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m Abstract

A prominent idea in the theory of chaos is that of shadowing, which says that, in many cases, the numerical
results one sees after accuracy is lost are not total nonsense, but are in fact very close to the exact trajectory
for an initial value that is near the one used.Using high-precision computation, I have researched the use of
optimization as a way of finding exact shadows for several chaotic systems, such as the quadratic map

r x (1 — x) and a billiard problem from the SIAM 100-Digit Challenge.
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m Introduction

A prominent idea in the theory of chaos is that of shadowing, which says that, in many cases, the numerical
results one sees after accuracy is lost are not total nonsense, but are in fact very close to the exact trajectory
for an initial value that is near the one used. Previous literature in the field has focused on proving the
existence of such a shadow, and on estimating how far the numerically computed trajectory is from an
exact trajectory; see Chow and Palmer(1989)!.

The research in this paper is focused on computing exact shadows, utilizing the high precision computation
capacity that is now available. We have successfully computed shadows for the quadratic map,

F(x) =rx(1 - x), for r = 3.8 for which there is strong evidence that the map exhibits sensitive dependence
on initial conditions, which is to say that'small variations in the initial condition may cause large variations
in the long-term. Most of our experimental results come from using 0.1 as the starting value.

The idea is that one can use high precision to compute the accurate trajectory, and then find a shadow seed
by minimizing the sum of the squares of the residual vector, where the residual is the difference between
an exact trajectory and the noisy trajectory at any given iterate. The exact trajectory will shadow the noisy
numerically computed trajectory, differing by at most some value. Chow and Palmer(1989) analyzed the
case of r = 3.8, using a starting value of 0.6, and concluded that the noisy trajectory, calculated using
single precision, differs from some shadow trajectory by at most one in the fifth digit. They did not how-
ever actually find any shadow seed, and by doing so we aim in this study to find a true story, not just get-
ting estimates. Experiments have shown that even a simple Newton method is adequate to minimize the
sum of the squares of the residuals, although using the Levenberg-Marquardt method has proven to be
more efficient.

This study has also proved applicable in the context of billiard trajectories, where we have successfully
shadowed a trajectory starting at {0.5, 0.1} out to more than 75 iterations.

The image? below illustrates the bifurcation, i.e. period doubling, behavior of the quadratic map as r varies.
The vertical axis is long-term possible values of x. Most values of 7 beyond 3.57 exhibit chaotic behavior.

w

3.453.57 3.B3% &£




Quadratic Map

fQuad([r_J[x_] :=xr x (1-x);
£ = fQuad[38/10];

Above we have defined the function for the general quadratic map, with r as an parameter, and we have
defined a function f with r set to 3.8 since that is what we will use in our experiments.

Precision /@ {£f[{0.1], f£[1/10], f[SetPrecision[1/10, 16]]}

{MachinePrecision, », 15.9542)

Note that applying the function to a MachinePrecision number yields another MachinePrecision number,
whereas applying the function to a rational number will keep infinite precision. Note however that there is
long-term loss of precision when applying the function to a real number, and that it is the roundoff error
caused by this that provides the basis for the shadowing problem. Computations using MachinePrecision
are done with roughly 16 digits of precision, but it does in no way keep track of lost precision.

Traj[f_][x_Real, n_Integer] := NestList[f, x, n];
fTraj = Traj[fQuad[38/10]];

Above we have defined the functions for the trajectory of the quadratic map, which is simply formed by
iterating the function of the quadratic map.

Precision /@ fTraj[SetPrecision[1/10, 16], 10]

{16., 15.9542, 15.7725, 14.9334, 14.6571,
13.3835, 13.2911, 12.9054, 11.8074, 11.6653, 11.0374}

Note the gradual loss of precision. Below is a plot of the noisy trajectory (computed using MachinePreci-
sion) and a HighPrecision trajectory out to 100 iterations. Note how they diverge after 80 or so iterations.

MPTraj = Traj[fQuad[38/10]][0.1, 1000];
HPTraj = Traj [fQuad[38/10]] [SetPrecision[0.1, 1000], 1000];
ListLinePlot [ {Take [MPTraj, 101], Take[HPTraj, 101]},
PlotStyle - { {Thickness[0.012], GrayLevel[0.5]}, {Thickness[0.001], Black}},
AspectRatio - 0.25]

[ L= e ] =]
v . . .
™

We know that the derivative of f with respect to x is 38 /10 — 76 x/ 10, and by the Chain Rule it follows
that the sensitivity of any given iterate x,, with respect to the starting value x, will be the product of all




e . . . . . d d dx,_ dx, dx
derivatives of the trajectory up to that given iterate. That is to say that — = —— =1 2 _1,
d dxn_l dxn_z Xm dXO

Below we define functions that combine the derivatives at each iteration of the quadratic map to form a

sensitivity vector which we will use to guide our search for the shadow seed. The sensitivity vector will
dx
1

thus be a vector of dzl (i=0,1,...,n-1). Having this makes it possible for the FindMinimum method to
1

utilize the quadratic model approach. The concept of the quadratic model approach, assuming a roughly
parabolic shape, is that by knowing (a, f(a),f' (a)) and (b, f(b)), where a and b are two points, we can
uniquely determine a parabola Ax? + Bx + Cand thus also a minimum c = -B/(2A). That will be our first
approximation of the minimum, and we proceed to repeat the process with (c, f(c), f ' (¢)) and whichever of
a and b that was closest to c.

fQuadDer([r_][x_] := r (1-2x);

DerivativeVector[r_l[x_, n_] := fQuadDer[r] /@ Traj[fQuad[r]][x, n];

JacobianVector [r_? NumericQ] [x_?NumericQ, n_? NumericQ] :=
Most[FoldList [Times, {1}, DerivativeVector[r][x, n]]]:

fJacobianVector = JacobianVector[38 /10];

The functions above simply define the Jacobian of x, with respect to xq, which is an application of the

Chain Rule on the derivative vector to give us a vector of sensitivities to changes in the starting value for

. . dx; . . .
each iterate, i.e. a vector of d—-’- (i=0,1,...,n).The functions below are what we will use to compute the
%0

shadow seed, i.e. the HighPrecision starting value that shadows the noisy trajectory. We find the shadow
seed by using the LevenbergMarquardt method together with the Jacobian to find the minimum of the sum
of squares residual. The Jacobian essentially gives the information about how the vector of residuals will
change for miniscule changes in the starting value, and it is this that allows for effective shadowing.

