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PRIME WALKS IN CYCLOTOMIC FIELDS 1

Prime walks in cyclotomic fields

By JacoB Bonp

For David Larabee (1963-2005),
teacher and mentor

1. Introduction

A prime walk is a sequence of primes which allow one to “walk” from the
origin out to infinity “stepping” only on prime numbers and taking “steps” of
bounded size. More precisely, a prime walk is a sequence of primes (’l/)j);il
such that there exists an m satisfying ¥ < m, |¥j41 — ;| <m for all j > 1,
and lim|y;| = co. When we consider rational primes, we quickly see that a
prime walk does not exist since (m+ 1)1 +2,(m+)!+3,...,(m+ 1) +m+1
contains no primes. Because the same can be done for any m, every sequence
of primes starting from the origin must have an unbounded difference.

A natural extension to this question asks whether the same is true of the
Gaussian integers Z[i]. The Gaussian integers consist of algebraic numbers
Z[i] = {a + b | a,b € Z}. Further, we define a prime to be an integer ¢ which
is only divisible by its associates, ¥, —, ¥i, —t, and the units, 1, -1,4, —i. It
is important to realize that in this case, we are not simply looking for intervals
which are prime free, but rather regions, called “moats,” which surround the
origin. Since T. Motzkin and B. Gordon originally posed this question, various
results have been established. The most direct result was the computational
construction of a moat of width v/26. On the other hand, it has been shown
that one can not walk to infinity along a straight line, and, more generally,
that a walk cannot exist when restricted to a sufficiently small angular sector.

In addition to the Gaussian integers, one may also consider the related
problem of the Eisenstein integers Z[w], where w = €™/3. Just as with the
Gaussian integers, the Eisenstein integers are defined Z|w] = {a+bw|a, b € Z}.
J. Haugland [6] presents an argument suggesting that a prime walk should not
exist in Z[w]. Haugland argues that based on the density of the primes and
the symmetry of the ged function in the Eisenstein integers, such a walk must
cross an arbitrarily large region composed only of composite numbers. Thus, a
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prime walk would not exist in Z[w]. However, once we move beyond Z{w], the
field loses its lattice structure. Even though the higher cyclotomic fields do not
exhibit the nice arrangements of Z[w] and Z[i], they still represent interesting
cases to study.

This paper investigates prime walks to infinity from various perspectives
and in three distinct fields, Zfw], Z[#], and Z[¢] with ¢ = €?>™/5. P. Loh [T]
showed that any prime walk in the Gaussian integers must sweep out some
angular sector of positive measure. He further demonstrated that by taking a
union of sectors with small arc, one can prohibit a prime walk on a region for
which the sum of the angular measures of each sector is arbitrarily close to 2.
In this paper, these results are extended from Z[i] to Z]w]. We also present the
argument against a prime walk in Z{w] given by Haugland, filling in the specific
details. Additionally, we extend this argument from the Eisenstein integers to
the Gaussian integers. Although they give no definitive answer, these results
provide additional evidence that no such walk exists on either the Gaussian
or Eisenstein integers. Finally, a brief discussion is given on the existence of
prime walks in the fifth cyclotomic field Z[¢] = {a+b(+c(?+d(3|a, b,c,d € Z}
which seem to indicate that a prime walk is possible in this field.

2. Angular sectors in Z|w|

We begin our investigation of prime walks with a reformulation of two
results by Po-Ru Loh. Loh established that any walk to infinity on the Gaus-
sian primes must sweep out an angle of positive measure. Alternatively, this
result shows that by restricting the size of an angular sector, we can prevent
the presence of a prime d-walk, a walk with step-size no greater than d. We
define P;(d, ) to be the least common multiple of all Gaussian integers within
distance d of ag.

Theorem 2.1. [7] Given a step-size d and an ag € Zl[i], there exists a ¥ so
that no d-walk on the Gaussian primes from oy ezists which is contained within
an angular sector centered at cvy and having measure 9. Let ¢ = 3v/2/8 and
P = P/(d, o). Then

_ . [cld+1)? d?
¥ = 2arcsin < Tk ) > 2C’P|2

s such a value for 9.

The idea behind this theorem is that while a large region of composite
numbers does nothing to prevent a walk in the plane, as one can just walk
around it, such a region will prohibit a prime walk confined to an angular
sector. A natural next step would be to take the union of sectors on which
no prime walk exists. In particular, we will look at unions where each sector
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within the union has the same angular measure. We will denote the collection
of all the unions which are centered at a given point ag by C. However, not all
unions will have the same common angular measure for its respective sectors.

Theorem 2.2. [7] Given o step-size d and an oy € Z[i], there exists a union
S among the collection C of unions of nonoverlapping angular sectors centered
at o such that S is a union of n sectors with angular measure ¢, nyp = 2w —¢
for any € > 0, and no d-walk on the Gaussian primes exists on S.

As a result of the similarities which exist between the Gaussian and Eisen-
stein integers, each of these theorems has a natural analogue in the Eisenstein
integers. The only difference in the first theorem is the value which is given to
c. The second theorem remains exactly the same. Additionally, both proofs
run almost exactly the same as in [7] for the Gaussian integers. My extensions
of Theorem 2.1 and Theorem 2.2 are given below.

