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Abstract

This paper gives an introduction to Temperley-Lieb algebra that is easily
accessible to undergraduates, presenting TL diagrams, the method for mul-
tiplying the diagrams, and the properties of the multiplication that it is nec-
essary to preserve in a representation. The paper also gives a method for
finding representations of the TL monoids (sets of diagrams classified by
number of vertices) using Young tableaux, and shows that these represen-
tations are all of the irreducible representations. While ideas of Hecke al-
gebra imply the fact that this method produces representations, this paper
provides a direct proof, strictly within the field of representation theory. It
also introduces some conclusions about the rank of a diagram and its action
on the tableaux.
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Chapter 1

Introduction

In 1971 Harold Temperley and Elliot Lieb published a thirty page article,
Relations between the ‘Percolation” and ‘Colouring” Problem and Other Graph-
Theoretical Problems Associated with Regular Planar Lattices: Some Exact Re-
sults for the ‘Percolation’ Problem [7], in which appeared what was later named
the Temperley-Lieb algebra. As both were mathematical physicists, their
interest lay in using the algebra for applied mathematical endeavors, such
as finding results in statistical mechanics. The Temperley-Lieb algebra has
enjoyed a wide range of uses in the applied sciences. Its appeal to math-
ematicians, particularly to those interested in algebra and combinatorics,
arises from its nice generators and generator relations and its connection to
the ubiquitous Catalan sequence.

In this paper, we present a method for finding matrix representations
of the Temperley Lieb algebra using combinatorial objects called Young
tableaux. This method was inspired by the representation theory of the
Iwahori-Hecke algebras, which are quantum generalizations of the sym-
metric group. Like the symmetric group, the Iwahori-Hecke algebras have
representations that are indexed by partitions, spanning modules whose
bases are indexed by Young tableaux. There is also a homomorphism [3]
from the Iwahori-Hecke algebras to the Temperley-Lieb algebras (Section
4.2, which we use to adapt the representation theory of the Iwahori-Hecke
algebras to the representation theory of the Temperley-Lieb algebra. By
looking at the “seminormal representations” of a Iwahori-Hecke algebra
at the level of Temperley-Lieb algebra, we come up with our method for
finding representations of Temperley-Lieb algebra. )

After introducing our method, we prove its successfulness directly with-
out using results about the Hecke algebras. We show that the resulting
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matrices are in fact representations of the Temperley-Lieb algebra, that the
representations are distinct from each other, that they are irreducible, and
that we can find every irreducible representation using this method.

It should be noted that these representations are isomorphic to repre-
sentations found using different bases for the underlying vector spaces.
The representations found from our method are the “seminormal” repre-
sentations, a term dating back to when Alfred Young used Young tableaux
to index the underlying vector spaces for symmetric group representations.



Chapter 2

Temperley-Lieb Diagrams

2.1 What the diagrams look like

Temperley-Lieb diagrams are graphs composed of two rows of n dots and
the edges that connect each dot to exactly one other dot. TL, refers specif-
ically to those diagrams that have n dots in each row. The two rows are
aligned so that one row is directly above the other. A matching can be
between two dots in the same row or one dot from each row. In TL, dia-
grams, edges cannot cross, nor can the fall below the bottom row of dots or
rise above the top row. In other words, the edges cannot leave the rectangle
defined by the two rows of dots. Figure 2.1 illustrates all of the diagrams in
TL3 and Figure 2.1 illustrates diagrams on six vertices that are not in TL3.

TR 2T XN A

Figure 2.1: Diagrams of TL3
R
L

Figure 2.2: Not TL3 diagrams
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Figure 2.3: Diagram of TL,
« e
Figure 2.4: Diagrams of TL,

2.2 The number of diagrams

For each TL,, there are a finite number |TL, | of diagrams. The most natural
way to find the number of diagrams in TL, is recursively. Begin with the
two rows of dots. There are n choices for which dot to connect to the first
dot in the top row. To see this, consider labeling the dots in a clockwise
direction.
1234

®* o o

[ ]
e & o o
87 65

Figure 2.5: Labeled dots of TL4

Odd numbered dots can only connect to even numbered dots and vice
versa. This is due to that fact that each edge partitions that diagram into
two parts. If an odd point connected to another odd point, then there
would be an odd number of dots on each side of the edge. Pairing off
the remaining dots would mean that at least one pairing would have to be
between dots on both sides of the original edge, meaning that the edges
would cross.

There are n choices for connecting point 1 to an even point, and this
edge partitions the diagram into two parts. If there are k dots on one side
of the edge, then there are 2n — 2 — k dots on the other side. The number of
diagrams in TL, with this edge is | TLi/2| * | TL(2p—2#) 2|-
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1234TL2

87 65

The labeled dots above show the skeleton for TL4. To find |TL4| recur-
sively, it is necessary to know the number of diagrams in TL, where n < 4.
There are five diagrams in TL3, which are listed above. There are two dia-
grams in TL;, one where dots that are in the same row are connected, and
one where dots aligned vertically are connected. There is only one diagram
in TL;, connecting the only two dots. To make the recursive property work
properly, set |TLg| = 1. ’

|TLs} = |TLo||TLs| + |TL1||TLa| 4 |TLo||TLy| + |TLol|TLs|  (2.1)
1%x54+1%x24+2%x1+5x1=14

This recurrence relation is familiar from combinatorics as the Catalan
numbers. Equation 2.2 gives a well known non-recursive way of finding
the Catalan numbers. |TL,| = C,.

_ ()
i (n+ 1)t

Knowing the number of diagrams in TL, becomes useful later on for
demonstrating the irreducibility of the representations that are the main
subject of this paper. For now, it gives us a way to check that we have
found all of the diagrams in TL,.

Cn 2.2)

2.3 Multiplying the diagrams

Diagrams in TL, can be multiplied by stacking the diagrams vertically and
following the edges. The paths should begin at either the top row of the top
diagram or the bottom row of the bottom diagram. The rows in the middle
meet up so that when a path leads to the ith dot in one of the middle rows,
the path continues from the ith dot in the other of the middle rows.

As seen in the example of multiplication in TL4, there are sometimes
loops that are not part of a path beginning at either the top or the bottom.
These loops do not become part of the product diagram, although there
will be a way of counting the dropped loops in the TL,, algebra.
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Figure 2.6: Multiplication in TL3

o -

Figure 2.7: Multiplication in TL,4

Multiplication in TL, is associative. Multiplying a string of diagrams is
equivalent to stacking a sequence of diagrams and following paths begin-
ning at the top row of the top diagram and the bottom row of the bottom
diagram. However, multiplication in TL,, is generally not commutative.
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Figure 2.8: Multiplication in TL;

Figure 2.9: Multiplication of diagrams is associative
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oi- e oy ]

Figure 2.10: Multiplication of diagrams is not commutative

2.4 Identity, rank, and lack of inverses

There is an identity diagram in each TL,. This diagram connects every
dot in the top row with the dot directly under it in the bottom row. The

111

Figure 2.11: Identity Diagram in TL3

identity diagram has the same properties as the identity element in any
group algebra. If A is any diagram in TL, and [ is the identity diagram in
TL,, then Al = IA = A.

N
/» _ I I I _ v/-
= 3 =
IR
« e
Figure 2.12: Multiplying by the identity diagram

The identity diagram is also significant because of its rank. The rank of
a Temperley-Lieb diagram is the number of edges that connect the top row
with the bottom row. The identity diagram is the only diagram in TL, with
rank n. When multiplying diagrams, the product diagram cannot have a
rank that is any larger than the minimum rank of the multiplied diagrams.
If the rank of a TL, diagram is k, then that leaves n — k dots in the top row
that are connected to other dots in the top row, and equivalently leaves
n — k dots in the bottom row that are connected to other dots in the bottom
row. Suppose this diagram is the first in a sequence of multiplied diagrams.
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Then the connections among the n — k remaining dots in the top row move
directly into the product diagram. Likewise, if this diagram is the last in
a sequence of multiplied diagrams, then the connections among the n — k
remaining dots in the bottom row move directly to the product diagram.