When attempting to shadow too many steps at a time however, the method above fails. A way to solve this
is by shadowing in steps, that is find a shadowseed that shadows out to a certain number of steps, and then
use this result as the start of another shadow search out to a higher number of steps. Doing this ensures a
better form for the FindMinimum search to focus around.

ShadowOneStep[+_] [noisy_List, n_Integer, opts___] =
(start = StartvValue /. {opts} /. Options[ShadowOneStep];
wp = Max[35, n];
start = start /. UseNoisyEstimate - SetPrecision[noisy[[1]], wp]}
 residual [x0_? NumericQ] := Block[{$MinPrecision = wp, $MaxPrecision = wp},
Traj[fQuad[r]][x0, n] - Take[SetPrecision[noisy, wp]l, n+1]];
ans = FindMinimum[0, {x0, SetPrecision[start, wp]},
Evaluate[Sequence @ FilterRules[{opts}, Options[FindMinimum]]],
Method » {"LevenbergMarquardt", "Residual” -» residual[x0],
"Jacobian" » JacobianVector[r] [N[x0, wp], n]}, WorkingPrecision - wp,
PrecisionGoal - 20, AccuracyGoal - 20]; x0 /. ans[2]) ;



ShadowInSteps[r_] [noisy_List, n_Integer, {startstep_ , stepsize_}, opts___] 1= (
Do[sol = ShadowOneStep|[r] [SetPrecision[noisy, n], nn, opts,
StartValue » If[nn == startstep, UseNoisyEstimate, SetPrecision[sol, nn]]],
{nn, Append[Most [Range[startstep, n, stepsize]], n]}];
sol);

Experiments have shown that shadowing in steps of 50 is effective, and by doing so one can find a shadow
for a very large number of iterates. Here is a shadow seed found by searching in steps of 50 out to 500
iterates.

ShadowSeed = ShadowInSteps[38/10] [MPTraj, 500, {50, 50}]

0.1000000000000000210432393045703215538761144492231330812621760710108989796553
59853784634835586002231205447128779475829043177136522377093097408843408766704-.
80512944516205104862713773178517928896802988749038978262468948098367534393124-.
70857883064503730779699351309091316015835886771192886235395654761133877021571-
26872597905998947320119758954704046723192611457561920375232561628909880848012-
94796265830505675057951896772994784279501832573771599778608348491027954772885.
7979141693217279834874007414396326718355

As one can see below, the ShadowSeed found shadows the noisy trajectory on a visual scale to about 580
iterates, a very satisfying result.

HPTraj = Traj [fQuad[38/10]] [ShadowSeed, 600];

ListLinePlot [ {Take [MPTraj, {550, 600}], Take[HPTraj, {550, 600}]},

DataRange -» {550, 600}, )
PlotStyle - { {Thickness[0.012], GrayLevel[0.5]}, {Thickness[0.001], Black}},
AspectRatio -» 0.5]

1 POt 1 1 1
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To find out how closely the high-precision trajectory shadows the noisy trajectory we define a function of
the shadowing error which gives us the maximum difference between the two trajectories out to 500
iterates.

ShadowError|[r_][{xNoisy_, shadSeed_}, WNN_] :=
Max[Abs [Traj[fQuad[r]] [ N[shadSeed, NN], NN] -
SetPrecision[Traj[fQuad[r]][ xNoisy, NN], NN]1];




ShadowError[38 /10] [{0.1, ShadowSeed}, 500]

2.1822584535631460565630296562514283345804244985551224570350682294481549629434-
89300196382597641514231277958919034244055372156299717986041618558920185122281-.
33120957566888332552486017928556191049875304347346714449690559393032730181290-.

0472034310979334542384238427889349944246396x 10714

So, the high-precision trajectory shadows the noisy trajectory out to 500 iterations within 2.1823 % 10713 It
is interesting to note that for a high-precision trajectory to be within some small number of a noisy trajec-
tory, the starting value must also naturally be within that number of the noisy starting value. This limits the
search for a shadow seed to the immediate vicinity of the noisy starting value.

Now, one might wonder how "special" such a shadow seed is. Below is a graph illustrating the shadowing
error for the ShadowSeed (Red) and 10,000 random points within 1075 of the ShadowSeed. As one can
see, not a single one of these starting values except the ShadowSeed is within 0.6 of the noisy trajectory,
implying that the ShadowSeed can be considered quite unique.

data =
Append[Table[{0.1 + (RA = Random[Real, {-10"-5, 10" -5}]),
ShadowError[38 /10]1({{0.1, 0.1 + RA}, 100]}, {i, 1, 10000}},
{SshadowSeed, ShadowError[38/10][{0.1, ShadowSeed}, 100]}1;
Show[ListPlot [data, {AxesOrigin - {0.1-10"-5, 0}}],
Graphics[{Red, PointSize[0.03], Point[data[[-1]]]}]]

e )
0.088535 0.300000 0.200003 0.3000410

W sl
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m Chow and Palmer Applied

Chow and Palmer(1989)! introduces the concepts of o and 7 in their estimation of a lower- and upper-
bound of the sup shadowing-error, i.e. the maximum of the absolute value of the difference between the
noisy trajectory and an exact shadow trajectory at any iterate. So, it suffices to say that these are used by
Chow and Palmer to estimate how far the noisy trajectory is from an exact, i.e. high - precision trajectory.

They consider the case of one-dimensional maps, determine for any number of iterates if their theorem
applies, and if it does we can proceed by calculating the shadowing error.

Following the notation set forth by Chow and Palmer we consider the case of the quadratic map.

A statement of shadowing:

Let {y,} ,I:’__I)lbe a noisy trajectory. At each iteration of the noisy trajectory, the roundoff error

N

4=o Such that the difference

| Ya+1 — f(¥n) | is small. We want to find a high-precision trajectory {x,}

between the high-precision trajectory and the noisy trajectory | x, — y, | is small for each iterate.

Chow and Palmer provides the following definitions of o~ and 7:

N N
o = Max ),

n=0 m=n

Df(yw)™ Df(yusp) ! ... DF(ym)~!

A rough but yet good estimate put in simple terms is that we can say that o is simply the maximum of the
reciprocal of the derivative.

N N
T = Al_aéx Z_: Df(yn)_l Df(yn+1)_1 aes Df(ym)_l [ym+1 = fOm)] ’

Tis 'pretty much the same thing, except that each reciprocal of the derivative term is multiplied by
[ yir1 — f (i) |, where i is the current term.