Theorem 2.3. Given a step-size d and an oo € Z|w], there exists a ¥ so that
no d-walk on the Eisenstein primes from ao exists which is contained within
an angular sector centered at ap and having measure 9. Let ¢ = 3v/3/8 and
P = P,(d,0). Then

2
¥ = 2arcsin (9((1—+1—)—) > 2 &

PP “ PP

is such a value for 9.

Proof. At the outset, let D be a closed disc of radius R = 2d + 2 centered
at o and let P be a least common multiple of the integers contained in D.
Further, we will be working with the lattice given by L = {ao+zP |z € Z[w]}.
Now, we will show that for v € Z|w], if 7 is contained in D, || # 1, and z # 0,
then each v + 2P will be composite.

To begin, we show that |P/y] > 2. Now, if we have that |P| > 6, then
we will have our result for |y| < 3. To see that |P| > 6, we first observe that
R =2d + 2 > 4. As a result, we may fit a square with side > 5 inside of D.
Therefore, proper choice of a, b will yield an integer of the form 5a+ 5bw within
D. Similarly, we will also have an integer of the form 2a + 2bw which lies in D.
Since these integers are in D, we know that the primes 2 and 5 must divide P
and |P| > 10 > 6. It follows that |P/y| > 2 for |y| < 3.

We now assume that |y| > 3 and show that at least one of y1, y+w, yw?
is contained in D. To show this, we need to have that |ag — v — v| < R, for
some unit v, whenever jag — 7] < R. It turns out that we may restrict our
attention to v = 4w, +w?. Continuing, we write @ = a +bi and v = ¢+ di and
let m = a — c and n = b — d. We thus obtain the condition |m +ni| < R. As



PRIME WALKS IN CYCLOTOMIC FIELDS 4

a result, we find that

2
1\? 3
|Q’—’7""U = <Tn:!:§) + ('n/:t %)

= \/nz2+712:}:7n:!:n\/§+ 1.

Since |a—v| < R, we will be guaranteed that |a—y—v| < Rif m+ny/3 < ~1.
For one of |m|, |n| > 1, we need only choose the proper unit, and thus the proper
signs, to achieve the desired inequality. On the other hand, if both |m/|, |n| < 1,
then « + v will obviously be contained in the D. As a result of the fact that
v and v are relatively prime, both v and v + v must divide P. Consequently,
[P/ 2]y + ol 2] 7] =] v] > 2.

Now that we have established |P/y]| > 2, we are in a position to prove
that v + 2P is composite. For v = 0, the assertion is trivial. If v # 0, then

zP

because v € D, v|P and
Z |7 5 Z {7 5 .

But since |P/| > 2, the above inequality tells us that |y+xzP| > |y|. It follows
that v -t- 2P = 3 for some |3| > 1 and that v + zP is composite for nonzero
z. Thus, we have at most six Eisenstein primes contained in C, all of which
are contained in a circle of radius 1 about ~.

Subsequently, we consider an angular sector I' originating at ag and having
measure 0 < ¥< 27. Further, define [ to be the ray bisecting I' and also
originating at ag. We claim that it is possible to ensure that [ must pass near
a point in the lattice L.

In order to achieve this, we transform our coordinate system through the
application of a rotation by —Arg P, a translation by —ayp, and a scaling by
1/|P|. This transformation places a at the origin and places the unit vectors
P and Pi along the z- and y-axes. We denote by IV and I’ the images of T'
and ! under this composition. Additonally, we write m for the slope of I’ and
r = R/|P|. Note that r < 1 since R|P but R and P are not associates. As
a result of the symmetry exhibited in Z[w|, we take 0 < m < 1/v/3 and use
the lemma which follows to approximate m. Taking k to be 4/(rv/3), we are
guaranteed integers a, b satisfying both 1 < a < 4/(rV/3) and jam—b| < r/3/4.

P

Iy + 2P| =y |1+ £y

Lemma 2.4. [7] For any real numbers m and k with k > 1, there exist integers
a and b such that 1 < a <k and Jam — b| < 1/k.

Proof. Since proving this result for [k] implies the result for k, we restrict
ourselves to [k]. That is, we only need consider the cases where k € Z. Denote
r — |x] by {z} and consider the sequence (s;)%_,, where s; = {(i — I)m}.
From this sequence, we form the auxiliary sequence sy — 51,53 — 82,..., 8% —
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Sk—1,1 + 81 — 8, the sum of which is 1. Using the pigeonhole principle, we
see that there must be at least one term in our auxiliary sequence which is
no greater than 1/k. Consequently, there are j; and jo, 0 < J1 < j2 < Kk,
|{jam} — {s1im}| < 1/k. Let @ = jp — j1 and b = [jam]| — |jim]. Then
1<a<kand

lam — b = lam ~ ({j2m] — [im|)|

= |jam — jim — |jam] + [j1m]|
= |(jam — |j2]m) — (jim — Ljam])| < 1/k. 0
Before continuing, we define X to be the point with coordinates (a,b), Y
to be the point of intersection between ! and the line Re z = q, and 1,15 to be
the rays bounding I'V. Owing to the fact that Im X = b while ImY = am, we
find that the distance XY < rv/3/4. We will now show that d(Y, ) < r/3/4.
As we have noted, m < 1/1/3 and therefore the distance Y < 2a/v/3 < 8/(3r)
due to the restriction on a. From this, we find that d(Y, ) < 8sin(9/2)/(3r).

