benchmark documents.

Once the case-base memory is populated, then the system queries the database
for a new case. For experimental purposes I chose to use data from one of
the XML benchmarks that I knew for sure that I had already inputted into
the case-memory. When designing the method to populate the case-base I
grappled with two questions: Will the UCTP solutions that the genetic al-

7. RESULTS AND DISCUSSION 59

gorithm will provide to the case-based reasoning system be diverse enough?
If not what other technique can I implement to increase the diversity of the
cases? These questions were left as future research questions.

The experiments were performed in a Ubuntu Dell box with 8 GB of RAM
and a processor with 3.5 MHz of speed. This computer was the only one that
had enough memory to carry out the experiment for the sixth benchmark.
In the next section I will show some of the obtained results and I will discuss
the implications of the results.

7 Results and Discussion

I ran the non-elitist algorithm on benchmarks 1 through 4, and I graphed the
fitness of the most fit individuals per generation as shown in Figure 13(a).
The graph shows that the overall fitnesses of the best individuals changes
in a random pattern from generation to generation. This pattern might e
explained by that the algorithm does not save the best individuals seen so
far, thus, it finds a best that is actually lower than the previously found. The
flatness of the overall trend for of the benchmarks, show that the algorithm
is not learning about the best possible individuals over time.

Furthermore, I have plotted the average fitnesses for each generations as
shown in Figure Figure 13(a) . Similarly, the overall trend for the plotted
points is flat. This means that the non-elitist version does not produce fitter
populations over time. This result renders this version of the algorithm less
suitable for my purposes.

60 7. RESULTS AND DISCUSSION

●●

●

●●
●

●

●

●
●●

●●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●
●

●
●

●●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●●

●
●

●

●

●●

●

●
●
●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●
●

●

0 100 200 300 400

0
1

2
3

4
5

Average Fitness per Generation

Number of generations

A
ve

ra
ge

 F
itn

es
s

●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●●

●

●

●

●

●

●●
●
●●

●

●

●
●

●●

●●

●

●
●

●
●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●
●
●
●●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●●
●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●
●●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●
●

●
●

●
●
●
●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●
●
●●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●●●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

Bench 1

Bench 2

Bench 3

Bench 4

(a) Average population fitness per genera-
tion across benchmarks 1,2,3 and 4

●●

●●
●

●

●
●

●
●

●●
●●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0 100 200 300 400

1
2

3
4

5

Most Fit Individual Solution per generation

Number of generations

Fi
tn

es
s

●

●
●

●●

●

●

●
●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●●

●

●

●

●●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Bench 1

Bench 2

Bench 3

Bench 4

(b) Best population fitness per generation
across benchmarks 1,2,3 and 4

Figure 13: Best and average fitness values for elitist genetic algorithm

Across benchmarks 1 through 4, the elitist version of the algorithm success-
fully finds a solution that mostly satisfies the constraints. Though some of
the solutions are only suboptimal, they still offer a timetable with low con-
flict. Figures 14(a) and 14(b) show the fitness improvements over the number
of generations for the four benchmarks.

Figure 14(a) shows the improvements over time in the average fitness of
the population. The exponential-like behavior of the curve tells us that as
the number of generations grow, the algorithm improves the best for each
generation. Because of the elitist nature of the algorithm, it passes the top
candidates seen so far to the next generation, thus, if each generation does
not produce a better best chromosome, then the best seen so far becomes
the final solution.

For most of the benchmarks it takes the algorithm thirty generations to find
the global best chromosome. However, in the case of the benchmarks 1 and
2, which are the problems with 36 and 30 time slots available, it takes the
algorithm between 60-80 generations to converge into the solution. this so
happens because the algorithm has more free time slots in which to place
colliding courses. As such, there is a greater number of combinations that
can lead to a greater number of more fit solutions. As result, the search space
takes longer to shrink than in more constrained cases.

7. RESULTS AND DISCUSSION 61

As predicted, the blue line shows us that the easiest problem finds solutions
with fitnesses above any other benchmark. This so happens because the
easiest benchmark (benchmark 1) has 16 free time slots, that is 80% more
than the number of course events to schedule. This means that the algorithm
has more free time slots in which to allocate conflicting courses. In addition,
I expected this instance to be the one in which the machine would learn
less, due to its easy nature. However, the graph shows us that the algorithm
does learn, even in the easiest case. This might be so because the algorithm
first produces low fitness chromosomes, thus as it explores the search-space it
automatically learns about more fit chromosomes. The red line corresponding
to benchmark 4, the hardest benchmark among benchmarks one through
four, shows the lowest results. That was expected in that the algorithm has
no rooms in which to re-allocate conflicting courses. As result, conflicts are
very hard to avoid. Note that the benchmarks easy to hardest correspond
respectively to benchmarks one through four.