\\'\_)/'
oo o _ I a2t
e
I / 'axe
o« e
Figure 2.13: Multiplication and rank

The diagrams multiplied in figure 2.13 are of rank one and three, and
the product diagram is of rank one. In order to better see the relationship
between the rank of the multiplied diagrams and the rank of the product,
consider just those edges that were moved directly from the multiplied di-
agrams to the product diagram.

i P

P2

Figure 2.14: Direct edges only

The edges in the top row of the product in figure 2.14 were moved di-
rectly from the first diagram, and the edges in the bottom row of the prod-
uct were moved directly from the second diagram. This leaves exactly one
dot remaining in the top row which could connect to the bottom row.

The rank of the product diagram is not necessarily equal to the mini-
mum rank of the multiplied diagrams. The rank of the product can be less
than either rank of the multiplied diagrams. Figure 2.15 shows how this is
possible.

The examples and arguments in this section have only shown that the
rank cannot increase when two diagrams are multiplied, but the associative
property makes it easy to extend this proof to cover multiplication of any
number of diagrams. Multiplying the first two diagrams in a string yields
a diagram of rank less than or equal to the minimum rank of the first two
diagrams. Multiplying the result by the third diagram cannot yield a result
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Y1 e
i

Figure 2.15: Rank decreases
o
s _ I y
g -
I / « e
« e
Figure 2.16: Rank stays the same

with a higher rank. As each diagram is multiplied in, the resulting rank
stays constant or decreases.

The idea of rank provides a straightforward proof that no non-identity
diagram has an inverse. Let A be a non-identity diagram in TL,. Because
it is not the identity, the rank of A is less than n. If A had an inverse AL
then AA~! = | is the identity diagram. However, the rank of AA™! has
be be less than or equal to the rank.of A, so the rank of AA~! < n. Thus
AAT £ L

2.5 Generator diagrams

Aside from the identity diagram, each diagram in TL, can be made by mul-
tiplying a string of generator diagrams of TL,. There are n — 1 generators in
TL,, labeled e;, ey, . ..,e,_1. The diagram e; has an edge connecting the ith
and i + 1th dots in the top row and an edge connecting the ith and i + 1th
dots in the bottom row. All other edges connect dots in the top row to the
dots directly under them in the bottom row.

SRV e S 5=

Figure 2.17: Generator Diagrams of TL,
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=]
ZaRl e

1A

Figure 2.18: Generating diagrams

Figure 2.18 shows how two of the diagrams of TL4 can be achieved by
multiplying generator diagrams. In order to prove that all diagrams can
be products of generator diagrams, we first show how to get a certain type
of diagram by multiplying generator diagrams, and then provide an algo-
rithm for multiplying diagrams of this type to get any given diagram.

The intermediate type of diagram has connections between adjacent
dots in the top row if and only if the adjacent points directly below these
two dots are also connected. Any dot that is not connected to an adjacent
dot in the same row is connected to the dot directly above or below it.

A A

Figure 2.19: Intermediate-type diagram

The diagram in Figure 2.19 equals e3es. In general, intermediate-type
diagram equals [T'' ¢; where the ith and i 4 1th dots in the same row are
connected. Thus any diagram that can be made by multiplying intermediate-
type diagrams can be made by multiplying generator diagrams. The fol-
lowing step is to show that any diagram can be made up of intermediate-
type diagrams.

Try to make the following diagram in figure 2.20.
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« e « e
Figure 2.20: Make this figure

Begin by addressing only those edges exclusively in the top row. The
edge from the second to the third dot is nestled in the edge from the first
dot to the fourth dot. We cannot deal with the edge from the first dot to the
fourth dot until we deal with the edge nestled inside it. Begin with e;.

|~

Now address the connection between the first and fourth dots. There is
already a bridge between the the second and third, and that bridge has to
be extended to the first and fourth.

1211
sl

Next address the edges connecting the top and bottom rows. There are
places where the edge connecting the fifth dot in the top row and the first
dot in the bottom row is above the edge connecting the sixth dot in the top
row and the fourth dot in the bottom row. The top row has to be addressed -
first. A bridge has to be built between the fifth and first dots.

P!

bl
o]

Finally, a bridge has to be made between the fourth and sixth dots. The
bridge already exists between the fourth and fifth dots, so it just has to be
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extended.

) ¢

I
]

o,
o« e

e 00 G
— <Z:> :
SN

« e
The trick is to start with connections at the top and work downward.

2.6 Generator relations

There are three particular relations that the generators have with each other.
e ¢;e; = ¢; with one loop dropped
® i6iy16; = €
o ciej = eje; if |i —j| > 2

Each can be proved with an example, since extending the proof to other
instances merely requires adding extra vertical edges as are in the identity
diagram. These edges do not change anything about the outcome.

First Relation
e;e; = ¢; with one dropped loop

] =]
« e B e _»
« e
« e
Second Relation
€ieir1€; = €

)G

) q

)«
DG
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Third Relation
eiej = e]-e,- when |Z —]l 2 2

P



Chapter 3

The TL,(x) Algebra

Forn € Z-g and x € C define the Temperley-Lieb algebra TL, (x) to be the
vector space whose basis is given by the diagrams in TL,. Thus

TLn(x)zC—span{d|d€TLn}:{szdd|zxd€C}. (3.1)
deTLy

The parameter x € C needs to be chosen to avoid certain bad values for
which the representations do not work. For example, you can see from
the formulas that we derive in Section 5, that x cannot be a root of the
polynomials [d +1]/[d] and [d — 1][d + 1]/ [d] defined there. It is know that
these bad values occur when x is a root of unity (see for example [8]) and
we will assume that our x is always chosen to avoid these situations.

In the Temperley-Lieb algebra, the diagrams in TL, are the basis for a
vector space. For instance, the vector space of TLy(x) is

sean{ [ [ 77

Let the following be one vector in the vector space

aII-l—b
CII—!—d

be another vector in the vector space. To be an algebra, there has to be a
defined multiplication of vectors. Multiplying the first of the above vectors

And let

DI
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by the second yields

II N
+ad 2 8 +bc §3 +bd

BRSNS

The first three of these terms are multiplied in exactly the same way as
the diagrams in the TL; monoid, but the fourth term has a dropped loop.
While these were simply dropped and forgotten in the monoid, the algebra
keeps track of them.

> Q<

3.1 Dropped loops in the algebra

The multiplication in Temperley-Lieb Algebra is practically the same as the
multiplication of the diagrams, except that it counts the number of loops
dropped when the diagrams are multiplied. To do this, it introduces the
variable x, and every time a loop is dropped, the resulting product is multi-
plied by x. Thus, if two loops are dropped in the course of a multiplication,
the resulting product diagram is multiplied by x2. The exponent of the x
tells the number of loops dropped.

The most important change brought about by the x is the product of
eie;. Whereas with the diagrams, the result was e; again, having dropped
one loop, the new relation reads e;e; = xe;.

The other two relations, e;e;1€; = ¢;, and e;e; = eje; when |i — j| < 2, remain
the same, as no loops were dropped out during these multiplications.

It is easy to see that exactly one loop was dropped out during the mul-
tiplication of ¢; with itself, but the number of loops dropped in other multi-
plications can be more obscure. The first question is whether two loops can
be dropped out at the same time. It seems fairly clear that the answer to
this is yes, but it takes some experimentation to be sure. Figure 3.1 shows a
test case.

It is possible to verify that both of these dropped loops appear as x’s in
the product by rewriting the expression in terms of generator diagrams.
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) Q<
) Q<

Figure 3.1: Two loops dropped

*—00—&

)@«

= (e1e1)(esze3) = (xey)(xe3) = x’ejes

) @<
)«

) O ¢

A more complicated situation arises when one of the loops fits inside
the other. Again, breaking this problem down to its generator components
~ gives a definite answer about how many x’s are in the product.