Taking
¥ = 2 arcsin (ﬂ%%—i—;—lﬁ) ,
we obtain
s (_zg) _ 3vB(d+1)°
2 8|P|2
_ 3v3-22(d+1)?
8- 4|P|2
_3V3 <2d+2)2 3
32\ |P] 32

resulting in d(Y,{!) < rv/3/4. It follows that
rv/3

7

In the next place, denote by C the circle with radius r which is centered
at X. Because d(X,l;) < rv/3/2, we know that each [; subtends an arc of
C of measure > arccos v/3/2 = m/3. Further, due to the fact that a, the z-
coordinate of X, is > 1, while 7 is less than 1, C does not contain the origin
and creates two regions within IV which are separated by a distance larger
than r.

If we now return to our original coordinate system, we are guaranteed a
moat of width R = 2d + 2 which contains at most six primes and separates I
into two pieces. Because these six primes are all located on a circle of radius 1,
we are guaranteed to have a region of width greater than d which contains no
primes. Thus, no d-walk can exist on our angular sector giving us the desired
result. O

d(X,I)) < XY +d(Y, 1)) <



PRIME WALKS IN CYCLOTOMIC FIELDS 6

Just as in the Gaussian integers, we proceed by taking unions of angular
sectors in Z[w]. The next theorem is our extension to the Eisenstein integers
of Loh’s result about angular sectors in the Gaussian integers.

Theorem 2.5. Given a step-size d and an ag € Z[w], there ezxists a union S
amonyg the collection C of unions of nonoverlapping angular sectors centered at
ap such that S is a union of n sectors with angular measure v, ng = 27 — &
for any € > 0, and no d-walk on the Fisenstein primes exists on S.

Proof. Our goal is to demonstrate that for each ¢, 0 < e< 1, we can find
an S, consisting of n angular sectors of measure ¢ and on which no d-walk
exists, so that ny/2r > 1 —e. Due to the symmetry of the lattice in Z[w], we
may restrict ourselves to the interval [0,7/6]. In the first place, we will choose
only among angular sectors for which we have a moat that is sufficiently far
from . By doing so, we may ensure that the separation between angular
sectors at the point that a moat does arise is sufficiently large to prevent a
step across angular sectors.

We will being applying Theorem 2.3 to walk with step-size d’, and for this
reason, we will use a prime notation for the conclusions of Theorem 2.3. We
know that we will have a moat of width d’ whenever we have a disc of radius
v’ = 2d’ + 2 centered at the point o’ + b'w. As a result of the symmetry which
is exhibited by Z[w], we have the restrictions 0 < ¥ < a//v3 < 2a//3 and
d < K =4/(r'+/3). In order to ensure that the desired moat is sufficiently far
from ap, we place a further restriction on o/, the z-coordinate of the disc. In
particular, we will not include angular sectors for which @’ < 1k, where &;
is yet to be defined. Because the point a’ is determined by the slope of the
angular bisector, m’, we use to place a restriction on a’. That is, we exclude
slopes m’ for which there exists an ¢/, b’ satisfying Lemma 2 with ¢’ < 14", To
accomplish this, we rewrite our restriction as jm’ —¥ /a’| < 1/(a’k’). Using this
restriction, we can determine which values for m’ within the interval [0,2/3]
are admissible.

It turns out that we will be excluding subintervals from [0, 2/3] for each
value of a’. Because a’ must be an integer, we will determine the lengths of
the intervals which are excluded for each a’. For ¢’ = 1, we must have that
b = 0 and thus |Jm’| < 1/(a’k’). This results in the excluded interval [0, 1/k'],
having length 1/k’. Because any other (a/,¥’) pair with & = 0 will result in a
subinterval of [0, 1/k'], we need not consider & = 0 for o’ > 2. Continuing, for
each ¢’ > 2, we may choose any ¥ from among {1,2,...,[2a'/3]}. Since each
(a', V') pair will yield the excluded interval ['/a’ — 1/(a’E"), ¥ /o’ + 1/(a'K)],
we obtain an excluded interval of length 2/(a’k’). Thus, the combined length
of excluded intervals for each o’ is

2a’ 2 4

ST ar
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Although we will have some repetition, for instance the interval corresponding
to (4,2) will be a subinterval of that corresponding to (2,1), we will still be
excluding a combined length of < 4/(3k’ for each o/ > 2. Since the length of the
interval for o’ = 1is 1/K/, the total combined length is < 4/(3k') - g1k’ = 4¢1/3,
as we are excluding intervals with o’ < g1k’

In spite of the fact that we have been working with intervals of slopes
while we are actually interested in angular intervals for arctanm/’, we are still
guaranteed a total length of < 4¢1/3. To see this, we note that

darctanm’ 1
= <1
dm’ (1+m?2) —

and thus the interval lengths will be decreased as we take the arctan. Setting
€1 = em/16 yields at most /2 for the ratio of excluded intervals to the total
interval 7/6. Thus, we have at least 1 — &/2 of the original interval remaining
from which to choose arctanm’ and gurantee that |a’| > €1k’. This achieves
our first objective.