Furthermore, the graph of the fitness of the best chromosomes per genera-
tion has a similar behavior to that of the average fitness. That makes sense
because the fitness of the best chromosomes contribute with a larger invest-
ment to the overall fitness of the population in a given generation comparing
to less fit chromosomes. One difference between the average and best fitness
graphs is that the algorithm converges to the final solution earlier in the best
fitness case than in the average case. One observation that can be made is
that regardless of how constrained a benchmark is, the algorithm will always
find the solution within the first twenty generations. My hypothesis is that
as soon as the algorithm quickly finds a local best solution, and because the
algorithm passes the best chromosomes from one generation to the next, the
best chromosome eventually dominates the whole population.

62 7. RESULTS AND DISCUSSION

0 20 40 60 80 100

0
1

2
3

4
5

All Average Fitness per Generation

Number of generations

Fi
tn
es
s

easiest prob
easy prob
harder prob
hardest prob

(a) Average population fitness per genera-
tion across benchmarks 1,2,3 and 4

0 20 40 60 80 100

0
1

2
3

4
5

All Best per Generation

Number of generations

Fi
tn
es
s

easiest prob
easy prob
harder prob
hardest prob

(b) Best population fitness per generation
across benchmarks 1,2,3 and 4

Figure 14: Best and average fitness values for elitist genetic algorithm

In another experiment used benchmark 5. This experiment aimed at testing
the performance of the algorithm when population grows. The algorithm
yielded results comparable to those obtained for benchmarks one through
four. The blue line in Figure 15 show that the easiest problem still yields
solutions with higher fitness than the hardest problem. These results are
different from those for benchmarks 1 through 4 in that the algorithm has a
very slow learning process. We can see that from the flatter curves in Figure
15, while the graphs in Figures 14(a) and 14(b) show steeper curves.

Given that every parent is considered during the reproduction process, and
because the overall population offers more candidate solutions than in pre-
vious benchmarks, I hypothesize that the flatness of the graph in Figure 15
has to do with the fact that the algorithm on average finds fitter best chro-
mosomes than those in benchmark 1 through 4. This is so because there is a
greater likelihood of getting a higher fitness best chromosome in the popula-
tion of 1000 chromosomes, than in the population of 100 chromosomes.

7. RESULTS AND DISCUSSION 63

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●
●

●●●●

0 20 40 60 80 100

0
1

2
3

4
5

All Best per Generation

Number of generations

F
itn

es
s

●

●

●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

easiest prob

hardest prob

Figure 15: Best fitness per generation for population of size 1000

Next, I looked at how the algorithm responds when I increase the number
of generations. In order to do that, I used benchmark 1. As we can see
in Figure 16, similar to previous benchmarks, the algorithm has a gradual
learning process. It starts with lower fitness best chromosomes, and as it
explores the search space it finds the fitter best chromosomes. Note that for
a 1000 generations the algorithm takes longer to find the final solution than
when we run it on 100 generations. We can see from Figure 16 that it takes
the algorithm about 450 generations to find the highest fitness chromosomes,
while Figure 14(b) tells us that it takes the algorithm roughly 20 generations.
This difference is crucial in terms of performance, as it would take longer
time to find the solution using 1000 generations, than it would if we ran
the algorithm on 100 generations, which might be undesirable, if we are
to incorporate this system with a web system. The advantage of running
in 1000 generations is that it better illustrates the gradual nature of the
learning process of the algorithm, which can be seen from slow and steady
rising curves in the figure. This gradual learning is harder to see when we
run on 100 generations only.

64 7. RESULTS AND DISCUSSION

0 200 400 600 800 1000

0
1

2
3

4
5

Most fit per Generation

Number of generations

Fi
tn
es
s

easiest prob
hardest prob

Figure 16: Best fitness per generation for a 1000 generations

Besides measuring the performance of the algorithm, I was also interested in
learning about intrinsic properties of the algorithm. In order to do so, I mea-
sured the number of unique chromosomes added in each generation, and the
time it takes to execute the different benchmarks. Figures 17(a) and 19(a),
show that the number of unique chromosomes added to each generation falls
exponentially for benchmarks 1 through 5. This means that as the number of
generations increase the less diverse the population becomes. There are two
implications of the lower population diversity: The first is that it indicates
that the algorithm is converging into the fittest chromosome or set of chro-
mosomes that are then provided as a solution. Second, it shows the biased
nature of the genetic algorithm. Because we keep the best five chromosomes
from the previous population, and also because we only add a child if it is
better than a parent, or else we add the parent back into the population.
Diversity decreases because eventually the strongest chromosomes ends up
dominating the population. Note however that this does not mean that the
algorithm does not explore the whole search space, it only means that it
leans more towards the stronger chromosomes, quickly excluding the worse

7. RESULTS AND DISCUSSION 65

chromosomes. Figure 18 shows a sample solution produced by the algorithm
using benchmark three. This particular timetable had a fitness of 4.73 out
of 5. From Figure 18, we can see that the penalty on the solution is mostly
generated by the violation of the student constraint.