Their theorem is then :

Defining M to be the maximum of the reciprocal derivative.
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M = Max{|D? f0)| : 0= x<1)

Let{y,} iv:ol be a noisy trajectory of f suchthat
2Motr <1

Now there exists an exact high — precision trajectory {x,} nN=0 with

(1+1/2(1+VT - 2Mo7)) 7 = Max < 2(1+V1 -2Mo7) ' 7
n=0

Xn—Yn

The 7 and o functions below were programmed in Mathematica by Professor Stan Wagor? following the
definitions set forth by Chow and Palmer. '

Clear[o, t];

o[r_1[x_, NN_] :=o[r][x, BN] = [derlist = DerivativeVector|[r] [x, NN];

NN 1
e sabte] 3, e[ ], (a0, m}]]J,

tlr_][x_., MN_] :=t[r][x, NN] = (ypts = SetPrec/ision['I'raj‘[fQuad[r] ¢, X, NN+ 1], NN];

derlist = SetPrecision[DerivativeVector[r][x, NN], NN];

NN
ypts[m + 2] - fQuad[r] [ypts[m + 1]]
e[ ane 5} 220002 Spt e rmete s ), o, ]

In fact, 7 yields such decent results even when only estimating from 1 iterate that it alone can help improve
the FindMinimum method used in the previous section by providing a good place to start the search, i.e.
avoiding some local minimums. This is especially helpful when trying to shadow larger intervals, as the
structure of the error curve become more complicated. Below is a program which allows for a fast estima-
tion of 7, we call this estimate 7-first. Also, below are the Shadowing functions used in the previous sec-
tion, but now set to use this estimated 7-value as the default place to start the shadow search. What 7-first
does is to provide an estimate of the sup error, meaning maximum residual, where residual is the absolute
difference between the high-precision trajectory and the noisy trajectory at any iterate, of the first point in
the trajectory between the shadow trajectory and the noisy trajectory. Adding the estimate of the sup error
of the first point to the noisy starting value gives a good place to start the FindMinimum search.
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tFirstFast[r_ ][x_, NN_] :=

tFirstFast([r][x, BN] = (ypts = SetPrecision[Traj[fQuad[r]][x, N+ 1], NN + 100];

derlistProds =
Rest [FoldList [Times, 1, SetPrecision[DerivativeVector[r][x, WNN],

NN +100]11;
Rest[ypts] - (fQuad[r] @ Most[ypts]) ]
derlistProds )'

Total [

Options [ShadowOneStep] = {StartValue » UseTauEstimate};

ShadowOneStep[r_] [noisy List, n_Integer, opts___] :=
(start = Startvalue /. {opts} /. Options[ShadowOneStep]:;
wp = Max[35, n];
start =
start /. UseTauEstimate - SetPrecision([noisy[[1]], wp] +
tFirstFast[r] [noisy[[1]], n];
residual [x0_? NumericQ] := Block[{$MinPrecision = wp, $MaxPrecision = wp},
Traj[fQuad(r]] [x0, n] - Take[SetPrecision[noisy, wp], n+1]];
ans = FindMinimum[0, {x0, SetPrecision[start, wp]},
Evaluate[Sequence @ FilterRules[{opts}, Options[FindMinimum]]],
Method - {"LevenbergMarquardt”, "Residual” - residual{x0],
"Jacobian" -» JacobianVector[r] [N[x0, wp], n]}, WorkingPrecision - wp,
PrecisionGoal -+ 20, AccuracyGoal - 20]; x0 /. ans[[2]);

ShadowInSteps[r_ ] [noisy_List, a_Integer, {startstep , stepsize_}, opts___] :=
Do[sol = ShadowOneStep[r] [SetPrecision[noisy, n], nn, opts,
StartValue - If[nn = startstep, UseTauEstimate, SetPrecision[sol, nn]}],
{nn, Append[Most[Range[startstep, n, stepsizel], nl}];
sol);

Experiments have shown that trying to shadow too many iterations in one attempt at local-minimum-
finding (e.g., using Mathematica's FindMinimum command) using the noisy starting value is difficult
because there are many local-minimum points, but iterations of 50 or less work in most cases. This makes
somewhat intuitive sense since a MachinePrecision number is composed of roughly 50-bits. Note however
that even this will not allow shadowing many iterations in one step alone, so a second function ShadowIn-
Steps is required that shadows the trajectory in steps. By using the result of shadowing part of the trajectory
to shadow more of the trajectory, we ensure that we are in the roughly the right place because later iterates
are more sensitive to changes in the staring value, and thus requires a search in a smaller range.

The paper by Chow and Palmer (1989)! focuses on estimating boundaries for the sup error of a shadow,
i.e. the maximum error (absolute value of residual), where by residual we mean difference between the
high-precision trajectory and the noisy trajectory at a given iterate, whereas above I have been shadowing
trying to minimize the sum of squares of the residual vector. One can however easily use the result above
as the starting location for a new FindMinimum search to minimize the sup error.
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ShadowSupNorm[r ][x0 , n_, s_] :=
{obj [%_?NumericQ)] := ShadowError[r][{x0, x}, n]2;
dataTemp = Table[{p, Log[10, obj[s+10°F]1]}, {p, 10, n}];
mm = Min[Last /@ dataTemp]; pp = Select [data’l‘emp, Abs [#1[2] - mm] < 1—:—; &, 1] '

pp = ppl1, 11;
xnew /.,
Last [ans = FindMinimum[obj [xnew], {xnew, s- 10"PP, s+ 107PP},

WorkingPrecision » n, PrecisionGoal -» 35, AccuracyGoal -» 36] ]] ’

ShadowError[r_] [{xNoisy_, shadSeed_}, NN_] :=
Max[Abs [Traj[fQuad[r]] [ N[shadSeed, NN], NN] -
SetPrecision[Traj[fQuad[r]] [ xNoisy, NN], NN]1];

As one can see below, minimizing the sup norm error gives a small but negligible improvement
of 8.2362 x107%8.