We now wish to ensure that our angular sectors are separated by gaps of
width at least d/|P(d')| when we are at a distance of €1k’ from ap. This will
be accomplished by using a large value for d’ relative to d. To proceed, we
wish to find an upper bound for the ratio of the size of a gap to the size of a
sector. From Theorem 2.3, we know that a lower bound on the sector size is
¥s = c1d?/|P(d)|?. On the other hand, the gaps must have a width that is
d/|P(d')| at a distance of £;k’. This yields the bound ¥4

2 arcsin (d/(ZIP(d’|))< d _ odd _ od  2d+1
1k’ [P(d)|e1k’  |P(d)ler  |P(d)|er  |P(d)]

C3dd’ — 9

|P(d)]2er ¢

on the size of the gap, and the upper bound

9y  csdd ad? \7'_d ¢

s [P(d)Per (IP(d’)P) Td e
on the ratio of gap to sector size. This ratio can be made less than ¢/2 for
each value of d by choosing d’ sufficiently large.

We now create our union of angular sectors. We select angle bisectors
from [0, 7/6] to place in our set S,. Each bisector that we add removes at most
¥ + ¥4 from what remains of [0, 7/6]. At the same time, each bisector adds a
measure of at least ¥, to our set S. Due to the fact that we begin with 1 —¢/2
of [0, 7/6] to choose from, we end up with sectors comprising at least

(1_3) 031-9:199 > (1"%) 1+ls/2 >1-e

of the interval [0, 7/6]. ]
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3. A walk on the complex primes

J. Haugland [6] formulated a heuristic argument that a prime walk in Z{w],
w = e™/3 does not exist. Although not a formal proof, it seems likely that this
argument would hold and thus show that no prime walk exists. In this section,
we present the argument and work out the specific details. The argument is
intended to show the likelihood of the hypothesis in Theorem 3.1, that is, for
any M there is a T satisfying statement (1) below. We denote the norm of a
v € Zw] by N(7). For vy = a + bw, N(y) = vy = a® + ab + b%.

Theorem 3.1. If for any M, there exists a positive integer T such that
If (ﬁj)ﬁl is a sequence of Eisenstein integers
for which lim|3;| = oo and ged(N(3;),T) =1 for all j, (1)
then |B3;41 — B5] = M for infinitely many j.

then for any infinite sequence of primes (v;)2,, v; € Zlw|, the difference
sequence Av; = |1 — w5l is unbounded.

If such a T exists, this theorem would then be applied to the concept of a
prime walk by letting M be a bound on step-size. Then for any step-size, any
sequence which satisfies the hypothesis of statement (1) above must contain
infinitely many steps of size greater than M. This implies that every prime
sequence, and thus every prime walk, has an unbounded difference sequence.

Proof. Assume the above hypothesis and let our sequence (3;) be com-
posed of primes ¥ € Z[w] such that lim|3;] = oo and N(B;) > T2 for all
J. Because our sequence consists only of primes 3, N(8;) = por p?, for
some rational prime p > T ([5] Proposition 9.1.2, pg. 110). In either case,
ged(N(8;), T) = 1 and (8;) satisfies the given two conditions. Thus |8j41 —
331 > M for infinitely many j.

Any sequence of primes (v;) for which lim|;| = co must have a member
from which point on N(v;) > T. From this member on, () is a sequence
satisfying the hypothesis of statement (1). There must then be a v for which
|41 — ¥;| > M. This can be accomplished for any M and the difference
sequence Ay = |¢;41 — ;| must be unbounded. O

The important piece of (1) which we will be working with is the require-
ment that ged(N(v),T) = 1. What is important about these v is that they
exhibit a large amount of symmetry in Z[w| which we will be exploiting. In
particular, we will consider the triangle, which we will denote by 7, formed
from the line segments stretching from the origin to T, T to Tw, and Tw back
to the origin. We will now show exactly how this symmetry will help us.

Lemma 3.2. The distribution of v with ged(N(v),T) = 1 is symmetric with
respect to the transformations v — yw, vy — v+ T, and v — 7.
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Proof. What is important ig that for v = a +bw, N(vy) = a® +ab+b?, and

we have |

N(yw) = (=) + (~=b)(a+ b) + (a + b)? = a® + ab+ b = N(v)
N(a+bw+T) =a%+ 2aT + T? + ab + abT + b* = N(a + bw) (mod T)
N®) = (a +b)? + (a +b)(=b) + (b))% = a® + ab+ b* = N(v)

Further, because N(v7) — (N(y)'=T) =T, ged(N(v),T) = ged(N(y) — T, T).
([3] pg. 7, Proposition 1.3) Thus, the ged function is unchanged under the
transformations vy — yw, v — v+ T, and v — 7. O