Using the generator relations, it is possible to simplify the equation in
Figure 3.2, while at the same time picking out the x’s. First, reorganize the
expression by associativity into e1e3(e2e;)ese;. We know from generator re-
lation 1 that e;e; = xep, and because x represents a constant, it can be pulled
out front, giving xe;je3eze3e;. Generator relation 2 says that e;e;1¢; = ¢;, and
similarly, e;1€;e;+1 = ei}1, the picture from relation 2 just being flipped hor-
izontally. Thus, the expression further simplifies to xejeze;. Then, because
|3 — 1| > 2, this can be rewritten as xejeje3 = x2e1e3. Thus, even though the
loops are nested, there are still two loops which are pulled out, and two x’s
in the product.

One case remains, where more than two edges make up the loop. To
show that an x is pulled out in this case, find the generators and manipulate
them algebraically.
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« e
I I L
o« o
X - O (e
I I L
« e
« e
Figure 3.2: Nested loops
L A N 4
@ = (e1e3) (ee3e1) = e1(eseres)e; = ejezer = ejeies = xeie3
« o ¢ e

Figure 3.3: Multi-edge loop



Chapter 4

Representations of the TL;(x)
Algebra

4.1 Some facts about representations

The most familiar structure from abstract algebra is a group. A group is a
set of elements that have a binary operation such that the set is closed un-
der the operation, there is an identity element, and every element a has an
inverse a1 in the set such thataa~! = a~1a = 1. Call the operation *. Then,
if 2 and b are both elements of the group, a * b is an element of the group.
The order of the elements is important, since a * b may not equal b * a. If
axb =bxaforalla,b € G, where G is the group, then the group is called
Abelian. Consider the set of diagrams in TL,. There is a binary operation.
for these diagrams, namely the diagram multiplication just described. The
set of diagrams in TL, is similar to a group. However, every element in a
group must have an inverse in the group, and we have already shown that
none of the non-identity elements in TL, have inverses. Therefore, the set
of diagrams in TL, is not a group but a monoid.

Like groups, monoids can be represented by matrices with elements
from a field. For the sake of this paper, the field will functions of the vari-
able x. A matrix representation is the assignment of matrices to every ele-
ment in the group or monoid, such that if matrix A is assigned to element
a and matrix B is assigned to element b, and ab = ¢, then AB = C where
C is the matrix assigned to c¢. It is possible for several elements to be as-
signed the same matrix. For example, the “trivial representation” sends all
of the elements to 1. A correspondence that assigns a different matrix to
each element is called a “faithful representation.”
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Consider the generator diagrams of TL,. If these diagrams have ma-
trices assigned to them, then the matrices are known for every diagram in
the monoid. To find the matrix for diagram 4, simply multiply the matrices
corresponding to the generator diagrams in the same order as the diagrams
are multiplied to get 4. It is not possible to simply randomly assign matrices
to the generator diagrams and find a representation. The generator matri-
ces have to have the same relations as the generator diagrams. Let E; be
the matrix assigned to e;. Then E;E; = xE;, E;E; 1 E; = E;, and E;E; = EjE;
when i and j are far enough apart.

Each representation has a corresponding vector space called a module.
Suppose that vy, vy, ..., v; are the basis vectors of this vector space. Each
element in the monoid acts on the vector space, sending each vector to a
different vector. For example, 4 - vi{ = v3, or a - (v — vq) = v4. The action
is linear, so a - v, would equal v3 + v4. Because the action is linear, the action
of an element on any vector in the vector space is completely determined
by how it acts on the basis vectors.

In order to find the representations from the modules, assign each of
the basis vectors to the columns and rows of a ¢ X f matrix. For example,
v; corresponds to column 7 and row i. Leta-v; = c;vy +covo + ... + vy
Then the ¢’s are the entries in the ith column. Suppose a - vi = v3. Then the
first column in the matrix corresponding to @ would be all zeros except for
a one in the third row.

Multiplication of elements in the monoid is preserved by actions on
vectors in the module.

ab-v;=a-(b-v;) : 41

This is a very useful property. For example, in order to check that E;E; =
E;E; for i and j far enough apart, we will be able to check thate; - (ej-v) =
ej - (¢; - v) for all v in the module.

4.2 Connection to the Hecke algebra

Our method for finding representations of the Temperley-Lieb algebra in-
volves combinatorial objects called Young tableaux, which Alfred Young
used to find representations of the symmetric group. The Iwahori-Hecke al-
gebra H,(g), aquantum generalization (sometimes called a g-generalization)
of the symmetric group, also has representations indexed by Young tableaux.
The connection between Hy,(gq) and TL,(x) was first noted in 1987 by V. F.
R. Jones [4]. There is a surjective algebra homomorphism from Hy(g) to
TL,(x), which we use to “push” representations of Hy,(g) down to TLy(x).
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The parameter x of the Temperley-Lieb algebra is related to the parameter
g of the Hecke algebra by x = g+ g~'. We follow the presentation of this
relation in [3].

The Hecke algebra Hy,(g) is defined by generators 1, T;, T3, . .., T,—1 and
relations

T} =(@—q )Ti+1

T.T; =TT, for |i —j| > 1 (4.2)

TiTinTy = TinaTiTin

The variable g € C is “a fixed element in the base ring” C.

The homomorphism from H,(g) to TL,(x) (found, for example, in the
paper by Halverson, Mazzocco, and Ram [3]), sends T; to 4 — ;. We can
check that the Temperley-Lieb relations hold under this identification:

& =(q-T)=q-qL+T}
=q*=29Ti+ (-9 )T; + 1
=g =29 —e)+(q—a ) qg—e)+1
=q¢>—29°+29¢;+q* —qe;— 1+ q e +1
= ge; + 4 e
=(q+q Ve

Since we know that ef = xe;, we can see from this that under this identifi-
cation, we must have g + ¢! = x. This identity for 4 becomes important
for finding representations of Temperley-Lieb algebra.

The representations of H,(q) are indexed by partitions of n. When pass-
ing to TL,(x), the representations indexed by partitions of more than two
rows are in the kernel of the surjection H,(q) — TL,(x), but the repre-
sentations on two rows survive (see [4] or [3]). The so called “seminormal
representations” of the Hecke algebra are described in [3], and more about
seminormal representations can be found in [6]. They give an action of the
elements of H,(g) on a basis that is indexed by standard Young tableaux
of partition shape. In what follows, we have translated this action to an
action of the ¢; on standard tableaux on two rows. We directly prove that
this gives a representation of TL,(x), without referring back to the Hecke
algebra, and we show that these representations form a complete set of
pairwise non-isomorphic irreducible representations of TL,(x).

4.3 The Young tableaux vector space

The first step of finding representations for TL,(x) is to find an appropriate
vector space to act on. The second step is the define an action of the TL,
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diagrams on on vectors in this vector space. Then it is just a matter of
showing that the relations of TL, (x) are preserved in the representation. In
this case, the TL, diagrams act on a vector space where the basis vectors are
Young tableaux.

4.3.1 Young diagrams

Young diagrams are left-justified rows of boxes where the number of boxes
in each row is less than or equal to the number of boxes in the row above
it. Figure 4.1 shows a Young diagram. Notice that each row begins in the
same place and that no row has more boxes than the row above.