0 20 40 60 80 100

0
20

40
60

80
10
0

Number of new Individuals per Generation

Number of generations

N
um

be
r o

f n
ew

 In
di

vi
du

al
s

easiest prob
hardest prob

(a) New chromosomes per Generation for
benchmarks 1 to 4

0 20 40 60 80 100

0
20

40
60

80
10
0

Number of new Individuals per Generation

Number of generations

N
um

be
r o

f n
ew

 In
di

vi
du

al
s

easiest prob
hardest prob

(b) New chromosomes per Generation for
benchmarks 5a and 5b

Figure 17: Figures showing unique elements for all of the benchmark

66 7. RESULTS AND DISCUSSION

Times Monday Tuesday Wednesday Thursday Friday

8:00-9:30 AM Math 236

Tom Halverson,

CS 482

Susan Fox

 Math 236

Tom Halverson

CS 482

Susan Fox

8:30:9:30 AM Math 135

Tchad Topaz

Math 136

David Bressoud

Math 365

Danny Kaplan

 Math 135

Tchad Topaz

Math 136

David Bressoud

Math 365

Danny Kaplan

 Math 135

Tchad Topaz

Math 136

David Bressoud

Math 365

Danny Kaplan

9:40-11:10 AM Comp 121

Eric Theriault

Math 461

Tchad Topaz

Math 237

Dan Flath

Comp 342

Shilad Sen

 Comp 121

Eric Theriault

Math 461

Tchad Topaz

Math 237

Dan Flath

Comp 342

Shilad Sen

9:40:10:40 AM Math 412

Alicia Johnson

Math 137

Karen Saxe

Math 108

Dan Kaplan

 Math 412

Alicia Johnson

Math 137

Karen Saxe

Math 108

Dan Kaplan

 Math 412

Alicia Johnson

Math 137

Karen Saxe

Math 108

Dan Kaplan

10:50-11:50 AM Math 312

Dan Flath

Comp 120

Libby Shoop

Comp 240

Susan Fox

 Math 312

Dan Flath

Comp 120

Libby Shoop

Comp 240

Susan Fox

 Math 312

Dan Flath

Comp 120

Libby Shoop

Comp 240

Susan Fox

12:00-1:00 PM Comp 225

Libby Shoop

Comp 221

 Comp 225

Libby Shoop

Comp 221

 Comp 225

Libby Shoop

Comp 221

Figure 18: Output of the algorithm with fitness of 4.73

Contrary to the results from previous benchmarks, the results for benchmark
6 did not conform to my expectations. As we can see from Figure 19(a) the
algorithm behaved as expected until about the first 100 generations. The
longer the algorithm ran, the results for benchmarks 6a and 6b diverged.
The former generates many more new chromosomes between generations 500
and 1000 than the latter. The behavior of benchmark 6a is actually different
than the behavior of any other benchmark. In every other benchmark the
algorithm converges to one strongest candidate, while for benchmark 6a the
algorithm ultimately finds a set of strongest candidates (showing greater
diversity than the other benchmarks).

7. RESULTS AND DISCUSSION 67

0 200 400 600 800 1000

0
20
0

40
0

60
0

80
0

10
00

Number of new Individuals per Generation

Number of generations

N
um

be
r o

f n
ew

 In
di

vi
du

al
s

easiest prob
hardest prob

(a) New chromosomes per Generation for
benchmarks 6a and 6b

1 2 3 4 5a 5b 6a 6b

Runtime for each Benchmark

Benchmark

R
un
tim
e

0
5

10
15

(b) Runtime for benchmarks

Figure 19: Figures showing unique elements for all of the benchmark and
runtime per benchmarks

Another property intrinsic to the algorithm was the algorithm runtime. For
most of the benchmarks the algorithm runs under 3 seconds, however for the
hardest of all benchmarks, benchmark 6b, the algorithm runs for about 16
seconds. Figure 19(b) shows the times for the different benchmarks. Given
the time constraints imposed by web systems, the algorithm should be set
up to run only benchmarks one through four. With these benchmarks the
algorithm runs under 3 seconds, which is desirable for a system that is to be
integrated with a web system.

In order to investigate which constraint taxes solutions more harshly, I de-
cided to measure the penalty that the system applies to every chromosome in
the search-space. Figure 20 shows the graphs of the student and instructor
penalties for chromosomes in the search space. The experiment was done
using the benchmark 4. The graphs tell us that the student constraint taxes
chromosomes more harshly than the instructor constraint does. The student
constraint subtracted between 1.5 to 4 points off of the fitness of chromosome
solutions. In contrast, the maximum penalty for the instructor constraint is
around 1 fitness unit. If we look at the density of the graphs, we can observe
that the highest density is around 0.5 for the blue points (points that rep-

68 7. RESULTS AND DISCUSSION

resent the instructor constraint), and the density for the student constraint
is in the interval from 2 to 3 (as shown by the red points in the graph).
Thus, by observation, the student penalties are almost twice as larger as
the instructor penalties. Intuitively, a course has only one instructor, but it
however has a larger number of students. Because of that, the probability
of student collision is higher than the probability of instructor collision. Ex-
tending this analysis to other constraints I have not implemented, it makes
sense that the student constraint would be harder to satisfy than others,
because while room and instructor constraints focus on one variable (room
and Professor), the student constraint deals with a set of variables (each stu-
dent is a variable). This makes the student constraint multidimensional, and
the instructor constraint unidimensional. This observation answers research
question 3, and concludes that the student constraint is harder to satisfy
than the instructor constraint.