On account of this lemma, we see that we can rotate T by 7 /6, reflect 7
over the real axis, and translate 7 to the left or right by 7" without changing
the arrangement within 7" of v for which ged(N(v),T) = 1. Thus, the plane
consists entirely of copies of 7 and thus any result established for 7 is appli-
cable to the entire plane. In particular, we will use the fact the density of the
« for which ged(N(7y),T) = 1, that is, the ratio of the number lattice points
with norm relatively prime to T to the total number of lattice points, may be

made arbitrarily small. !
|
Proposition 3.3. Given any € > 0, there exists a positive integer T such that

the density of integers v € Z|w] for which ged(N(7y),T) =1 1is less than .
|

Proof. We now wish to determine the density of v € 7 which have a norm
relatively prime to T'. We will achieve this result by establishing the density of
v € T for which ged(N(v),T) # 1. Because the ged(N(7),T) # 1 if and only
if there is some rational prime p which divides T satisfying ged(N(v),p) # 1,
we restrict our attention to ged(N(v), p)

Let p = 1(mod 6) be a rational prime and note that for some prime
Y € Zw], p = ¥ ([5] Proposition 9.1.4, pg. 110). For gcd(N(7),p) # 1, we
have that N(vy) = px for some positive integer 2. Then ¥z = ¥ and either
Pl or yly. |

Subsequently, denote by S the set of all v € Z[w] with N(y) < T and
denote by S’ the set consisting of v € Z[w] satisfying N(v) < T/p. As we
have seen, if ged(N(v),p) # 1, then either Y|y or ¥|y. Each member of S not
relatively prime to 9 will be of the form ¥a, o € 5.

What is important is that'S and S’ are the ellipses given by

1 |
T(mz +zy+y°) =1,
-5:(962 +zy+17) =1,

|
respectively and the sets cover areas of 7T'\/4/3 and 7 (7'/p)+/4/3 ([8] Equation
92). We now show that the number of lattice points contained in S and S’ is

asymptotic with the area of the sets. We cover each lattice point with a square
|
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of side 1. Then the total area covered by the squares is equal to the number
of lattice points covered. Now, we know that the whole area of the squares
is not quite contained in the ellipse as some of the squares will both inside of
and outside of the ellipse. However, if we decrease the length of our major
axis by v/2, the we will have none of these partial squares in the ellipse. On
the other hand, increasing the major axis by v/2 will include all of the partial
squares. Thus, the area of the squares, and thus the number of lattice points,
lies between the area of the contracted ellipse, 7(T — v/2)b, and the extended
ellipse, 7(T + v/2)b, where 2b is the length of the minor axis. Taking the ratio
of these values with the original area yields
(T — V2)b
Th

————" < Area of squares <
™

(T + V2)b

nTd
Further, letting T approach infinity and substituting the number of lattice
points for the area of the squares, we arrive at the inequalities

lim (1 - g) < jim Foflattice points . (1 + —T@) .

T—o0 T—co Area of ellipse T—o0

Both the left and right hand limits are equal to 1 and thus the number of
lattice points is asymptotic to the area of the ellipse.

We now show that for each prime p which divides T, the density of v which
are relatively primes is (1 — 1/p)2. First, the ratio of the areas of the ellipses,
1/p, will be the density of v which are not relatively prime to ¥. Thus, the
density of v which are relatively prime to v is 1—1/p.The same is true for ¥ and
as a result the v which are relatively prime to both 9 and ¢ will have density
(1 —1/p)2. That is, the y for which ged(N(v),p) = 1 have density (1 — 1/p)2.
Because we are interested in the general property ged(N(7y),T') = 1 rather
than ged(N(7v), p) = 1, we must determine the density of v which are relatively
prime to a composite number 7T'. This density will be equal to the product of
the densities of v such that ged(N(v),p) = 1 for each p|T. For this reason, we
will examine the product of densities taken over primes p = 1 (mod 6), noting
that the primes p = 5 (mod 6) all lie on the real line.

Further taking the log of this product, we find that

og( [T a-37= 3 2logi-3)

p=1(mod 6) P p=1(mod 6)
p prime p prime

11 1
= —2(= 4 ==+ == ... 2
> Ctoztas) B

p=1 (mod 6)
p prime

2
< :>: -
p=1(mod 6) p

p prime
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Combining this result with a theorem of Dirichlet, which says that that > 1/p,
taken over the primes p = 1({mod 6), diverges ([4], pg. 34), we find that
[1(1 — 1/p)? — e~* = 0. The density of y which satisfy ged(N(v),T) can be
made arbitrarily small by taking the product over sufficiently many primes.
For this reason, we let T' = n! for a sufficiently large n. O

What we are trying to do in this argument is show that there are large
regions which are free of any primes. We have established that in a large
enough triangle 7, we can ensure that our v are sufficiently spread out. The
next step is to look at the integers which are close to each 7.

Proposition 3.4. Asymptotically, there are mr%.\/4/3 lattice points within a
distance r of a given lattice point.

Proof. Consider D(7;+/3), the closed disc of radius /s centered at v. We
will determine the longterm average for the number of lattice points which lie
on a circle of given radius. Let the number of lattice points contained within
the disc D(v;v/1) be a;. Further, if we denote by a,+1 the number of lattice
points which are in D(v;4/n + 1) — D(v; v/n), the number of lattice points in
D(v:/s) is 354 ai.