[]

Figure 4.1: A Young diagram

Young diagrams correspond to partitions of whole numbers. A parti-
tion of a number 7 is the sequence (A1, Ay, ..., A¢) such that

MF+A+- 4+ Ap=n and M 2A2>---> Ay (4.3)
For example the partitions of 5 are
(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)

and the Young diagrams of size five are

LTI [ [ [
= T R B

The Young diagram in Figure 4.1 corresponds to the partition (5,3,3,2,1,1)
of 15. The partition is also called the shape of the diagram. The length of
a Young diagram is the number of rows, so the diagram in Figure 4.1 has
length six. The Young diagrams that help in finding the representations
for TL,(x) are those with length one or two. Figure 4.2 shows the Young
diagrams of lengths one and two for n up to six.
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n=1
O
n=2
n=3
n==4:
LTI T3 [[11
HE H
n=>5
(IITTL [L11]
H Enm
n==~6

LITTTT] UIIII H:l_\__l, H:H

Figure 4.2: Diagrams of length < 2

4.3.2 Young tableaux

In Young tableaux, the integers 1 through n are placed in the boxes. Each
integer is placed exactly once. For a Young tableau to be standard, the num-
bers have to be placed so that the numbers are in ascending order from left
to right and from top to bottom. In other words, no integer can be to the
right of or underneath a larger integer. The diagram in Figure 4.3 is stan-
dard. The diagram in Figure 4.4 is not standard because the 2 is underneath
the 4, contradicting the rule that the numbers go in ascending order from
top to bottom.

1]2]5]
314

Figure 4.3: Standard

Diagrams in Figures 4.3 and 4.4 are of size n = 5 and shape (3,2).

There are a finite number of standard tableaux that can fit into a dia-
gram of a given shape. There is a formula for finding this number making
use of hook lengths of the boxes.

Definition: The hook length of a box in a Young diagram is the number
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1/4[5]

Figure 4.4: Not standard

of boxes under the given box, added to the number of boxes to the right of
the given box, plus one.

X[ [T]

Figure 4.5: Box x has hook length 7

The number of tableaux is n!/ (JTh) where the I’s are the hook lengths
for each box.

4]13]1]

Figure 4.6: Hook lengths of boxes in (3,2) diagram

Figure 4.6 is not a tableau. The numbers in the boxes are each box’s hook
length. Using the formula and Figure 4.6, the number of Young tableaux of
shape (3,2) equals 5!/(4-3-1-2-1) =5!/24 = 5.

4.3.3 Vector spaces

A set of tableaux of size n of the same shape index a vector space which
will be shown to be the module of a representation for TL,(x). For exam-
ple, each of the tableaux of shape (3,1) represents a basis vector of a three-
dimensional vector space, since there are three tableaux of shape (3,1). Ev-
ery vector in this space is of the form

v=al|1]2[3]+p[1]2]4]+[1]3]4]
‘ 4 3 2

where a4, b, and ¢ are constants.
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11213] [1]2]4] [1]2]5] [1]3]4] [1]3]5]

Figure 4.7: The five tableaux of shape (3,2)

Let m be an element of TL,(x). Then

nrv=um~<izwo+bm-(éZMD+wm-<£3MD

Therefore, the action of m on any vector in the vector space is known by
how m acts on the basis vectors.

Any diagram in TL, is a product of generator diagrams. Suppose m =
eiej. Thenm - v = e;(e; - v). Therefore, the action of any diagram on a vector
is known by how the generator diagrams act on the vector. In conclusion,
the action of any diagram on any vector on the Young tableaux vector space
of a given shape is known by how the generator diagrams act on the Young
tableaux of that shape. Each monoid TL,(x) will have a different represen-
tation for every shape of size n.

4.4 The action

A good clue for how e; acts on a tableau is found by looking at how ele-
ments from the symmetric group act on the tableau. A simple transposi-
tions; = (i,i+1) € S, is the permutation that switches i and i + 1. The
element s; acts on a tableau ¢ by switching the placements of i and i + 1. For

example,
- (BB B
1
5

54( 3I>=

Notice that sometimes s;(t) is no longer standard, as seen in the second
example above.

The action of e¢; on t sends ¢ to a linear combination of ¢ and s;(t) when
s;(t) is standard, and to a multiple of t when s;(#) is not standard.

5]

3]

Q1N (1N
BIN (N

Hoa | b QO [

o f Ct+ C’si(t), ifs;(t)is standard
1 Ct, if 5;(t) is not standard



26 Representations of the TL,(x) Algebra

441 [d]

Finding the values of C and C’ involves the polynomial [d] of x. Further
information about [d] can be found in [3]. Finding the value of [d] involves
the variable g from the Hecke algebra.

x = q+q7° (44)
d_ —d ‘ ‘
A = T8 =gt gty gD 45)
9—9
The following are some values of [d].
0 _ 40
9—9
0] = =0
o) q—q!
1_ -1
-1
1] = =1
=

[2] — q2—1 +q—(2—1) — ql +q—l = x

The value of [3] takes slightly more work to find.
Bl ="' +g8-3+9-B-) =g +4 +q =g + 144"
Because there are ¢’s with powers of 2 and -2, compare [3] with x°.
W=+ =g 424

Therefore, [3] = x* — 1.
Some further values are

[4] = x*—2x

5] = x*-3x*+1

[6] t—4x? +3

[7] = x®—5xt+6x2 -1

4.4.2 Finding the Constants C and C’

When acting on a tableau with e;, let d be the number of steps from i toi +1
in the tableau. Suppose e3 were acting on the following tableau. '

1]2]3]

e-
>l
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To get from 3 to 4, step from the 3 to the 2, from the 2 to the 1, and then
from the 1 to the four. Alternatively, step from the 3 to the 2, from the 2 to
the 5, and from the 5 to the four. Either way, it takes three steps to get from
3 to 4: a combination of two steps to the left and one step down. Call this
the “southwestern” direction. If the placements of 3 and 4 were switched,

. [AT274]
e
S

then there would still be three steps from 3 to 4, but they would go in the
“northeastern” direction. The direction from i to i + 1 in a standard tableau
will always be either to the southwestern or northeastern direction. Paths
that are strictly east are still said to go in the northeastern direction, and
likewise paths that are strictly south are said t6 go in the southwestern
direction. The direction from i to i + 1 in a standard tableau will always be
either to the southwestern or northeastern direction. Imagine a case where
the steps went in a southeastern direction.

i

a i+1

For the tableau to be standard, the value of 2 would have to be greater
than 7 but less than i + 1. Since the entries can only be integers, there is no
possible value of a. Likewise, it would be impossible for the steps from i to
i+ 1 to go in a northwestern direction.

i+1 a

i

The value of 2 would have to be greater than i + 1 and less than i.

[d+1] (4.6)

c - leop) if i + 1is d steps N/E from i
B N ifi + 1is d steps S/W from i

[d—1][d +1]
[4]

ot {Ct+C’s,~(t), if 5;(t) is standard
b=

c’ 4.7)

Ct, if s;(t) is not standard
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45 Sample Repfesentations

4.5.1 Representations of TL;(x)

There are two Young diagrams of size two, and so there are two represen-
tations that can be found using the above method.

" There is one tableau of shape (2). ’

There is only one generator, e, in TLy(x). The only action to look at, there-

fore, is
er -

The step from 1 to 2 is in the northeastern direction, so

1-1] _ o] _
D

Therefore, e; maps to (0). It can be seen from the above equation that e;
acting on any tableau where i 4+ 1 is immediately to the right of i will send

that tableau to zero.
There is also only one tableau of shape (1,1).

In this case, the step from 1 to 2 is in the southwestern direction, so

[ +1] :g:
=TT

It is always the case that C = x when i is directly above i + 1. In this
representation, ¢; maps to (x) o

The placements on 1 and 2 could not be switched in either tableau, so
there is no C’ value.

C =
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4.5.2 Representations for TL3(x)

There are two Young diagrams of size three.

L[] |

There is only one tableau of the shape (3).

Because i + 1 is immediately to the right of i for all i, both e; and e; map to

(0)-
Things get more interesting for tableaux of shape (2,1). There are two
tableaux of this shape.