0 1000 2000 3000 4000 5000

0
1

2
3

4

Student and Individual penalties

Individuals

P
en
al
ty

Student Penalties
Instructor Penalties

Figure 20: Student and Instructor penalties for each chromosome in the
search-space

The results for the elitist version allow us to positively answer research ques-
tions 1, 2 and 4. It is possible to generate timetables that accommodate
administrative needs and students’ planning needs. However, it is important
to note that the system has its limitations, one being that it will give more
or less optimal solutions depending on how constrained the problem is. In

8. CONCLUSION AND FUTURE WORK 69

real terms, if a department wants collision-free timetables, then they must
reserve some open time slots. From my observations, the algorithm returns
a fitness of 4.7 or higher if one sets aside four or more free time slots. For a
collision free timetable, one would need to set aside at least fifteen free time
slots. On the positive side, even if the department has no free time slots,
the algorithm will still return a near to collision-free timetable, which would
require only few changes. Another observation is that from experiments I
have found that in order for the algorithm to run with lowest runtime and
attain the highest timetable quality, it needs to apply any of the first, second,
third or fourth benchmarks.

Because of its supporting nature, the case-based reasoning acts as a secondary
system in this project. I have not considered a comprehensive study of its
properties. As such, I tested the case-based reasoning system as described
in the experiment, and I found that if the case has been saved into the case-
base, then the system will always retrieve it (a hit rate of one). Because the
system retrieves cases based on the parameters of a case, we are guaranteed
to get potential solution candidates, if a new problem matches any of the
parameters of a case in the case-base.

8 Conclusion and Future Work

This project created a hybrid genetic algorithm that combined a genetic al-
gorithm and a case-based reasoning algorithm to solve an instance of the
UCTP that is aware of students’ scheduling needs. I implemented two al-
gorithms: the elitist algorithm, and the non-elitist algorithm. The elitist
algorithm had a better performance that the non-elitist version for all of the
test benchmarks. Below are some of the findings of my study:

• The elitist algorithm found feasible solutions even for the most con-
strained benchmarks. The quality of the solution depends largely on
the parameters of the elitist genetic algorithms. Experimental values
suggested that the algorithm performs best when the population size
and the number of generations are set to 100, and the number of avail-
able time slots for 20 course events is set to 30 time slots (though it
produces good results even for 24 available time slots).

70 8. CONCLUSION AND FUTURE WORK

• Moreover, I found that regardless how constrained a problem is, the
elitist algorithm always improves the overall fitness of a population
over a fixed number of generations. This signifies that the algorithm is
actually learning about the best chromosomes in the search space.

• In addition, I found that the student constraint is harder to satisfy
than the instructor constraint. This is so because the the instructor
constraint only evaluates for one variable (the instructor), the student
constraint evaluates for a set of variables (one variable per student for
many students). Because of its multidimensionality, there is a greater
chance that a student constraint will be violated more often than the
instructor constraint. Extending this knowledge to other constraints, I
hypothesize that the student constraint will be harder to satisfy than
any other unidimensional (or single variable) constraint.

One area of future research is the data design and collection process. As
previously stated, I designed my own benchmarks, based on knowledge of
scheduling at Macalester. However, in order to get more realistic results, I
would need to collect real data from Macalester College students and ad-
ministrators. I have introduced the MAP system as the system that will
allow us to improve data collection. We at Macalester are implementing the
MAP system. Upon completion of the MAP project, my algorithm will be
integrated with MAP to produce more realistic timetables for Macalester
College.

Another area of improvement is concerned with the case-based reasoning
system. As of now the case-based reasoning system is serving as a object
oriented database, with standard save and retrieve functionalities. In the
future I am hoping to improve the case-based reasoning system to include an
adaptation system. This change will allow me to change a previous timetable
to adapt to new department needs, a task that currently the system is leaving
to the administrator. Moreover, I would like to change my index to include
other variables that better identify a case.

In addition, in the future, one could improve the system by implementing a
more sophisticated selection technique, such as simulated annealing (Boltz-
mann selection), or other selection techniques of the same caliber. This
change might help improve the machine learning process. One could also
strengthen the results of this study by comparing the algorithm with an-

8. CONCLUSION AND FUTURE WORK 71

other algorithm that implements the standard crossover operator, instead
of the self-fertilization operator. Future studies comparing the hybrid ge-
netic algorithm I have developed with other more recent techniques, such as
Particle Swarm Optimization might proof insightful.