In order to proceed, center a hexagon with inradius 1/2 at each lattice
point in the disc. These hexagons will have area v/3/2 ([9] Equation 4), and
because each hexagon corresponds to a unique lattice point, the area covered
by the hexagons will be equal to the number of lattice points in the disc
multiplied by v/3/2. Near the edges of D(v;+/3), there will be hexagons which
extend outside of the disc. Because the inradius of the hexagons is 1/2, we
find that the circumradius is 1/ v/3 and two points in a hexagon are within a
distance of 2/v/3. Thus, increasing the radius of the disc by 2/v/3 will ensure
that all partial hexagons within the original disc will be completely contained
within the enlarged disc, D(7;+/s + 2/v/3). Similarly, decreasing the radius
by 2/ V3 will result in a disc which completely excludes any partial hexagons
within D(v;+/3). The total area of hexagons within D(y;r) must lie between
the areas of the enlarged and contracted discs, m(s — 4+/s/ V3 + 4/3) and
7(s +4v/3/V3 + 4/3).

We observe that the area of the hexagons is equal to (v/3/2) 3_5_; a;, while
the area of the original disc is 7s. Using this, we find that the ratio of hexagon
area to the area of the original disc must satisfy

T 4/5 4 V3 < T 4 4
—(s-= o)< —) ai<—(s+—=+3]-
78 (s V3 + 3) 27s ;az s (s V3s 3)
In particular, as the radius /s — oo, and consequently s as well, the above
inequalities become

-1 8
4 4 4 4 4
lim (1———=+— Ii 84/ = < lim (1—-—=+—]).
Jm ( \rgﬁgs)n&w(ﬂ*\@) Se< m (- 755

i=]
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However, both the left and right hand limits are equal to 1 and the middle limit

must be as well. In other words, asymptotically, there are Zil a; == mr3/4/3
lattice points in a circle of radius . (See [3] Exercise 9.11, pg. 300) o

All of these pieces are then put together into a coloring argument. In the
first place, the v for which ged(N(7¥),T) = 1 are colored red, while the rest
on Z[w] are colored white. From the white numbers, we pick out all numbers
which are at least » = (1/2)y/m? + 1 from any red numbers and color them
blue. The remaining white numbers, as well as the red numbers, are then
colored yellow.

What we obtain is a yellow disc of radius r centered at each v. As we have
seen, there are A ~ 7rr2\/4—/§ lattice points in each disc. Then the density of
blue numbers will be 1 — Ad, where d is the density of red numbers. As noted,
we can make d arbitrarily small and thus bring the density of blue numbers as
close to 1 as we would like.

In our triangle 7, we create an equivalence relation. Let v; ~ 72 if
we have a monochromatic chain of 3; with endpoints 71 and -2, such that
I,Bn—q-l - ,-Bnl =1

Lemma 3.5. There is at least one equivalence class which touches all three
edges of the triangle with vertices at (0,T,Tw).

Proof. Assume, to the contrary, that there are no equivalence classes which
touch all three edges of the triangle 7. There must be an equivalence class
touching at least two edges, as any of the three corners satisfies this property.
As a result of the symmetry exhibited by 7, given a class touching two given
edges, there will be a copy of the class touching any other two edges. Due to
this and the fact that the classes cannot cross, it makes sense to talk about
the equivalence class closest to a third edge. Let C, which we will arbitrarily
color yellow, be the equivalence class touching two edges and closest to a third.
Denote by Ly, L» the edges which C touches and by L3 the edge which C does
not touch.

Let z1, 2 be the points of C contained in L, L2, respectively, which are
closest to L. Similarly, let y1, y» be the blue points which are one unit further
along L1, Ly than x1,22. We now partition the vertices into two sets: V; = C
and V¢ =7 — C. Then the edge set E = E(V}, V,€), which contains all edges
between a vertex of V] and a vertex of VlC, will separate V; from Vlc. Observe
that all edges must connect a yellow vertex to a blue vertex. Define the set V5
to be the set of blue vertices to which an edge e € E(V4, V€ is incident. Note
that since G[7 — V5] contains no edges e € E(V1, V,©), V4 is a separating set.
From V; we select a set Vj such that 4, y2 € V4 and Vy is minimal separating
set of V4, V.

We now form the subgraph H = G[V,] which is either connected or not.
If H is connected, then we have found a blue class extending from y; to y»
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which separates C from L3z. For tlhis reason, we assume that H is not connected.
Because H is minimal, each vertex in H may have degree at most two. Because
H is disconnected, as we traverse H beginning at y; there must be a first
vertex u which has degree one. ' What is important is that in G each vertex
surrounding v must either be in V3, V3, or 7 — V4 — VJ. We know that one
vertex, v is a member of H. If all of the remaining vertices were contained in
W1, V3 — {u} would be a separating set since these vertices are connected to
the same vertices in G[7 — V3] as G[{u}UT —V;]. This fact is in contradiction
to the assumption that V; was minimal.

Thus, beginning with v and moving counterclockwise around u, we must
come across a first vertex, vy which is not a member of V4 and a last vertex
vy, which is not a member of Vi. Neither the point preceding v; nor the point
succeeding v, may be contained in V¢ — VJ. For this reason, they must both
be in V3, and, since the only adjacent vertex contained in V; is v, the two
points must coincide. But then all of the vertices around u which are not v
must be members of Vlc - V2"i Just as with V3, this cannot happen and we
have reached a contradiction. H must be connected. O

|
Lemma 3.6. There is at most one equivalence class which touches all three
edges of the triangle with vertices at (0, T, Tw).