1]2] [1]3]
3 12
Because 2 is directly to the right of 1, e; sends the first tableau to zero,

> . The 2 is directly

the first column in the matrix mapped to by e; is (8

under the 1 in the second tableau, so ej - % 3| = x% 3], Therefore, the

. 0 s . .
second column is ( x) . This indicates that the second tableau is sent to
the linear combination of zero times the first tableau and x times the second
' 0
0
The matrix for e, introduces a non-zero C’. For the first time, switching
the i and i 4 1 yields a standard tableau.

tableau. Thus, e; is mapped to

3] 13 12
2 +1)r7s), VE-T 2]
2] [3] [2] 2]
2 2 _
_ Xl v¥olnTs)
X i X A
ez.;3| = C1]2]4 1]3]
_ VE-1RH 7y, k=Yg
2] 3] 2] 2
2 _
— V¥ =173, 1673
x |3 x[2]
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x2-1 x2—1
X x

€y —

VaZ—1 1

X X

In the context of this paper, two tableaux that have i and i + 1 switched
but for which everything else is the same shall be referred to as “comple-
ments under i.” The two tableaux of shape (2,1) are complements under 2.
Because complements have the same number of steps from i to i 4+ 1, the C’
values are the same for each.

Now that the matrices in the (2,1) representation have been found for

the generators of TL3(x), it is possible to find matrices for other non-generator
diagrams. For example,

i

g prend ezel —_— fovard 2
(x‘ - I x2-1 x*-1 0 x 0 x-1

« e



Chapter 5

Verifying the relations

Simply assigning an action over a Young diagram vector space does not
make the resulting matrices a representation. In order to prove that the
resulting matrices are a representation, it is necessary to show that the three
generator relations hold. Again the three relations are

€;e; = Xxe;
i€ir16i = €;
eiej = eje; when |i —j| > 2

5.1 The Squared Generator Relation

5.1.1 Rearranging the basis

Notice in the previous examples that the matrices depend on the order of
the tableau. If tableau t is the first tableau in the sequence, then ¢; - t will be
in the first column and the coefficient C of t for ¢; - t will be in the first row.

When e; acts on tableau ¢, the result is a linear combination of ¢t and
s;(t). By arranging the tableaux in the matrix for ¢; such that f is in row
and column j and s;(¢) is in row and column j + 1, the result is an isolated
2 x 2 block along the diagonal of the matrix. By arranging the tableaux
so that all complements under 7 are adjacent, the resulting matrix becomes
block diagonalized into 2 x 2 blocks and 1 x 1 blocks. The 1 x 1 blocks
occur when the tableau has no complement under i. An important property
of a block diagonalized matrix is that squaring it by itself is the same as
squaring each block individually.

The five tableaux of shape (3,2) are as follows.
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n=[112[3] & =[112]4] ¢ =[1]2]5] & =[1[3[4] ts=[1]3]5]
45 3[5 34 2[5 24

When making the matrix for e;, we notice that ¢; has no compliment under
2, tp and t, are compliments under 2, and #3 and ¢5 are compliments under
2. If we order the basis t4, t5, t5, t3, t1, then we get the following matrix:

Vxz-1

: 0 0 0
xi—l x2x—1 0 0 0
e—1 0 0 1 Y2ol
X X
2__ 2_1
0 0 \/xx 1 X - 0
0 0 0 0 0

Another thing to notice about this arrangement of the basis vectors is that
in t4, the steps from 2 to 3 are in the northeast direction, while in ¢,, the
steps are in the southwest direction. Likewise, in t5, the steps are northeast,
and in t3, the steps are southwest. We can always arrange the basis so that
complementary vectors are in this order. This is important, as it allows us
to generalize the 2 x 2 block.

5.1.2 Thegeneral 2 x 2 block

The goal of this section is to show that the 2 x 2 block multiplied by itself

under matrix multiplication yields the same 2 x 2 block scaled by x. The

first tableau, ¢, is the one where the steps from i to i + 1 are in the northeast
- direction, so acting on it with e; yields

- a-1),  VE-TEFT,
| @it o

so0 the first column of the matrix is

(Cat]|

(4]
( v/ [d—-1][d+1]

ld]
The steps from i to i + 1 in second tableau, s;(t), go in the southwestern
direction, so acting on it with ¢; yields

[d—1] [d+1]t [d+1]
[4] 4]
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Thus the 2 x 2 block looks like

[d-1] [d-1][d+1]
(] [d]
[4-1][d+1] [d41]
[d] (4]

To make this matrix easier to work with, we substitute variables in for
[d]’s. .
a=[d-1], b=[d], c=[d+1].

a \/ac
b b
(C E).
b b

When this is squared, it becomes

a’+ac (a+c)v/ac a  Aac
B2 P _atcef 5 5
(ll-‘rlC’;\/E ac+c? - b \/_C % °

» b

The matrix becomes

2D

=

20

20

It remains to prove that (a +¢)/b = x.

at+c  [d—-1]4[d+1]
b []
I S B
g — g4
g2 1 g — P
2T g

(*-1(*+1)
q(4 - 1)

]
q

= x
An equivalent, rather attractive statement, is that

[d—1]+[d+1]
[4]

= [2]
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513 Thel x 1block

The 1 x 1 blocks occur when a tableau doesn’t have a complement, so in
order to understand the 1 x 1 block, it is necessary to know when a tableau
does or does not have a complement. Consider each of the following pos-
sibilities:

1.

iand i 4+ 1 are in the same row.

The 1 x 1block is a single number, so there is no similar internal struc-
ture that says why it should square to x times itself. However, the
1 x 1 block only occurs when a tableau does not have a complement.
It is therefore necessary to determine when a tableau does or does not
have a complement.

. fand i + 1 are in the same column.

It must be the case that i is directly above 7 4 1, and switching them
yields a non-standard tableau, so there would be no complement un-
deri.

. iand i 4+ 1 are not in the same row or column.

There are several different ways the i and i + 1 can be arranged.

a1 ax 43 i1

i

The a’s in the case must be less than i 4+ 1, and so must be less
than i (since they cannot equal i). Therefore, when i and i + 1
are switched, the result is standard. The number of a’s is not

specific.
. .
ay a2 4z g
i+ 1
This is the complement of the one above, so we know it has a
complement.
[ ]
i
a 1+ 1

No tableau like this could be standard, because 2 would have to
be greater than i but less than i 4 1. Likewise,
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i+ 1 a

i
would be impossible, because @ would have to be less than i and
greater than i + 1.

The only standard tableaux that do not have complements are those
with i and i + 1 adjacent in a row or in a column. The d value for the
number of steps between i and i + 1 is 1. The 1 x 1 blocks in the e; matrix
are the C values for these tableaux.

i1

S -

c [l—_]—l—] =0 ifiand i + 1 are in the same row
B i x ifi and i + 1 are in the same column

Therefore, it is also true for the 1 x 1 blocks that squaring them is the same
as multiplying by x.

If squaring each block of a block-diagonalized matrix gives x times
the block, then squaring the whole matrix gives x times the matrix. Also,
while there might not be any arrangement of the basis vectors that block-
diagonalizes every e; matrix, each ¢; matrix has a similar matrix that is block
diagonalized. Because the similar matrix squared is x times the similar ma-
trix, it is true that the matrix (no matter what order the basis vectors) will
square to x times itself.

5.2 The eie; = eje; property
Another property of the generators of TL algebra is
eiej = eje; when i —j| > 2

Consider why the property worked for TL, diagram. There was no real
interaction between the two diagrams because one or the other diagram
was always the identity at any given point. A similar thing happens when
e; and e; act on tableaux. The action of e; on the tableau involves switching
i and i + 1 while the action of e; on the tableau involves switching j and
j + 1. Because i and j are further than one apart, no two of these numbers
are the same. The switching, at least, is independent of whether e; or ¢; acts
on the tableau first.

We must show that, because i and 7 + 1 are distinct from jand j + 1, that

ei-(ej-vr) =e-(e-vy).



36 Verifying the relations

Let

vy = the original tableau

vs = the original tableau with 7 and i + 1 switched

v, = the original tableau with ] and j 4+ 1 switched

v; = the original tableau with j and j + 1 switched and i and i + 1 switched.