A possible future study could investigate what the optimal collision cutoff
should be, before two classes can be offered in the same time slot. Such an
investigation could be helpful to inform administrators’ decision during the
process of setting enrollment numbers for classes. In addition, the system
could also be modified to tell administrators what students have been affected
by a collision between two classes. This way departments could advise these
students to make different plans. Another change could be to change the
system to include hierarchy in the student constraint. Such that, if two classes
that have enrolled mostly senior students collide, then they would be more
harshly penalized than one that had mostly under class-men. This would be
realistic in that freshmen and sophomores still have a chance to re-plan the
classes for their academic programs, while seniors have less opportunity to
do that, as they are more concerned about graduating. An additional future
change would be to label timetables that violate the instructor constraint as
infeasible, this way, there would be a greater chance that the best possible
timetable would not violate the constraint. In summary, there is an exciting
number of directions this project could take,but it is the complex nature
of the UCTP that will keep drawing researchers to come-up with the most
creative solutions to the problem.

72 A. EXTRACTS OF CODE

A Extracts of code

A.1 Selection code

public List<ScheduleChromosome> rouletteWheelSelection(List<ScheduleChromosome>

evaluatedPopulation) {

populationwithSelection=new ArrayList<ScheduleChromosome>();

matingPool=new ArrayList<ScheduleChromosome>();

double cumulativefitness=getMaximumExpectedValue(evaluatedPopulation);

int iters=0;

for (ScheduleChromosome chromossome : evaluatedPopulation) {

double selProbability = Math.pow(chromossome.getFitness(),2) / cumulativefitness;

chromossome.setSelectionProbability(selProbability);

populationwithSelection.add(chromossome);

iters++;

}

int repeat=0;

for (int i=0;i<populationwithSelection.size();i++) {

/*

* Trying to make the way we pick a potential parent

* to flip the coin on it randomly

* the code below selects a random element and checks

* if the element is fit enough

* generate random between 0-1 and add selection porbs

until greater or equal to gen num

*/

Random rand = new Random();

double randNum=rand.nextDouble();

double cumSel=0.0;

ScheduleChromosome tempSelection=null;

for(int k=0;k<populationwithSelection.size();k++){

cumSel+=populationwithSelection.get(k).getSelectionProbability();

if(cumSel>randNum){

tempSelection=populationwithSelection.get(k);

matingPool.add(tempSelection);

break;

}

}

}

return matingPool;

}

A. EXTRACTS OF CODE 73

A.2 Crossover code

public List<ScheduleChromosome> crossover(List<ScheduleChromosome> matingPool,

boolean elitist) {

/*We need to pick the elements from the mating pool with a crossover probability*/

nextGeneration=new ArrayList<ScheduleChromosome>();

List<ScheduleChromosome> bestInds=new ArrayList<ScheduleChromosome> ();

Double crossoverSize=crossoverProbability*matingPool.size();

GAContraintsEngine constraints = new GAContraintsEngine();

ScheduleChromosome prev=null;

newInd=0;

this.sortChromossomes(matingPool);

List<ScheduleChromosome> crossoverList=matingPool.subList(0,crossoverSize.intValue());

if(elitist){

bestInds=choseBestIndividuals(matingPool);

this.sortChromossomes(bestInds);

for(int i=0;i<4;i++){

nextGeneration.add(bestInds.get(i));

}

}

for(ScheduleChromosome chromossome:crossoverList){

ScheduleChromosome parent=null;

ScheduleChromosome offspring1=null;

parent=chromossome;

offspring1=(ScheduleChromosome) parent.deepClone();

Random geneRand=new Random();

Random geneRand2=new Random();

int crossoverPicker=geneRand.nextInt(chromossome.getScheduleGenes().length);

int crossoverPicker2=geneRand2.nextInt(chromossome.getScheduleGenes().length);

Event class1=offspring1.getScheduleGenes()[crossoverPicker][crossoverPicker2];

Random slotPickerRand=new Random();

int slotPicker1=slotPickerRand.nextInt(chromossome.getScheduleGenes().length);

int slotPicker2=slotPickerRand.nextInt(chromossome.getScheduleGenes().length);

if(this.numEvents < (this.numRooms*this.availableTSlots)){

if(this.isSlotFree(offspring1.getScheduleGenes(), slotPicker1, slotPicker2)){

offspring1.getScheduleGenes()[slotPicker1][slotPicker2]=class1;

}else{

this.placeInFreeSlot(offspring1.getScheduleGenes(), class1,

offspring1.getRows(), offspring1.getCols());

}

offspring1.getScheduleGenes()[crossoverPicker][crossoverPicker2]=null;

}

else{

Event class2=offspring1.getScheduleGenes()[slotPicker1][slotPicker2];