Proof. We begin by assuming that there is more than one equivalence class
which touches all three edges. Let Cy be a class which touches all three edges
and let C) € Cp be a minimal subset. That is, let C} be such that C§ touches
each edge, but no proper subset of Cj touches all three edges. Because Cj
touches all three sides and is a minimal subset, it has at least two endpoints,
x1 and 29 which are on distinct edges, E; and E;. Now, we continue Cj outside
of the triangle 7 so that we form a simple closed curve I'y containing the path
from x; to z2 contained in Cj. Now, because we have at least two equivalence
classes which touch all three edges, we consider a second equivalence class Cj,
as well as a minimal subset C]. Further, we choose points y; and y; which lie
on E; and E» and continue our class into a simple closed curve I'y, which does
not intersect I'g, as above. '

One of the curves I'g and I'y must contain a point which is closer to E3
than any point on the other curve. Without loss of generality, we will assume
that I'; is closer. Because the curves cannot intersect, I'g cannot cross I'y at any
point. Any chain from Ej3 to I'o must cross I'y an odd number of times. Thus,
by the Jordan Curve Theorem, ‘these two points must be in unique components
of the complement of I';. (See [1], pg. 334) Thus, I'y does not touch all three

edges and we have a contradiction. O
|

Proposition 3.7. There is emactly one equivalence class which touches all
three edges of the triangle with vertices at 0,7, Tw).
|
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Because we are able to ensure that the density of blue numbers is arbi-
trarily close to 1, it would make sense that the equivalence class which touches
all three edges is blue. If we assume that this is true, then we are able to show
that there does not exist a prime walk in Z[w]. As we have seen, reflections,
rotations, and translations do not alter the distribution of yellow and blue
numbers.

Theorem 3.8. If a blue equivalence class touches all three edges of T, then
one cannot walk to infinity on the yellow vertices.

Proof. We begin by coloring one side of 7 purple, one side green, and one
side orange as in Figure 1. Now, let 7’ be the result of rotating 7 through
an angle of 27/3. If we further translate 7 by T, the purple line will coincide
with the green line, the green line with the orange line, and the orange line
with the purple line. However, we know that these translations do change
the distribution of v with norm relatively prime to 7. Thus, these lines must
be colored identically in our blue and yellow coloring. It follows that the
blue classes touching all three sides in adjacent triangles will line up and be
connected to one another. In this way, we can tile the plane with copies of
7T and end up with a very large blue equivalence class which surrounds all of
the yellow classes. Because each prime, other than the finitely many less than
n, is surrounded by yellow numbers to a distance r, the distance between two
yellow classes is at least v/4r2 — 1 = M. Thus, one can not step across the
large blue equivalence class from one yellow class to another. O

/N
|

/

Figure 1: Triangle 7 and its image 7’ before a translation by T

4. Another walk on the complex primes

We will once again exploit the similarities which exist between Z[i] and
Z[w}, this time in order to extend Haugland’s argument to Z[¢]. Just as in our
transition from Theorem 2.1 and Theorem 2.2 to Theorem 2.3 and Theorem
2.5, we can apply the same basic ideas to Z[i] as we applied to Z[w]. The only
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things that change are the numerical details and for this reason, we present
only the relevant portions of the argument.

Lemma 4.1. The distribution of v with gcd(N(v),T) = 1 is symmetric with
respect to the transformations vy — vi, vy —» v+ T, andy — 7.

Proof. We wish to consider the distribution of z € Z[i] for which
ged(T, N(z)) = 1. In the first place,

N(zi) = (=b)? + (a)? = b? +a® = N(z)
N(a+bi+T)=(a+T)%+ (b)* = a® + 2aT + T? + b* = N(a + bi) (mod T)
N(Z) = (a)?* + (-b)? = a® + b*> = N(z).

Further, these transformations, {x — zi,z — z + T,z — T}, generate the
group of rigid transformations stabilizing TZ[¢]. Consequently, we may restrict
our attention to the triangle with vertices 0,7, T + T'. O

Proposition 4.2. Given any € > 0, there erists a positive integer T such that
the density of integers v € Z|w) for which ged(N (), T) =1 is less than ¢.

Proof. We now wish to show that the density of z € Z[i] for which
ged(T, N(z)) may be made arbitrarily small. In order to begin, we first note
that for p = 1 (mod 4), p is representable as a sum of two squares by Theorem
9.1.[3] .-, p = a® + b = N(a) for some « € Z[i]. Moreover, N(a) = o@ and as
a result p = o@ is not prime in Z[i]. However, by Thm 9.9, o, as well as @, is
a prime.[3] In conclusion, we find that if p = 1 (mod 4), then in Z[4], p is the
product of a prime and its conjugate, both of whose norms = p.