SupShadowSeed = ShadowSupNorm[38 / 10][0.1, 500, ShadowSeed];

ShadowError[38/10][{0.1, ShadowSeed}, 500]

ShadowError[38 /10][{0.1, SupShadowSeed}, 500]

N[ShadowError[38/10][{0.1, ShadowSeed}, 500] -
ShadowError[38/10]1[{0.1, SupShadowSeed}, 500]]

1.1981943817430067268373860403641333856823281481727319894249070713721564060211+
81819305974538201943369839111768486976594068718797844169458620972283391929661-
14844775020777431471688219562055100031253727086266160060728714354320161960886-
87078389055473746040702453307838395415627595213568389814845966254612975528989-

64627539927690 x 10715

1.1981943817430067268373860403641333856823273245531884675199730773974140927018~
17364778768968531388425682737734772170027062978621483221661160309120386436229~
40168325439692551942696957133934951560133091096383235792705297132141337819788~
92638367432268939376767226742672448001067686438565970707689574017422920420630

98311068796200x 10713

8.2362x 10738

Now, something of interest is how the sup error increases as the number of iterates increases. Below I
have graphed the relationship as the number of iterates goes from 50 to 2500.

ListPlot [supErrorList, PlotStyle - {Thickness[0.012], GrayLevel[0]}]
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;
As one can see, there are a sequence of fairly consecutive iterates where the sup shadow error jumps. Note
that the sup shadowing error curve is strictly increasing since it is the maximum of the shadowing error.

Also note that this curve will eventually reach its maximum value since the noisy trajectory must be peri-
odic due to the finite number of MachinePrecision reals. From this we can deduce that shadowing is possi-

ble forever.

s Code for SupErrorGraph.

fshadowInSteps = ShadowInSteps[38/10];
fShadowSupNorm = ShadowSupNorm[38 / 10];
fShadowError = ShadowError([38/10];

Monitor[HP2500NormSolSeed = fShadowInSteps [MPSol, 2500, {50, 50}], nn];

Monitor]|
supErrorList2 =
Table[N[fShadowError[{0.1, fShadowSupNorm[0.1, nn, N[HP2500NormSolSeed, nn]l},

nn}], {nn, 300, 450, 1}], nn];

= Analysis of the Error

First note how 7-first does a great job shadowing out to 100 steps, with a shadow error within 3.02734712,
Also note how it could do better, as is done by ShadowSeed (this is from optimizing out to 500, but it
shadows 100 terms within 1000th of what T does).

ShadowError {38/ 10] [
{0.1, zFirstFast[38/10][0.1, 100] + SetPrecision[MPTraj[[1]], wp]},
100]

3.0273383743856052952927515164439x 10712

ShadowError[38/10][{0.1, ShadowSeed}, 100]




1.2441142664934016544735037677797673131542029678746653217787215819417123011024 x
10713

Now note how ShadowSeed is within 1025 of 7-first.

ShadowSeed - (tFirstFast[38/10]1[0.1, 50] + SetPrecision[MPTraj[[1]], wp]l)

-4.378844953136377922064278155298169485623384421554811330983189133645528108825
332258221100514510912387813775170428076757485412 x 10728

A plot of maximum absolute errors (out to 100 steps), using seeds in within 10716 of the 7 - first seed. This
shows us that even relatively close to the ShadowSeed the error structure is far from being a nice parabolic

shape, and it is this that causes problems when trying to shadow many iterations from a less than optimal
starting place for the FindMinimum search.

ListPlot[
Prepend [
Table [ShadowError[38 / 10] [
{0.1, tFirstFast[38/10][{0.1, 100] + SetPrecision[MPTraj[[1]], wp] +1i}, 100],

{i, -10~-16, 10"~ -16, 10"~ -20}], ShadowError[38/10][{0.1, ShadowSeed}, 100]],
AxesOrigin - {0, 0}]

1 N N 1 1 L 1 L N 4@ L 2 1 N i 1 N N 1 1
e o T o

-Fux

Now looking really closely (within 10732 and 10733) at the two seeds found by 7-first and FindMinimum

using 7-first as a start respectively. It is obvious that the shadowSeed is at a minimum, whereas the T
estimate is not.

ListPlot|
Table [ShadowError[38/ 10] [

{0.1, TFirstFast[38/10][0.1, 100] + SetPrecision[MPTraj[[1]], wp] + i}, 100],
{i, -10~-32, 10~-32, 10~ ~34}], AxesOrigin -» {0, 0}]
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ListPlot[Table [ShadowError {38/ 10][{0.1, ShadowSeed + i}, 100],
{i, -107-33, 107-33, 10*-35}], AxesOrigin -» {0, 0}]
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ShadowError[38/10][{0.1, ShadowSeed - 10~ -35}, 100]
ShadowError[38/10][{0.1, ShadowSeed}, 100]
ShadowErxror[38 /10][{0.1, ShadowSeed + 10~ -35}, 100]

1.2441142664934016109068133836239165080586604107192791053366287299871714308846 x
10715

1.2441142664934016544735037677797673131542029678746653217787215819417123011024 x
10_15

1.2441142664934016980401941519356181182497455250265889734285281094489165643629 x
10*15

The graph below shows the area within 10-1° of the ShadowSeed. We would ideally start our FindMini-
mum search near the V-shaped region of the graph.

ListPlot [Table [ShadowErroxr[38/ 10] [{0.1, ShadowSeed + i}, 100],
{i, -10°-19, 10*-19, 10*-21}], AxesOrigin -» {0, 0}]
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tauSeed = tFirstFast[38/10][0.1, 100] + SetPrecision[MPTraj[[1]], wpl;

ShadowSeed - tauSeed

-2.778616162040463242052424931189134503431803159211981992227298411969984279778"

5085030015594676805720876460524351723089973976827863180768954717919735593202~

60749823177492950 x 1031

The red point is the 7Seed, whereas the purple point is the ShadowSeed. This graph shows us how close
the estimate of 7 puts us to the ShadowSeed.

tempi = 30;
data = Append[Table[{i, ShadowError[38/10][{0.1, tauSeed + i}, 100]},
{i, -10"-tempi, 10" -tempi, 10" - (tempi + 2)}],
{ShadowSeed - tauSeed, ShadowError[38/10]{{0.1, ShadowSeed}, 100]}];
Show [
ListPlot[data, {AxesOrigin -» {data[[1l, 1]], O},
PlotLabel - "Center is at tSeed"}],
Graphics [{Red, PointSize[0.03], Point[data[[101]]], Purple, Point[data[[-1]]1]}]]
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data[[-1]]

{—2 .77861616204046324205242493118913450343180315921198199222729841196998427977-.
850850300155946768057208764605243517230899739768278631807689547179197355932~

0260749823177492950 x 10731,
1.2441142664934016544735037677797673131542029678746653217787215819417123011024

><10_15}

Looking at this from more of a macro-scale really puts it in perspective. The red point is the T estimate and
the purple point is the ShadowSeed.