For example, we could have

v = |1]2[3]4]7]10]
5/6]8]9

i—7: v, = [1]2]3]4]8]10]
5/6]7]9

j=9: 0, = |1][2[3]4][7]9]
5/6]8]10

v, = 1/2[3]4]8]9]
5/6]7]10

By definition, v; and v, are complements under i, v, and v, are com-
plements under i, v; and v, are complements under j, and v, and v, are
complements under j. )

Begin with the following assignments for the group action of ¢; and e;
on v;.

ey = Avy + Alvg - (5.1)
Ejl)t = BUt + B/Ur (52)
Because the distance and direction between i and i + 1 is the same in

tableau v, as vy,
eiv, = Av, + Alv,.
Likewise, because the distance and direction between j and j + 1 is the
same in tableau v, as v;,

ejvs = Bvs + B'v,.

ej- (ejvr) = e (Avy+ A'vg)

Alejoy) + A'(ejus)

A(Bv; + B'v,) + A'(Bus + B'vy)
ABv; + AB'v, + A'Bus + A'B'v,
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e (ejvr) = ei(Bui+ B'vy)
= B(e,-vt) + B'(eiv,)
= B(Auv+ A'vs) + B'(Av, + A'vy)
= ABuv, + A’'Bvs + AB'v, + A'B'y,
Showing that the actions of ¢;e; and eje; are the same on the basis vectors

of the tableaux vector space is sufficient for showing that the corresponding
representation matrices are the same.

5.3 Theee;1e; = e; property

This property says that e;e;;1e; - t = e; - t. The proof of this is different for
different arrangements of 7, i + 1, and i + 2. For ease in notation, let

i

i+1

c = i+2

Il

For the case where a and b are in the same row, ¢; - t = 0. Then
eieiy1€i - U = eiejqy - (& t) = ejeip1 - (0) =0

In all other cases, a or b must go directly in front of ¢ on some row, and
the remaining @ or b must go on a different row. In order to be standard,
no j in the bottom row can be further to the right than the j — 1 or j + 1 in
the top row (see section 5.1.3). Therefore, there is a total of four cases to
examine.

At this point, it is necessary to put the action of generator diagrams on
tableaux as a function of direction and number of steps d from i to i + 1.

Cld,n) = [d[;]”
_[d+1)

C{d,s) = f

o — YEUET]

(4]

In the tree below, each block contains the letters a, b, and c. The spacing
is arbitrary, but because 4, b, and c are consecutive, they must be adjacent
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whenever they appear on the same row. Therefore, letting d be the distance
between a and b in the first block means that the distance between b and c is
d + 1. The edges connecting the first and second row of blocks and the third
and fourth row of blocks are labeled e;, while the edges between the second
and third row are labeled ¢;. Each block connects downward to the linear
combination of that arises when that generator acts on the that block. A
block does not connect downwards if acting on it with the generator yields
zero. In the final row, the two blocks are the tableaux that are involved
in e;epe,, but the coefficient of that each tableau is the product of all of the
coefficients along to path leading to it from the top block. Thus the diagram
below says that, when ¢ is a tableau as in the top block,

eaepeg -t = C(d,s)C(d+1,n)C(d,s)t + C(d,s)C(d +1,n)C'(d)sa(t)
= C(d,s)C(d +1,n)(C(d,s) + C'(d))
C(d,s)C(d+1,n)(eqs-t)

To show that esepe, - t = ¢, - t, show that C(d,s)C(d + 1,n)=1.

I O
C(d,s)C(d+1,n) = i [d+1]~1
a c ,
b d is the distance between g and b
€a
Cd,s) “ely boel o
7 b a
eb /\
Cd+1m) |, 0 . 4 b’C’(d+1)
ea /\
C(d,s) “ely boel cay
7 b a

When i and i + 2 are together in the bottom row and i + 1 is in the top
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row, we get a similar chart.

1 c b d is the distance between a and b
€
b a
C(d,n) 4 c + - C'(d)
eb R
C b |l
(d—1,s) 0 c + 2 b C'(d-1)
‘. /\
b al .

C(d,n) 1 c + - C'(d)

Again, itis a fact that C(d,n) *C(d — 1,s) = Ld[;—]l] . d[i]” =1, so the relation
also works when i and i + 2 are on the bottom row.
The last case that remains is the one where i + 1 and i + 2 are in the

same row. We begin with the chart showing b and c on the top row.

4 b ¢ d is the number of steps from a to b
€q
caml, "], " lcw
ep
R P £ P GRS
€q
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Remarkably,

)« ec( < YIA-1d+] [d vA-1d+1] _[@d-1 ..

Cld)»Cd+1m)=Cld) @ @+ W @ - c@n
(5.3)

and

) VA=A [ [d+1]  JE-1E+1

C'(d)*C(d+1,n)*xC(d,s) = i A+ @ [(‘15]4) = C'(d)

When i+ 1 and i + 2 are in the bottom row, the chart is as follows.

d is the number of steps from a to b

b ¢
€
a b ,
C(d,s) b c 1, . C'(d)
ep
Cd—1,s) byl “lcia-1
! a c a b
€a
b a /
C(d,n) 4 c + b C'(d)

Again, the following equations show that the relation e;e;1e; = e; works -
on these tableaux. It is a fact that

) wctd—1,5) w0 = VI IR [ VEA-TEFT] _[d+1] _

[4] [d—1] [] [4]
(5.5)
and.
VAt 1 N I L V SRV A L Y
C'(d)xC(d—1,5)xC(d,n) = ] =1 [ = ‘[((15],6) C'(d)

" This completes the proof that the matrices described are a representation
for the TL monoid.



Chapter 6

Irreducibility

Each Young diagram of size n has diagrams of size n — 1 inside it. The
following tree shows this relation, limited to the Young diagrams of one or
two rows.

L]

N

Ny
N

LI 1] I

|
HEEEN [ [] I
L
This is similar to the way in which TL, has TL,_; inside it. Simply
placing another vertical edge at the end of a TL,,; diagram makes it a TL,

diagram. This concept is familiar from the generators: e; is a generator of
TL3, TLy4, TLs, etc.
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We will prove that each representation created using our method is ir-
reducible using induction. First, however, we will show a good indication
that the representations are irreducible. As is known from character theory,
summing the squares of the dimensions of all irreducible representations
gives the order of the group (or monoid). The dimensions of our represen-
tations are the number of tableaux that can be made in a certain shape. The
following is the same tree as before, and the number next to each Young
diagram is the number of tableaux that can be made in that shape.

N

1T ]

o)

1[]

1

lLlIIIl4 | [ ] |5
12 1
P+1? = 2
12422 = 5
12432422 = 14

12 +424+5% = 42

These numbers should be recognizable as the first Catalan numbers and
orders of monoids TL; through TLs. It would therefore seem reasonable to
imagine that these representations are irreducible.

We know that the representation for n = 1 corresponding to the sin-
gle box is an irreducible representation because it is one-dimensional. That
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is our-base case. We then assume that the representations for n — 1 are
irreducible and prove that the representations for n are irreducible. The
standard tableaux corresponding to a particular Young diagram can be di-
vided depending on where n shows up in the tableau. For example, with
the (3,2) shape,

11213 [1]2]4] [1]2]5] [1[3]4] [1]3]5]
415 315 314 215 2|4

the vector space over all of these tableaux is the direct sum of the vector
space where 5 is in the top row and the vector space where 5 is on the
bottom row.

{1351 1251}@{123| 1]2]4] 1341}
2}4 314 4[5 35 2[5

These correspond to vector spaces for tableaux of size 4, which we have
assumed to be irreducible. '

{13 12}@{12|3| 1]2]4] 13]4]}
2[4 [3]4 4 3 2]

Because we have assumed that these are irreducible, the above is the only
way that the vector space could possibly be reduced to two modules. How-
ever, TLs has something TL4 does not have: the generator e,.

es 1112151 = c[1]2]5]+ ¢’[1]2]4]
3]4 3[4 35

This is true in general. Because we assume the irreducibility of n — 1, the
only possible submodules of a representation of n in TL, are determined
by the placement of n, but e,_; acts on tableau in such a way as to yield a
linear combination of tableaux with different placements of n. Therefore,
the placement of n does not define a submodule, so the representation has
no submodule and is irreducible.