74 A. EXTRACTS OF CODE

offspring1.getScheduleGenes()[slotPicker1][slotPicker2]=class1;

offspring1.getScheduleGenes()[crossoverPicker][crossoverPicker2]=class2;

}

offspring1.setFitness(constraints.FindParentFitness(offspring1));

if(elitist){

if(offspring1.getFitness()>parent.getFitness()){

nextGeneration.add(offspring1);

if(prev!=offspring1){

newInd+=1;

}

numChildren+=1;

prev=offspring1;

}else{

nextGeneration.add(parent);

if(prev!=parent){

newInd+=1;

}

numParent+=1;

prev=parent;

}

}else{

nextGeneration.add(offspring1);

if(prev!=offspring1){

newInd+=1;

}

numChildren+=1;

prev=offspring1;

}

}

return nextGeneration;

}

A.3 Constraints Implementation Code

public double studentConstraint(ScheduleChromosome parent){

double studentPoints=2.5;

double dup=0.0;

double jaccard=0.0;

if(parent !=null && parent.getScheduleGenes().length>=1){

for (int i = 0; i < parent.getRows(); i++) {

for(int j=0;j<parent.getCols()-1;j++){

//check to see if the same class is been offered at the same time

try{

List<Integer> students1=parent.getScheduleGenes()[i][j].getStudents();

List<Integer> students2=parent.getScheduleGenes()[i][j+1].getStudents();

for(int studentID1: students1){

for(int studentID2:students2){

if(studentID1==studentID2){

dup+=1.0;

}

A. EXTRACTS OF CODE 75

}

}

jaccard=Math.max(dup/students1.size(), dup/students2.size());

studentPoints-=jaccard;

dup=0;

}catch(Exception e){

System.out.println("ERROR IN CONSTRAINT");

}

}

}

}

else{

System.out.println("Message: Not enough Genes to evaluate.

Gene count=0 or 1 or the current parent is null");

}

return studentPoints;

}

public double instructorConstraint(ScheduleChromosome parent){

double instructorPoints=2.5;

double dup=0.0;

double jaccard=0.0;

int parentLength=parent.getScheduleGenes().length;

if(parent !=null && parentLength>=1){

for (int i = 0; i < parent.getRows(); i++) {

for(int j=i;j<parent.getCols()-1;j++){

//check to see if the same class is been offered at the same time

try{

if(parent.getScheduleGenes()[i][j].getInstructor()==

parent.getScheduleGenes()[i][j+1].getInstructor()){

dup+=1;

}

}catch(Exception e){

System.out.println("ERROR IN CONSTRAINT");

}

}

}

jaccard=Math.max(dup/parentLength, dup/parentLength);

instructorPoints-=jaccard;

}

return instructorPoints;

}

76 A. EXTRACTS OF CODE

public double FindParentFitness(ScheduleChromosome parent){

double totalfitness=0;

double studentPenalty=studentConstraint(parent);

stuConstraints.add(studentPenalty);

double instructorPenalty=instructorConstraint(parent);

instructorConstraints.add(instructorPenalty);

totalfitness=studentPenalty+instructorPenalty;//+classPenalty;

if(totalfitness<=0){

totalfitness=0.00000000001;

}

return totalfitness;

}

A.4 GA Routine Code

public void ga(List<ScheduleChromosome> nextGenPop,GAUtil gaUtil,int numSteps,

int iter,boolean cbrTraining) throws Exception{

numNewIndvs.add(gaUtil.getNewInd());

nextGenPop=gaUtil.crossover(gaUtil.rouletteWheelSelection(nextGenPop),true);

ScheduleChromosome best=gaUtil.getBestChromossome(nextGenPop);

fitnessAvgGen.add(gaUtil.calculateAvgGenFitness(nextGenPop));

bestFitness.add(best.getFitness());

if(best.getFitness()>=4.5 && numSteps==bparser.getNUM_GEN()){

if(cbrTraining){

cbr.saveCase(best, this.numSlots, this.numRooms, this.numInstructors);

}

else{

printer.printBestChromossome(best);

data=grapher.buildFitBarGraph(nextGenPop);

System.out.println("Child nums: "+gaUtil.getNumChildren());

System.out.println("Parent nums: "+gaUtil.getNumParent());

}

return;

}else if (best.getFitness()<=3.50 && numSteps==2*bparser.getNUM_GEN()){

System.out.println(" WARNING: The algorithm did not converge,

please run again for better results");

if(cbrTraining){

cbr.saveCase(best, this.numSlots, this.numRooms, this.numInstructors);

}

else{

printer.printBestChromossome(best);

data=grapher.buildFitBarGraph(nextGenPop);

System.out.println("Child nums: "+gaUtil.getNumChildren());

System.out.println("Parent nums: "+gaUtil.getNumParent());

}

return;

B. XML FILES 77

}else if(numSteps==4*bparser.getNUM_GEN()){

System.out.println(" WARNING: It took longer than the number of steps allowed");

if(cbrTraining){

cbr.saveCase(best, this.numSlots, this.numRooms, this.numInstructors);