tempi = 18;
data = Append[Table[{i, ShadowError[38/10][{0.1, tauSeed + i}, 100]},
{i, -10"-tempi, 10" -tempi, 10" - (tempi + 4)}],
{ShadowSeed - tauSeed, ShadowError[38/10][{0.1, ShadowSeed}, 100]}1;
Show [
ListPlot [data, {AxesOrigin - {data[[1l, 1]], 0},
PlotLabel » "Center is at tSeed"}],
Graphics[{Red, PointSize[0.05], Point[data[[10001]]], Purple,
PointSize[0.03], Point[data[[-1]]1]}]]
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Recalling how "unique" the ShadowSeed found is, it is quite amazing how good of an estimate 7 is.

data = Append[Table[{0.1 + i, ShadowError[38/10][{0.1, 0.1+ i}, 100]},
{i, -10~-5, 10*-5, 10*-10}],
{ShadowSeed, ShadowError[38/10][{0.1, ShadowSeed}, 100]}];
Show[ListPlot [data, {AxesOrigin - {data[[1l, 1]], 0}}],
Graphics[{Purple, PointSize[0.03], Point[data[[-1]]1]1}]1]

1 i 1 L i i A @ i I i A ] i I I i
0.085555 0.3200000 0.3i00005 0.3i00030

Note in the graph above that there are no ShadowErrors larger than 0.7695. This is because the maximum
of f(x) is (38/10)*(1/2)*(1/2) = 0.95, implying that the minimum of f(f(x)) is (38/10)*(0.95)*(0.05) =
0.1805, and thus the possible ShadowError, for a starting value in this interval, to be 0.95-0.1805 = 0.7695.



data = Append [Table[{0.1 + i, ShadowError[38/10][{0.1, 0.1+1i}, 100]},
{i, -10*-5, 10"~-5, 10~-8}],
{shadowSeed, ShadowError[38/10][{0.1, ShadowSeed}, 100]}1;
Show[ListPlot [data, {AxesOrigin - {(data[{1, 1]], 0}}]1.,
Graphics [ {Purple, PointSize[0.03], Point[data{[-1]]]}]1]
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m Billiard Trajectory
The billiard Trajectory problem as stated in the SIAM 100-Digit Challenge*:

A photon moving at speed 1 in the x-y plane starts at t =0 at (x, y) = (1/2, 1/10) heading due east.
Around every integer lattice point (i, j) in the plane, a circular mirror of radius 1/3 has been erected.
How far from (0, 0) is the photon at ¢t = 10?

The initial method here was created by F. H. Simons>.

Rather than being concerned with where the photon will be at a certain point in time, we can consider this
as a discrete problem by simply being concerned with the list of coordinates on the {x, y}-plane of where
the photon hits the mirrors. We will refer to a list of such points as a billiard trajectory. We use the same
starting value as was stated in the original problem for most of our experiments.

m Initialization code

The code below defines a slightly modified version of the function presented by F. H. Simons that simu-
lates iterations of the billiard trajectory. Each point consists of the {x,y}-coordinate at which the photon
hits a mirror and the direction {u,v} it has after hitting the mitror.

fBill([{{xpos_, ypos_}, {xdir_, ydir }}, wp_:200] :=
Module[{v = {xdir, ydir}/Norm[{xdir, ydir}], pl, p2, c¢i, c2, v1, v2},
h({a_, b_}] := 9% {{b"2 - a~2, ~2xaxb}, {-2%xaxb, a”2 - b"2}};
norm{a_] := Sqrt[a.a]; p = N{{xpos, ypos}, wpl; v = {xdir, ydir};
rem = 100; While[rem > O, ¢ = Round[p + 2% (v/3)]; {pl, p2} = p;
{cl, c2} = ¢c; {vl, v2} = v;
time =
Min|[
Cases[zzz = (-(1/ (3% (v1"2 + v272)))) *
(-3%cl*vl + 3%*plavl - 3xc2%v2 + 3%xp2xvi +
(-1, 1} *Sqrt[(1 - 9% (c2 - p2)"2) *v1™2 +
18 % (¢l - pl) % (c2 -~ p2) *visv2 + (1 - 9% (cl - pl)~2) *xv2"2]),
_?Positive]]; If[time < rem, p += timexv; v = h[p - c].v;
Return[{p, v/norm[{xdir, ydir}]}]; rem = 0, time = Min[rem, 2/3];
P += timexv]; rem -= timell;
fBillTraj[{{xpos_, ypos_}, {xdir_, ydir }}, n_, wp_] 3=
NestList[fBill[#, wp] &, {{xpos, ypos}, {xdir, ydir}}, n}l;

The graph below illustrates the divergence of the high-precision trajectory (black) and the noisy trajectory
(red) after just 25 iterations.
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trajMP = fBillTraj[{({.5, .1}, {1, 0}}, 25, MachinePrecision];
trajHP = fBillTraj[{{1/2, 1/10}, {1, 0}}, 25, 200];
background = {};
Do[background = {background, Disk[{i, 3}, 1/31}, {i, -2, 3}, {3, -2, 2}];
Graphics|[
Flatten[{Thickness[0.015], Red, Line[First /@ N[trajMP]], EdgeForm[Thin],
RGBColox[0.8, 0.8, 0.5], background, Thick, Black, Line[First /@ N[trajHP]]}],
Frame -» True, Background - White]

The function above correctly iterates billiard trajectories, but this can also be considered purely as an
algebraic problem of lines and circles, where the line represents the path of the photon and the circle repre-
sents the mirror. It is useful to note that any shadow must clearly hit the same circles as the noisy trajec-
tory, and that an algebraic method thus will have to include what mirrors are hit. All mirrors are circles
with radius of 1/3 centered at integer coordinates, so it is sufficient to create a list of the {c,d}-coordinates
of the center of each mirror in the order they are hit.

CenterList[billTraj_] := Round[First /@ N[billTraj]]
Intersection of line and circle

Knowing what mirrors are hit is however not sufficient to determine the coordinates where the photon hits
the mirror. Note how there are two solutions because the line will intersect the circle both at the entrance
point and at the exit point.
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Graphics[{RGBColor[O.S, 0.8, 0.5], EdgeForm[Thin], Disk[{0, 0}, 1/3],

‘ 1 1
Thick, Black, Line[{{-1, -1}, {1, 1}}], Red, nisk[{-,/ -, -1/ — }, 1/20],
18 18
_ 1 1
DJ.sk[{ —_ —_ }, 1/20]}, Frame - True, Background-)white]
18 18
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So we need a way to determine which intersection is the correct one. If the photon is coming from the left,
i.e. u is positive, then the solution with the lower x-coordinate will be correct, whereas if the photon is
coming from the right, i.e. u is negative, the solution with the greater x-value will be correct. Every case
where u is O can be equivalently represented with a specific case where u = 1, so nothing is lost from
excluding it here. We can collect a list similar to as above with the u-coordinate direction after each itera-
tion, 1 if u is positive and -1 if u is negative.