Chapter 7

Loops and How Rank Affects
Action

7.1 Loops

Loops in this section are not the “loops” that are dropped from TL, mul-
tiplications and counted with the x variable. Loops are diagrams similar
to TL, diagrams. Instead of two rows of dots, there is one row of an even
number of dots. Edges still connect pairs of dots with the restriction that
edges cannot cross. The definition of TL, diagrams says that the edges can-
not leave the rectangle defined by the two rows of dots. With only one row
of dots, there is no rectangle. However, all edges must fall either above or
below the row. In order to be consistent, the edges of all of the loops in
this chapter will fall below the row of dots. Information about these loops,
including their connection to alternating sign matrices, can be found in [1].

A

Figure 7.1: Loops with six dots

The loops in Figure 7.1 are recognizable from TL¢ as the top halves of
the rank-0 diagrams. Loops such as the first loop in the figure, where each
odd dot is connected to the even dot to its right, are very useful. In this
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paper, they shall be referred to as simple loops.

Loops do not have a defined multiplication with each other, but there is
a natural way for TL, diagrams to act on n-loops, following the same rules
that apply to multiplication within TL,. Zinn-Justin has more to say about
these actions [9]. Figure 7.2 shows how a TL, diagram multiplied by an
n-loop yields an n-loop.

18] . v

“2 4

Figure 7.2: TL¢ diagram acting on 6-loop

Theorem: For every n-loop ¢, there is a TL,, diagram such that the TL,
diagram acting on the simple n-loop yields /.

The proof of this theorem shows how to construct such a TL, diagram.
In loops other than the simple loop, some edges are nested in others. Some-
times an edge is nested in an edge which is nested in another edge. There
is no limit to how many edges can be nested. Sometimes several edges are
nested in the same edge but are not nested in each other. There is one 6-loop
like this. To begin constructing the TL, diagram that will take the simple
loop to the target loop, consider only those edges that are not nested in any
other edge. Draw in bridges between the short edges of the simple loop
and extend the ends upwards to make the outer loops. The inner loops.will
simply be part of the TL, diagram.

P G b

L N N

Figure 7.3: Making a nested loop from a simple loop
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7.2 The Loop Representation

Taking the n-loops to be basis vectors of a vector space, we can act on the
n-loops with TL, diagrams to come up with a representation of TL,,, at least
when 7 is even. Unlike the tableaux representations, we can find the ma-
trices corresponding to each TL, diagram directly. In the tableaux vector
space, we had only defined an action on the vector space for the generator
diagrams. In contrast, every TL, diagram can act on an n-loop. There is
also much less involved in showing that the resulting matrices are a repre-
sentation. Whereas for the tableaux vector space it was necessary to prove
that (gh) -t = g - (h - t) where g and h are TL,, diagrams and { is a tableaux,
it is apparent that (gh) - £ = g - (h - £) where £ is a loop by the fact that TL,
is associative.

Although it is not necessary to find the generator matrices to find other
matrices for the TL, monoid, it is still a useful exercise. For example, the
three generators of TL4 are e;, ey, and e3. The two 4-loops are the simple
loop and the nested loop.

o

o Olvl _, e
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IIV

s o » o« » o »

€ = 0
IIU

b SO “— «_» o _»

e_)xl
3 0 0

This representation is not identical to any of the tableaux representa-
tions for TL4, but in the last chapter we showed that the tableaux repre-
sentations were all of the irreducible representations. Therefore the loop
representation must be isomorphic to a tableaux representation of the same
dimension or reduce to a direct sum of tableaux representations of smaller
dimension.

Theorem: The loop representation of TL, is isomorphic to the (k, k)
tableaux representation where 2k = n.

To prove this, consider the rank 0 diagrams of TL,. For example, there
are four rank 0 diagrams in TL4:

o s o o o T S
o ¢ e o ¢ e e e e ¢ o« o e

The span of the rank 0 diagrams form a two-sided ideal, since the rank
can never go up in multiplication and an ideal is defined as a subset such
that multiplying anything in the subset by anything in the set will yield
something in the subset. We can make a representation for TL, algebra by
acting on the span of rank 0 diagrams. Acting on the rank 0 diagrams in the
order listed above, the matrices corresponding to the generator diagrams
of TL4 are as follows:

x 1 00 0 00O x 1 00
er — 0000 ey — 1 x 00 o3 — 000 0f

0 0 x 1 0000 00 x 1}

0 0 0O 001 «x 0000

These are block diagonalized, with each 2 x 2 block equivalent to the loop
representation. This makes sense, as the generator diagrams were only
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acting on the loops that made up the top half of the rank 0 diagrams. Be-
cause loop 0 diagrams are TL,, diagrams, it is possible to find their matrix
in the Young tableaux representations, which gives a connection between
the Young tableaux representations and the loop representation.

It has already been shown that any loop can be made by acting on the
simple loop with TL, diagrams. Therefore, any rank 0 diagrams can be
made by muitiplying TL, diagrams by the rank 0 TL, diagram whose top
and bottom rows are both simple loops.

e

- N2
§ s KR
b4

Figure 7.4: Building on to simple rank 0 diagram

The goal is to show that rank 0 diagrams acting on the Young tableaux
send all tableaux not of shape (k, k) to zero. To do this, show that the rank 0
diagram made of two simple loops sends all tableaux not of shape (k, k) to
zero. If the simple diagram acts by sending a tableau to zero, then anything
that can have a factor of the simple diagram must also send that tableau to
zero.

7.2.1 The simple diagram sends non (k, k) tableaux to zero

The simple diagram of TL, is equal to eje3. In general, the simple diagram

of TL, equals []e; where i is an odd integer less than n. The goal is to find  *
the tableau that the simple diagram doesn’t send to zero. Acting on this
tableau with an odd generator would have to return a non-zero product.

We start with

The 2 can either go to the right of the 1 or under the 1. If 2 goes to the right
of 1, then e; goes to zero. Therefore, 2 has to go under the one.

The 3 cannot go to the right of the 2 because there would be no number that
could go over the 3 that would be less than 3. Therefore, the 3 goes to the
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right of the 1.

1/3]
2]
The 4 can go either to the right of the 3 or under the 3. If it goes to the right

of the 3, then e3 acting on the tableau goes to zero. Therefore, 4 has to go
under the 3.

113
214

Continuing on in this way, the only tableau that the simple diagram doesn’t
send to zero is

1[3[5[7] - [+]
214]6(8]--- [n]

The simple diagram sends all other tableaux to zero, including other tableaux
of the shape (k, k). The generator matrices will have mostly entries that are
zero, but with an x in the row and column corresponding to this tableau.
However, the matrix representation for the simple diagram, and thus all
rank 0 diagrams of TL,, is the all-zeros matrix for tableaux representations
where the tableaux are not of shape (k, k). Thus, the loop representation is
equivalent to the (k, k) shape tableaux representation.

7.2.2 The odd case

The case above showed that the matrices corresponding to diagrams of
rank 0 in tableaux representations where the tableaux were not of shape
(k, k) were the zero matrices. Because rank 0 diagrams only exist when n is
even, this begs the question of whether there is a similar situation for when
nis odd.

Theorem: Diagrams of rank 1 acting on tableaux of shape other than
(k+1,k) where n = 2k + 1 go to zero.

It would be good to show that every rank 1 diagram can be gotten by
taking a product that includes the diagram []e; where i is an odd number
less than n. (In this case, n has to be odd, since TL, where # is even has no
rank 1 diagrams.)