}

else{

printer.printBestChromossome(best);

data=grapher.buildFitBarGraph(nextGenPop);

System.out.println("Child nums: "+gaUtil.getNumChildren());

System.out.println("Parent nums: "+gaUtil.getNumParent());

}

return;

}

numSteps++;

genCounter++;

iter--;

this.ga(nextGenPop, gaUtil,numSteps,iter,cbrTraining);

}

B XML files

B.1 GA XML file

<?xml version="1.0" encoding="UTF-8"?><!--This is a setting to test the algorithm-->

<parameters>

<parameter id="1">

<parameterName>POP_SIZE</parameterName>

<value>100</value>

</parameter>

<parameter id="2">

<parameterName>NUM_GENERATIONS</parameterName>

<value>100</value>

</parameter>

<parameter id="3">

<parameterName>NUM_TIMESLOTS</parameterName>

<value>6</value>

</parameter>

<parameter id="4">

<parameterName>NUM_STUDS</parameterName>

<value>200</value>

</parameter>

<parameter id="5">

<parameterName>NUM_ROOMS</parameterName>

<value>6</value>

</parameter>

</parameters>

78 B. XML FILES

B.2 Events XML file

<?xml version="1.0" encoding="UTF-8"?><!--This is a setting to test the algorithm-->

<events>

<event id="1">

<courseID>1</courseID>

<courseName>Comp 120</courseName>

<instructorID>1</instructorID>

<instructorName>Elizabeth Shoop</instructorName>

<classSize>20</classSize>

<frequency>3</frequency>

</event>

<event id="2">

<courseID>2</courseID>

<courseName>Comp 121</courseName>

<instructorID>5</instructorID>

<instructorName>Eric Theriault</instructorName>

<classSize>36</classSize>

<frequency>3</frequency>

</event>

<event id="3">

<courseID>3</courseID>

<courseName>Comp 123</courseName>

<instructorID>2</instructorID>

<instructorName>Susan Fox</instructorName>

<classSize>25</classSize>

<frequency>3</frequency>

</event>

<event id="4">

<courseID>4</courseID>

<courseName>Comp 221</courseName>

<instructorID>3</instructorID>

<instructorName>Shilad Sen</instructorName>

<classSize>12</classSize>

<frequency>3</frequency>

</event>

</events>

REFERENCES 79

References

Abramson, D. (1991). Constructing school timetables using simulated an-
nealing: sequential and parallel algorithms. Management Science 37 (1),
98–113.

Abramson, D. and J. Abela (1992). A parallel genetic algorithm for solving
the school timetabling problem. In Proceedings of the Fifteenth Australian
Computer Science Conference (ACSC-15), Volume 14, pp. 1–11.

Burke, E., B. MacCarthy, S. Petrovic, and R. Qu (2000). Structured cases
in case-based reasoning re-using and adapting cases for time-tabling prob-
lems. Knowledge-Based Systems , 159–165.

Burke, E., B. MacCarthy, S. Petrovic, and R. Qu (2001). Case-based reason-
ing in course timetabling: an attribute graph approach. Lecture notes in
computer science, 90–104.

Burke, E. K., D. G. Elliman, and R. Weare (1994). A genetic algorithm
based university timetabling system. In East-West Conference on Com-
puter Technologies in Education, Crimea, Ukraine pp35-40.

Burke, E. K., D. G. Elliman, and R. F. Weare (1995). A hybrid genetic
algorithm for highly constrained timetabling problems. In Proceedings of
the Sixth International Conference on Genetic Algorithms, pp. 605–610.

Burke, E. K., J. P. Newall, and R. F. Weare (1996). A memetic algorithm
for university exam timetabling. Lecture notes in computer science 1153,
241–250.

Burke, E. K. and S. Petrovic (2002). Recent research directions in automated
timetabling. European Journal of Operational Research 140 (2), 266–280.

Costa, D. (1994). A tabu search algorithm for computing an operational
timetable. European Journal of Operational Research 76 (1), 98–110.

Cotta, C. and A. Fernandez (2007). Memetic Algorithms in Planning,
Scheduling, and Timetabling. Computational Intelligence (SCI) 49, 1–30.

Dalton, J. (2010, April). Roulette wheel selection.
http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/.

80 REFERENCES

Dorigo, M. and K. Socha. An introduction to ant colony optimization. Hand-
book of Approximation Algorithms and Metaheuristics , 26–1.

Dowsland, K. and J. Thompson (2005). Ant colony optimization for the
examination scheduling problem. The Journal of the Operational Research
Society 56 (4), 426–438.

Fen, H., S. Deris, M. Hashim, and S. Zaiton (2009). University course
timetable planning using hybrid particle swarm optimization. Proceedings
of the first ACM/SIGEVO Summit on Genetic and Evolutionary Compu-
tation, 239–246.