SignList[billTraj_] := (signList = {}; i = Length[billTraj];
Do[signList = {signList, Sign[billTraj[[x, 2, 1111}, {x, 1, i}];
Return[Flatten[signList]])

Note how the high-precision trajectory can become periodic, such as the example below where a 4-cycle is
present with a starting value of y = 2/10. Also note that the noisy-trajectory does not have this cycle.
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trajMP = fBillTraj[{{.5, .2}, {1, 0}}, 28, MachinePrecision];

trajHP = fBillTraj[{{1/2, 2/10}, {1, 0}}, 28, 200];

background = {};

Do [background = {background, Disk[{i, j}, 1/3]}, (i, -1, 1}, {3, -0, 2}1;

Graphics|

Flatten[{Thickness[0.02], Red, Line[First /@ N[trajMP]], EdgeForm[Thin],

RGBColor[0.8, 0.8, 0.5], background, Thickness[0.01], Black,
Line[First /@ N[trajHP]]}], Frame - True, Background -» White]
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trajHP = £BillTraj[{{1/2, 1/10}, {1, 0}}, 20, 200];
trajMP = fBillTraj[{{.5, .1}, {1, 0}}, 200, MachinePrecision];

centerList = CenterList[trajMP];
signlist = SignList[trajMP];

The code below is a hard-coding of the solution given when solving for the {x,y}-coordinates of the inter-
section between a line and a circle. The two solutions are consistent with the idea above, where the direc-

tion of the photon will determine which of the solutions give the coordinates where the photon hits a mir-

ror. {c1, d1} is here the coordinate of the mirror that is hit.
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LCIntersectSol =

{frs o

3u0 (u()2 - vOz)

(3d1u0 v0? + 3102 vo (c1 - x0) -
v0

/ (u0? (v0? (1-9 (c1-%0)2) +u0? (1-9 (a1 - y0)2) +
18 u0 v0 (c1-x0) (d1-y0))) +3 uo3 yo),
1
X 5 ———
3 (u02 + vo2)
(3c1u02-
+/ (u0? (v0% (1-9 (c1-x%0)2) +u02 (1-9 (d1-y0)2) +
18 u0 v0 (c1-x0) (d1-y0))) +3v0 (d1u0+v0xo-u0y0))},

1
{r-
3u0 (uo2 + v02)

(3d1 w0 vo? +3u02 vo (c1-x0) +
v0

 (u0? (v0? (1-9 (c1-x0)2) +u0? (1-9 (d1-y0)2) +
18 u0 v0 (c1 - x0) (d1-y0))) +3 w03 yo),

1
X -

3 (u02+v02)
(3 cluo? .
~ (102 (v02 (1-9 (c1-x0)2) +u0? (1-9 (d1-y0)2) +
18 u0 vO (cl-x0) (d1-y0))) +3v0 (d1u0+v0x0-u0y0)‘)}};

LCIntersectSollLeft = {x, vy} /. LCIntersectSol[1l];

LCIntersectSolRight = {x, vy} /. LCIntersectSol[[2];

LCIntersectLeft[{xO_; y0_}, {uo_, v0_}, {cl1_, d1_}] = LCIntersectSolLeft;
LCIntersectRight[{x0_, y0_}, {u0_, v0_}, {cl1_, d1_}] = LCIntersectSolRight;

Direction after hitting a circle :

The next step is to find a algebraic solution for the direction after an intersection with a circle, There will
be two solutions for the direction of a photon after hitting the mirror, one for each of the two solutions for
the intersection of a line and a circle.

The code below is similarly a hard coding of the solution given when solving for the direction {u,v} of the
line after hitting a circle.

LCDirectionSol =
{-9 (c12uo-d12uo+2c1d1vo-2c1u0x-2d1vox+u0x2+2 (d1u0 +v0 (-cl+x)) ¥~
uo y2),
9 (c12v0-3d12v0-2u0xy~2cl (d1u0+v0Ox-uly) +2dl (u0x+vOy) +vO0 (x2-v2))}s

This can be further simplified to:
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9 (u0 (-(c1-%)2+ (d1-y)2) -2v0 (c1-x) (d1-y))
ILCDirectionSol = { ’ ;

u02 4+ v02

9 (v0 ((c1-%x)2-(d1-y)2)-2u0 (c1-x) (d1-y))

}i

u02 + v02

xLeft = LCIntersectSolLeft[[1]];
yLeft = LCIntersectSolLeft[[2]];
¥Right = LCIntersectSolRight [[1]];
yRight = LCIntersectSolRight[[2]];

LCDirectionSolLeft = LCDirectionSol /. {x - xLeft, y » yLeft};
LCDirectionSolRight = LCDirectionSol /. {x » xRight, y -» yRight};

ICDirectionLeft [{x0_, y0_}, {u0_, v0_}, {cl1_, d1_}] = LCDirectionSolLeft;
ICDirectionRight [{x0_, y0_}, {u0_, vO0_}, {c1_, d1_}] = LCDirectionSolRight;

Combining the two above :

Combining the algebraic solutions for the intersection with a circle and direction after hitting a circle gives
us the two possible algebraic solutions needed to iterate the billiard problem.

BillvVectorLeft[{x0_, yO_, uo_, v0_}, {cl_, d1_}] :=
Flatten[{LCIntersectLeft[{x0, y0}, {u0, vO}, {cl1, d1}],
LCDirectionLeft[{x0, y0}, {u0, v0}, {cl1, d1}1}1;
BillVectorRight [{x0_, y0_, u0_, vo_}, {cl1_, d1_}] :=
Flatten[{LCIntersectRight[{x0, y0}, {u0, v0}, {c1, d1}],
ICDirectionRight[{x0, y0}, {u0, v0}, {c1, d1}]1}1;

Constructing the matrices :

This can be used to create partial-derivative matrices. The two variables, {x,y} in the algebraic solution for
the intersection of a line and a circle, will form a 2-by-4 matrix consisting of the partial-derivative of x and
y with respect to each of the four variables in question, i.e. {x,y,u,v}. Similarly the partial derivatives of
the direction after hitting a circle will also form a 2-by-4 matrix. There are two cases of each of these 2-
by-4 matrices because of the two possible intersections with the circle.