Each rank 1 diagram has, by definition, exactly one edge connecting a
dot in the top row to a dot in the bottom row. In order to turn this diagram
into other rank 1 diagrams by means of diagram multiplication, it is neces-
sary to make bridges along the top row between the dot n and the dot in
the top row that should connect to the bottom row. Likewise, make bridges
between the dot n 4+ 1 and the dot in the bottom row that should connect



The Loop Representation 51
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Figure 7.5: Basis rank 1 diagram for TLs

e o o 0 0 I.v..v.
.K)(\.U(\IH U(\.U(\I_ WY
SR8 Y. ﬂf\v*r\.n
o A

Figure 7.6: Connect dots 1 and 8

to the top row. Fill in the rest of the edges so that the diagram is vertically
symmetric. For instance, Figure 7.6 shows the case where the monoid is
TLs and the rank 1 diagram has a connection between dots 1 and 8. This
diagram has the required edge from the top to the bottom and simple loops
of various sizes along the other dots. In Figure 7.6, dots 2 through 5 have
a simple loop of size 4, while there are two simple loops of size 2 along the
bottom row. As has already been shown, simple loops can be converted to
any other kind of loop through TL, multiplication, so multiplying by fur-
ther diagrams can achieve any desired rank 1 diagram with that ranking
edge.

As apparent from Figure 7.5, there are no bridges that can make an even
dot on the top row or an odd dot on the bottom row the endpoint for the
ranking edge. This is as it should be. An endpoint of the ranking edge has
to divide the row of dots it is in so that there are an even number of dots
on both sides. If there were an odd number of dots to one side, then one
of those dots would have to connect to the other row, and then it would
no longer be a rank 1 diagram. It is possible to make bridges so that any
acceptable ranking edge can be achieved.

This proves that diagrams like the one in Figure 7.5, []e; where i is an
odd number less than 7, can be a factor for any rank 1 diagram. By the
exact same inductive process used in the even case, these diagrams take
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every tableaux to zero except for the tableau

1[3[5]7] - [+2n]
2{4(6|8] - |mt

7.2.3 The general case

There are several things that have been shown specifically in this section.

1. The simple diagram generates the ideal.

2. Any rank 1 diagram can have a factor of the diagram that is the simple
diagram except for a vertical edge at the end.

3. Arank 0 diagram acting on a tableau not of shape (k, k) where 2k = n
yields zero.

4. A rank 1 diagram acting on a tableau not of shape (k + 1,k) where
2k + 1 = n yields zero.

These can be generalized as follows.

Theorem: Any rank j diagram can have a factor of the diagram that is
the simple diagram except for j vertical edges at the end.

Theorem: Any rank j diagram acting on a tableau where the top row
extends more than j boxes past the bottom row yields zero.

To show why the first theorem is true, figure that any given rank j di-
agram has j edges connecting the top and bottom rows, and because these
edges.don’t cross, they can be ordered from left to right. Start by making
the same sort of bridges as previously described to move the left-most ver-
tical edge to the left-most ranking edge. Then move the second edge to the
left to the second ranking edge. The property that makes this possible is
that the edges of a diagram do not cross. This can be done for as many
edges as necessary, so the value of j does not matter.

The diagram described in the second theorem equals [Te; where i <
n — j. The theorem follows the same inductive path as the specific cases.

7.3 Rank 0 diagrams isomorphic to full matrix algebra

Any 2 x 2 matrix can be written as a linear combination of the 2 X 2 matrices
with a one in one entry and zeros in the other entry.

(D)=l )l )< )= )
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These four matrices make up the basis for an algebra, and that algebra
is isomorphic to the algebra with the basis of the four rank-0 diagrams in
TL,. The task of this section is to discover what that isomorphism is.

First, any element in the rank-0 algebra can be written as

N T N S LN

o e « o o e o« e
In order to streamline the algebra, let s,t,u,v be the respective dia-
grams. The following table shows multiplication of these diagrams, with
the diagram in the row coming before the diagram in the column.
r S t U
s s, e QP QS
e e e o e e

r x2r xZs xr xs

s xr xs x2r x2s
t x2t x2u xt xu
u xt xu X2t x2u

The first task is to find the identity element. Multiplying an element by
the identity returns the element. Let I = ar + bs + ct + du. Then,
rI = r(ar+bs+ct+du) = ax’r + bx’s + cxr + dxs
= r(ax® +cx) + s(bx? + dx)
sI = s(ar+bs+ct+du) = axr + bxs + cx’r + dx’s
= r(ax+ cx?) +s(bx +dx?)

This is enough to find the values for 4, b, ¢, and d. Because rI must equal
r, ax?> + cx = 1 and ba? + dx = 0. Because sI must equal s, ax + cx*> = 0
and bx + dx? = 1. The augmented matrix for this system of equations is

¥ 0 x 0]1
0 x2 0 «x|0
x 0 x2 010
0 x 0 221
which row reduces to
100 0]
010 0|2y
001 0|2
000 1|5
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Thus the identity element is

1 L e n 1 L N
2 _ 3

ol oo e T
1 I SN 1 s

3 2 _
A T e
The next task is to find exactly which elements in the rank-0 algebra -
correspond to the 2 x 2 matrices with a single one entry. We have a 2 X
2 representation for the diagrams in TL,, namely the loop representation.
The matrices for the generator diagrams in this representation have already

been found.
- x 1 - 0 0 on — x 1
¢ 00/ “27\1 «x 37 \o0 o

It is easy to verify that r = eje3, s = ejezez, t = eseqes, and u = ezereser.
By matrix multiplication, it is possible to find the matrices corresponding
to the rank-0 diagrams.

r__)xzx S_)xxz t——>00 u——>00
0 0 0 0 x? x x x?

These matrices already have a strong resemblance to the single-entry

(7.1)

matrices. The linear combination for will involve r and s with a

10

00

coefficient a for r and a coefficient b for s such that
ax’+bx =1 and ax+bx?>=0.

The coefficients that have already been found for the identity reappear here.

Loy 11
00/ x2—-1 x> —x

In full, these coefficients are used to form every single-entry matrix.
10y 1
0 0/ x2-1

(01) 1 LU I\ 1 L N
3 _ 2 i
0 0 e =1

L n 1 L A U
3
e BT e e

) C

I
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Chapter 8

Conclusion

Our method for finding representations of the Temperley-Lieb algebra has
proven to be interesting in several ways. First, we can find all of the irre-
ducible representations for TL,(x) for all n in such a.way that we can see
that they are unique and irreducible based on their underlying structure.
The connections in Young’s lattice show how TL,_1(x) fits inside TL,(x).
Furthermore, these representations have a rich contextual setting. The rep-
resentations are indexed by partitions of n of length two, and their bases
are indexed by standard Young tableaux. Their derivation from the Hecke
algebra, which is a generalization of the seminormal representations of the
symmetric group, allows us to identify them as the seminormal represen-
tations of the Temperley-Lieb algebra.

It is striking to note how much simpler the loop representation looks,
with entries that are either 0 or some power of x, rather than fractions in-
volving x, about half of which also involve square roots. We show, in the
last chapter , how the (1/2, n/2) representation was isomorphic to the loop
representation.

The way that TL diagrams act on a tableau follows a pattern based on
the rank of the diagram and the extension of the top row of the tableau
past the bottom row of the tableau. Perhaps this means that there is also
a pattern of isomorphism between the tableaux representations and nicer
representations. It may also be the case that, like the loop representation,
there are simple ways of finding certain, but not all, of the irreducible rep-
resentations. Having a complete set of irreducible representations could
facilitate finding connections between those simple methods. Finding the
connection to single-entry matrices would generalize the problem still fur-
ther.
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A final note: As I researched the Temperley-Lieb algebra, I frequently
found the literature very difficult to read. One of my objectives for this
paper is that it provide an introduction to the topic for those who are just
starting to learn about this amazing algebra. I hope that this paper has met
that objective.
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