Fleischer, M. (1995). Simulated annealing: past, present, and future. In WSC
’95: Proceedings of the 27th conference on Winter simulation, Washington,
DC, USA, pp. 155–161. IEEE Computer Society.

Gaspero, L. D. and A. Schaerf (2001). Tabu search techniques for examina-
tion timetabling. Lecture notes in computer science, 104117.

Goltz, H. J. and D. Matzke (1999). University timetabling using constraint
logic programming. Lecture notes in computer science, 320–334.

Goodall, D. (1966). A new similarity index based on probability. Biomet-
rics 22 (4), 882–907.

Hertz, A., E. Taillard, and D. De Werra (1992). A tutorial on tabu search.
In Proc. of Giornate di Lavoro AIRO, Volume 95. Citeseer.

Kendall, G. and N. Hussin (2005). A tabu search hyper-heuristic approach
to the examination timetabling problem at the MARA university of tech-
nology. Lecture notes in computer science 3616, 270.

Lewis, R. and B. Paechter (2005). Application of the grouping genetic al-
gorithm to university course timetabling. Lecture notes in computer sci-
ence 3448, 144–153.

Lewis, R. and B. Paechter (2007). Finding feasible timetables using group-
based operators. IEEE Transactions on Evolutionary Computation 11 (3),
397–413.

Liu, Y., D. Zhang, and S. Leung (2009). A simulated annealing algorithm

REFERENCES 81

with a new neighborhood structure for the timetabling problem. Pro-
ceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary
Computation, 381–386.

Lucas, D. C. (2000). Algoritmos genéticos: um estudo de seus conceitos
fundamentais e aplicaç\ ao no problema de grade horária. Monografia de
Graduaç\ ao. Pelotas .

McCollum, B., P. McMullan, E. K. Burke, A. J. Parkes, and R. Qu (2008). A
new model for automated examination timetabling. An extended version
of McCollum et al (2007). Under Review .

Myszkowski, P. and M. Norberciak (2003). Evolutionary Algorithms for
Timetable Problems. Annales UMCS, Sectio Informatica I, 115–125.

Perzina, R. (2006). Solving the university timetabling problem with opti-
mized enrollment of students by a parallel self-adaptive genetic algorithm.
In Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling. Citeseer.

Petrovic, S. and E. K. Burke (2004). University timetabling. Handbook of
scheduling: algorithms, models, and performance analysis .

Qu, R. (2002). Case based reasoning for course timetabling problems. Cite-
seer.

Qu, R., E. K. Burke, B. McCollum, L. T. Merlot, and S. Y. Lee (2006). A
survey of search methodologies and automated approaches for examination
timetabling. Computer Science Technical Report No. NOTTCS-TR-2006-
4 .

Raghavjee, R. and N. Pillay (2008). An application of genetic algorithms to
the school timetabling problem. In SAICSIT ’08: Proceedings of the 2008
annual research conference of the South African Institute of Computer Sci-
entists and Information Technologists on IT research in developing coun-
tries, New York, NY, USA, pp. 193–199. ACM.

Rich, D. C. (1996). A smart genetic algorithm for university timetabling.
In Practice and Theory of Automated Timetabling: First International
Conference, Edinburgh, UK, August 29-Septmber 1, 1995: Selected Papers,

82 REFERENCES

pp. 181.

Ross, P., E. Hart, and D. Corne (1998). Some observations about GA-based
exam timetabling. Lecture notes in computer science, 115–129.

Rossi-Doria, O. and B. Paechter (2004). A memetic algorithm for university
course timetabling. Combinatorial Optimisation.

Russell, S. and P. Norvig (2003). Artificial Intelligence : A Modern Approach.
Upper Saddle River, NJ : Prentice Hall.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence
Review 13 (2), 87–127.

Sipser, M. (1996). Introduction to the Theory of Computation. International
Thomson Publishing.

Socha, K., M. Sampels, and M. Manfrin (2003). Ant algorithms for the
university course timetabling problem with regard to the state-of-the-art.
Lecture Notes in Computer science, 334–345.

Wang, Y. Z. (2003). Using genetic algorithm methods to solve course schedul-
ing problems. Expert Systems with Applications 25 (1), 39–50.

Wang, Z., J. Liu, and X. Yu (2009). Self-fertilization based genetic algorithm
for university timetabling problem. Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation, 1001–1004.

Watson, I. and F. Marir (1994). Case-based reasoning: A review. Knowledge
Engineering Review 9 (4), 327–354.

Wilke, P., M. Grobner, and N. Oster (2002). A hybrid genetic algorithm for
school timetabling. Lecture notes in computer science, 455–464.

	Macalester College
	DigitalCommons@Macalester College
	4-30-2010

	A Hybrid Genetic Algorithm for the Student-Aware University Course Timetabling Problem
	Ernesto Ferrer Queiros Nunez
	Recommended Citation

	tmp.1272897031.pdf.6X8Cr