MatrixLeft =

Identity[D[LCIntersectLeft[{x0, y0}, {u0, v0}, {c1, d1}], {{x0, yO, u0, v0}}11;
MatrixRight =

Identity[D[LCIntersectRight[{x0, y0}, {u0, v0}, {cl, d1}]1, {{x0, yO, u0, vO0}}]1;
MatrixDirectionLeft =

Identity[D[LCDirectionLeft[{x0, y0}, {u0, v0}, {c1, d1}], {{xO, y0, u0, v0}}11;
MatrixDirectionRight =

Identity[D[LCDirectionRight [{x0, y0}, {u0, vO}, {cl, d1}], {{x0, y0, uo0, v0}}11;

TotalDerivativeLeft = Join[MatrixLeft, MatrixDirectionLeft];
TotalDerivativeRight = Join[MatrixRight, MatrixDirectionRight];




Combining the partial derivatives of the {x,y} coordinates and the {u,v} direction provides us with a 4-
by-4 matrix that represents the sensitivity of all the variables at a certain iteration. Naturally we also here
have the two cases, with the possibilities being u being negative or positive. So knowing the coordinates of
the center of the mirror at the nth iterate and the sign of u gives us the sensitivity at that point to changes in
the variables at the previous point.

sensMat [n_] [state_] :=
If[signList[[n]] == 1, TotalDerivativeLeft, TotalDerivativeRight] /.
Thread[ (x0, y0, u0, v0} » state] /. Thread[{cl, d1} » centerList[[n+1]]]

The Jacobian is thus the list of sensitivity matrices to changes in the starting y-value. Note that the starting

y-value, not being constrained to be on a circle is the only point from which this can be treated as a one

dimensional problem. Since at any point on a circle a small change in y will also mean a change in x, u,

and v, and the y-value of the next iterate is dependent on all of {x,y,u,v}, it follows from the Chain rule,
dyn Oyn  9%p-1 3yn_ Op_1 dyn  n-1

that the sensitivity of y, to changes in y,_; will be + + + .But
" s nl Op1 0%y OVpo1 Oupq Oypq Fpy OV

since y, depends on {x,_1, Yp—1>Up—_1>Vs—1}, and each of {x,,_1, Yn—_1,¥n_1,Vn—1} depends on
{Xy—25 Yn-2>Un—2,Vy_2}, this implies that the dot product of all sensitivity matrices to the nth iterate will
give us the sensitivity of all 4 variables at the nth point to changes in the starting y-value. When treating it
as a 1-dimensional problem, we are only really interested in the sensitivity of the y-value at the nth iterate
to changes in the starting y-value, but because this is inherently a 4-dimensional problem the 4-by-4 matri-
ces are necessary to compute the correct sensitivity. So a ~ will be the value of the second entry on the

Vi
second row of the Jacobian, where the Jacobian is the list of the 4-by-4 matrices that are the dot product of
the first i sensitivity matrices.

I4=N[{{1, 0, O, O}, {0, 1, 0, O}, {O, 0,1, O}, {O, 0, 0, 1}}, 200];
J[y0_?NumericQ, n_] := (
hpsol = fBillTraj[{{1/2, y0}, {1, 0}}, n, Max[n, 17] + 200];
matlist = Table[sensMat[i] [Flatten[hpsol[[i]]]], {i, 1, n}];
#[[{2}]] & /@ Map[ #[[2]] &, FoldList[#2.ul &, I4, matlist], {2}])

m Shadowing code
The residual is simply the absolute difference between the high-precision trajectory and the noisy trajectory.
residuallList[y0_, n_] :=
Flatten][ (First /e fBillTraj[{(1/2, y0}, {1, 0}}, n, 200]) -

First /@ Take[trajMP, n+ 1]]

Now, we can shadow the Billiard trajectory using the same procedure as we did for the quadratic map. That
is to say, we can attempt to minimize the sum of square residuals using the LevenbergMarquardt method,
and feed it the Jacobian that was worked out by solving the billiard trajectory algebraically.



BillshadowOneStep[noisy List, n_Integer, start_] := (
Clear[residual];
residual [Y0_? NumericQ] :=

(Flatten|
(#[[2]] & /@ (First /e fBillTraj[{{1/2, Y0}, {1, 0}}, n, Max[n, 200]])) -

(#8[[2]] & /@ First /@ SetPrecision[Take[noisy, n+ 1], 200])1);
FindMinimum[0, (Y0, SetPrecision[start, 200]},
WorkingPrecision - 200,
Method - {"LevenbergMarquardt", "Residual" -> (residual[¥0]),
"Jacobian" » J[YO, n]}])

Similarly for shadowing many iterations, we need to shadow in steps to get us in a place where the search

is productive.
BillShadowInSteps [noisy_List, n_Integer, {startstep_, stepsize_}, opts___] := [
Do[sol::Yo /.BillShadowOneStep[SetPrecision[noisy, 200], nn,
1 . .
If [nn == startstep, N[—-—, 200] , SetPrecision[sol, 200] ]] [r211,
10
{nn, Append[Most[Range[startstep, n, stepsizel], n]}];
sol];
Looking at the maximum absolute error shows us that the shadows are good.

trajMP = £BillTraj [{{.5, .1}, {1, 0}}, 200, MachinePrecision];

1
Soll = Y0 /. BillShadowOnestep[trajMP, 10, N[—, 200]][[2]]
10

0.0999999999999999682622077721912127869914629267551266116170954007483909421859~.
47036760453078741297057843642679220190997733127107884149231584581242291507986~
9101630344871378065259864954463016058437888020185

Sol2 = Y0 /. BillShadowInSteps [trajMP, 50, {10, 10}]1[[2]]

0.0999999999999999682622079468781564846294583355960160199350140876868118804898".

28

20902417901572847989280682201971034936347938633247324752124279417366716174379"

5933642053886417235641951715954603891468962869240;
Max [Abs[N[residualList[Soll, 10]]]]
2.22045x 10716
Max[Abs [N[residualList[So0l2, 50]]]]
8.88178x 10716

As evident by a residual error of at most 104-15, we can easily shadow a Billiard trajectory out to many
iterations. The following shows that a shadowing is possible out to 94 iterations within 10A-10!