Subsequently, let us consider the set of elts whose norm is < T and write
p=9. If z = v, then N(z) = N(7)N(¢) = N(y)p and ged(p, N(z)) # 1.
The same result holds for ¢. On the other hand, if ged(p, N(z)) # 1, N(z) = ap
and 7 is divisible by either ¥ or 3. Thus, ged(p, N(z)) # 1iffz = yporz = v¢
for some 7y € Z[w]. With this in mind, we observe that each element with norm
< T which is a multiple of ¢ arises as the product of ¢ with an element of
norm < T'/p. Because the area of the circle containing the elements with norm
< T/p is w(y/T/p)?, while the circle with radius T has area 7(v/T)2, we find
that the ratio of multiples of 9 to total elts is 1/p. We find the same result for
the multiples of ¥. Thus, the density of z with ged(p, N(z)) =1is (1 -1 /p)2.
The result follows in the same way as for Proposition 3.3. O

Theorem 4.3. If a blue equivalence class touches all three edges, then one
cannot walk to infinity on the yellow vertices.

Proof. For Zli], we create the triangle 7y formed by the line segments
from 0 to T, from T to T/2 + Ti/2, and from T/2 + T%/2 back to 0. In order
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to continue, we assume that we have a blue class C touching the three edges
of our triangle 7;. Before proceeding, we denote the edge connecting 0 to T
by E4, the edge from T to T/2+ T%/2 by Fs, and the remaining edge E3. We
now create the following images:

Figure 1: (left) The images 77, 73, and 73 formed from 7o

Figure 2: (right) A transformation showing that F2 and E3; must coincide

(1) 7y is the image of 75 under multiplication by 4 and addition by T,
(2) 72 is the image of 77 under multiplication by 7 and addition by T,
(3) 73 is the image of Ty under conjugation and multiplication by .

Taking 7" = Ty U T, U T3 UT;, we have a square composed of four triangles.
Observe that the image of C contained in each triangle will match up along the
internal edges of the square and will also touch the external edges in the same
relative positions. To see this, we begin with 7y, multiplying twice by 4, conju-
gating, and translating by 7. This serves to swap edges F» and E3. But these
transformations do not effect the arrangement of y such that ged(N(y),T) = 1.
Thus, the blue equivalence class must touch E3 in the same place as it touches
Ej3 s0 that the images will line up properly. For this reason, we may continue
the blue equivalence class from 7j into the other three triangles. In the same
way, we have a blue equivalence class C’ which touches all four edges of the
square in the same places. We may now apply the appropriate transformations
to obtain a tiling of the plane with such squares. As noted, the class ¢’ will
touch the edges of each square in the same relative position and thus we will
obtain a blue equivalence class which surrounds all yellow numbers. O
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5. Higher cyclotomic fields

We conclude with an investigation of higher cyclotomic fields. In partic-
ular, we will focus on Z[(], where ¢ = e2™/5, although the same general idea
extends to the other cyclotomic fields. Once we get beyond the Eisenstein and
Gaussian integers, the higher cyclotomic fields take on a much different struc-
ture. They no longer have the nice lattice shape of Z[w] and Z[i], due to the
greater flexibility allowed in taking linear combinations of the roots of unity.
In fact, I show that integers in Z[(] are dense in C. As we will see, the lack of
lattice structure seems to admit prime walks into its structure.

Vs- 157

® 05k b oS5
F
i

Lako i 1 . - e —

L L 1 L @ a
-5 ~10 0.5 s X L5 ~15 ~10 .5 05 10 15

Figure 1: ¢ + ¢® breaks from the lattice established by the fifth roots of unity.

Proposition 5.1. Z[e*"/%] is dense in C.

Proof. We are able to exploit an identity involving the Fibonacci numbers
F,. First, we find

1 VBl 8
¢ = 5 —2cos<5>

= gn +isin sm + cos g — i8in 8n
“O\B ) TS 5 5

. , . . 1 4 €87i/5
_ 8mif5 —8nif5 __ 8mi/5 278/5 __
=e€ +e =€ +e __—_6‘27”'/5 .

Thus, we have the equality ¢~ = (14 e57/®) /e~2i/5_ But then we know that
assymptotically, ¢~ is F,_1/Fy. That is,

61ri/5) —27i/5

lim F,(1+e = lim F,_ie
n-—o0 n—co

And from this, we find
lim (Fn — Foe™/® 4 Fn_1e3’”'/5) =0,

n—o
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It follows that for any v € Z[(] and any ¢ > 0, there exists an n such that
Y= (v + Fo— Fpl + Fpo1 %) < e 0

Although we do not possess a proof, it seems plausible that the other
cyclotomic fields would be dense as well. If this is the case, then it seems a
further possibility that the primes may be dense in these fields, and, conse-
quently, that a prime walk of any step size would be admissible. I have found
some computational evidence that this is the case in Z[¢]. Using the above
proposition, we see the the integers

(a+ Fp)+ (b= F)¢+ e+ (d+ Fo_)C3 (1)

are dense around a+b¢ +c(?+d¢?. Thus, if (1) is prime for infinitely many n,
then we will have a dense set of primes around a+b¢ +c(? +d¢3. In particular,
I have found at least three such n for all integers with coordinates less than 10.
Most of the integers have many more n for which (1) is prime. Although this
is by no means solid evidence of a prime walk in Z|(], it does seem to indicate
that one may be possible.
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