So0l3 = BillShadowInSteps[trajMP, 94, {10, 10}]

Yo /. {¥O, 4
0.09999999999999996826220794687815648462945833559601601993501878263664456533

703392838483613471043586801408491119929176272800595061140403709651362115984~

82060465283259999597557230593294895086895316826100166}

Max [
Abs|
N
residuallist|
0.0999999999999999682622079468781564846294583355960160199350187826366445653 +
37033928384836134710435868014084911199291762728005950611404037096513621159+
84820604652832599995975572305932948950868953168261001658637572802903961030+
5417035286~ 200., 94]]11]

3.16529x% 10711

Below is a graph illustrating the successfully showing out to 94 iteration. Note how the noisy trajectory
(Red) and high-precision trajectory (Black) diverge (on a visual scale) after roughly 100 iterations (shown
out to 102).

trajMP = fBillTraj[{{.5, .1}, {1, 0}}, 95, MachinePrecision];

trajHP = fBillTraj[{{1/2, Sol3}, {1, 0}}, 95, 200];

background = {}; ‘

Do[background = {background, Disk[{i, j}, 1/3]}, {i, -7, 1}, {j, -10, 2}];

Graphics|

Flatten[{Thickness[0.02], Red, Line[First /@ N[trajMP]], EdgeForm[Thin],

RGBColor[0.8, 0.8, 0.5], background, Thickness[0.01], Black,
Line[First /@ N[trajHP]]}], Frame - True, Background - White]
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m Billiard Trajectory Revisited

Now, it is interesting that one can actually use the same method, but without feeding it the Jacobian and
still get a shadowseed. This is possible because the LevenbergMarquardt method in Mathematica can
approximate the derivatives and work from that alone. This is especially noteworthy because computing
the Jacobian is the most time-consuming part of finding a shadowseed because it requires running many
matrix operations. Below is the shadowing without using the Jacobian, with the associated apparent time
improvements (roughly 10x) and showing that they find the same shadow-seed.

BillSshadowOneStep2 [noisy List, n_Integer, start_] := (

Clear[residual};
residual [ YO_? NumericQ] :=

(Flatten[

(#[[2]] & /@ (First /e fBillTraj[{{1/2, Y0}, {1, 0}}, n, Max[n, 200]])) -
(#[[2]] & /@ First /@ SetPrecision[Take[noisy, n+1], 200]1)1);

FindMinimum[0, {Y0, SetPrecision[start, 2001},

WorkingPrecision - 200,

Method - {"LevenbergMarquardt”, "Residual” -> (residual[¥0])}])

BillShadowOneStep[trajMP, 10, 1/10] // Timing

{2.121,
{2.42072065873460348343951944012250884679558188277421812437283307018140358169:
587510119075882563289217658030771913777211801757422351981286469452117516040-

27388158959374521001815266086951883630269355513746x10‘32,{YO-a

0.099999999999999968262207772191212786991462926755126611617095400748390942.
1859470367604530787412970578436426792201909977331271078841492315845812422~
915079869101630344871378065259864954463016058437888020185}}}

BillShadowOneStep2[trajMP, 10, 1/10] // Timing

{0.156,

{2.42072065873460348343951944012250884679558188277421812437283307018140358169x
587510119075882563289217658030771913777211801757422351981286469452117516040-

27388158959374521001815266086951883630769293293496x 10732, (Y0 -
0.099999999999999968262207772191212786991462926755126611617095400748390942".
1859470367604530787412970578436426792201909973688615757439640733784625809-
728763755537638672718050476434075695674583185578678889411}}}

BillShadowInSteps2 [noisy List, n_Integer, {startstep_, stepsize_ }, opts___] 3= [
Do[sol::YO /.BillShadowOneStepZ[SetPrecision[noisy, 200], nn,
1
If[nn::startstep, N[——w 200], SetPrecision{sol, 200]]][[2]],
10
{nn, Append[Most[Range[startstep, n, stepsize]], n]}];

sol];



BillshadowInSteps [trajMP, 50, {10, 10}] // Timing

(45.256,

0.099999999999999968262207946878156484629458335596016019935014087686811880489-

8209024179015728479892806822019710349363479386332473247521242794173667161743-
795933642053886417235641951715954603891468962869240}

Max [
Abs [
N[
residualList|
0.0999999999999999682622079468781564846294583355960160199350140876868118804+
89820902417901572847989280682201971034936347938633247324752124279417366716+
17437959336420538864172356419517159546038914689628692398377284913810349051+

7615618032°200., 20]]1]
2.22045x 10716

BillShadowInSteps2[trajMP, 50, {10, 10}] // Timing

{5.569,
0.099999999999999968262207946878156484629458335596016019935014087686811880489-
8209024179015728479892806822019710349363469150244431982886916415877735524721~
743469806578603121737764456300302095992744359559113}

Max{
Abs|
N[
residualList [
0.0999999999999999682622079468781564846294583355960160199350140876868118804 -
89820902417901572847989280682201971034936346915024443198288691641587773552~
47217434698065786031217377644563003020959927443595591133836304916835252336-+
8294510778°200., 20]171]1

2.22045x 10716

BillShadowInSteps2[trajMP, 60, {10, 10}] // Timing

{11.528,
0.099999999999999968262207946878156484629458335596016019935018782636643006962"
8368453891772515634930187468922813114048166034860125710337746725097442370916"
987561064778495312283626758441740797133241699979997)

From this we can see the consistent time improvement one gets by not manually computing the Jacobian,
but rather relying on the approximations. Note however that although it may be faster to simply approxi-
mate the sensitivity, using the Jacobian allows for shadowing more iterates as the approximations eventu-
ally lead to a failure to find a local minimum.
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m Conclusion

Using the computational power now available, we can successfully use optimization to compute high-
precision shadowseeds that shadow noisy trajectories to within a small value. It is interesting to note the
relative uniqueness of the shadowseeds as evident by the shadowing error graphs, and although we have
not proven that the shadowseeds found are the optimal shadowseeds, they certainly indicate that the theo-
ries set forth by Chow and Palmer! may be better than what was previously though, and indicates that 7-
first gives us a remarkably good estimate of a shadowseed. Shadowing was successfully accomplished for
both the quadratic map and for billiard trajectories out to many iterations, providing very satisfying results.
Machine power is however still a limitation to this methodology when attempting to shadow very far,
because the high-precision trajectory becomes cumbersome to deal with. The methodology presented in
this paper seems like it should be applicable in shadowing any system that exhibits sensitive dependence to
the initial condition.
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