Macalester College
Digital Commons@Macalester College

Mathematics, Statistics, and Computer Science

) Mathematics, Statistics, and Computer Science
Honors Projects

5-4-2008

Implementing Bluetooth Support In Wifi-Based
Mobile Ad-Hoc Networks

Christopher Dragga
Macalester College

Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors

b Part of the Mathematics Commons

Recommended Citation

Dragga, Christopher, "Implementing Bluetooth Support In Wifi-Based Mobile Ad-Hoc Networks" (2008). Mathematics, Statistics, and
Computer Science Honors Projects. 10.
https://digitalcommons.macalester.edu/mathcs_honors/10

This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at
Digital Commons@Macalester College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an

authorized administrator of Digital Commons@Macalester College. For more information, please contact scholarpub@macalester.edu.

https://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors/10?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Honors Paper

Macalester College

Spring 2008

Title: Implementing Bluetooth Support in Wifi-
Based Mobile Ad-Hoc Networks

Author: Christopher Dragga

SUBMISSION OF HONORS'PROJECTS

Please read this document carefully before signing. If you have questlons about any of these permlsslons, please contact- Janet
- Sletmann in the Library. : . , A

Title of Honors Projéct: _| eotian Pluetooth an part in \JzF «Ram\ M, e AA L\mmw,,,;“

‘ Author s Name: (Last name, first name) Dr’a o\aa / C L\r‘ lS‘l’dD‘nQ,r

\f‘l

o The library provides access to your Honors Project in several ways:

L "~The library makes each Honors Project available to members of the Macalester College commumty and the general pubhc on -

site during regular- 11brary hours.
. Usmg the latest technology, we make preservation copies of each Honors Project in both digital and mlcroﬁlm formats
e Every Honors Project is cataloged and recorded in CLICnet (hbrary consortium OPAC) and in OCLC, the largest '
_ bibliographic database in the world. :
. & To better serve the scholarly community, a digital copy of your Honors Project will be made avallable via the D1g1ta1
“Commons @ . Macalester (digitalcommons.macalester.edu.
' - The DigitalCommons@Macalester is our web based institutional reposuory for dlgltal content produced by
- Macalester faculty, students, and staff. By placing your projects in the Digital Commons, all materials are searchable via Google ~
" "Scholar and other search engines. Materials that are located in the Digital Commons are- freely accessible to the- ‘world; however, .
-your-copyright protects against unauthorized use of the content. - Although you have certain rights and privileges 1 with your-
- copyright, there are also responsibilities. Please review the following statements and identify- that you have read them by signing
““below. Some departments may choose to protect the work of their Honors students because of contmumg research. .In these cases
the pro_1ect is still posted on the repository, but content can only be accessed by’ 1nd1v1duals who are located on campus..)

I agree to make my Honors Prolect available to the Macalester College community and to the larger scholarly commumty v1a the
: Dlgltal Commons@Macalester or its successor technology. « : :

slgnedﬂmxm#\m @ ﬁ M%l/j#\

OR

I do not want my ‘Honors Project avallable to the larger scholarly community. I-want my Honors Project available only in- the 11brary
NOT for interlibrary loan purposes, and NOT through the Macalester College Digital Commons orits successor technology

Signed

“or the images will not be included in the electronic copy. If your work includes discs with music, data sets, or other
accompanying material that is not orlgmal work by you, the same copyright stipulations apply.: If your work includes

—interviews, you must include a statement that you have the permission from the interviewees to make their interviews public:
BY SIGNING THIS FORM, ACKNOWLEDGE THAT ALL WORK CONTAINED IN THIS PAPER IS ORIGINAL WORK BY ME OR INCLUDES

. APPROPRIATE CITATIONS AND/OR PERMISSIONS WHEN CITING OR INCLUDING EXCERPTS OF WORK(S) BY OTHERS

- ’All students must sign here.
Date: _ 7//7:/0 A) _

- Slgnature

Pnnted Name: C l/\ riSdg D L\e I (D re a Q . G;/Iibstaﬁ’/digitalcomm_ons'/dccopr"ightpéfmissidnre\i.doc :

o _“H your work includes images that are not orlgmal ‘works by you, you must include permrsslons from orlgmal content provrder [

Implementing Bluetooth Supportin
Wifi-Based Mobile Ad-Hoc Networks:

Christopher Dragga
May 4, 2008

Contents

L

2

Introduction

Background

2.1 Mobile Ad-hoc Networks v v v i

2.2 Bluetooth

..........................

Difficulties with Bluetooth Based MANETS

Implementation

Modeling
5.1 Background . . .
5.2 Analytical Models

..........................

..........................

5.2.1 Connectivity and Transmission Range
5.2.2 Information Dissemination

5.3. Simulation Models

Testing
6.1 Introduction . . .

.........................

6.2 Preliminary Performance Testing e

6.3 Simulation Testing

Results

..........................

10

16
16
17
17
26
27

30
30
30
38

45

Abstract

Mobile ad-hoc networks (MANETS) provide a useful means of connect-
ing computers in unusual situations, such as search and rescue. However,
they ignore those small, highly mobile devices that only support Bluetooth,
a low-range, low-bandwidth Wifi alternative that consumes significantly less
power. Allowing these devices to connect to Wifi MANETS could permit a
variety of applications, from text messaging to VOIP to parallel processing.
Bluetooth features several unusual characteristics that could make this dif-
ficult, though. In this project, I implemented this kind of integration and
analyzed its success through physical testing and models both analytical and
simulated.

1 Introduction

In many ways, the Bluetooth communications protocol seems underused today.
This wireless technology was originally developed as a replacement for cable
connections, but has since gained significantly more functionality, including the
ability to act as a replacement for the more prevalent IEEE 802.11 wifi networks
generally used today. It has a number of features that would recommend it over.. -
wifi, especially for small and portable devices, like cell phones, handheld com-
puters, and even laptops. Chiefest among these is its power consumption, which
is significantly lower than that of wifi. It also supports a variety of services that"
allow the user to tailor its use specifically to his or her needs.

Most consumers today are only familiar with Bluetooth headsets for cell phones, |
Bluetooth printers, and other devices that make simple use of the technology. A
closer look at Bluetooth suggests reasons why the more advanced applications
of the technology are not more common. Though Bluetooth is present on many -
devices, its implementation is often inconsistent, especially with the services it
supports; the standard Bluetooth device that comes in most Macintosh computers,
for instance, does not support the service that emulates wifi [2]. In addition, there
are a number of restricting limitations on the medium itself, including lower band-
width, lower range, and behavior that differs drastically from wifi in a number of
important ways, such as the inability to broadcast messages to all devices in the
area.

On a similar note, computing is becoming increasingly more pervasive to-
day. Cellphones are becoming more complex, and handheld devices that basically
function as small computers, like the Nokia N800, are starting to appear on the
market. Currently, though, many of these devices are underused, and their useful-
ness has yet to fully materialize. The aforementioned N800 is a prime example of
this: the device is quite powerful, but little software exists for it.

This research project looks into using both of these underused technologies
by integrating Bluetooth communications into wifi-based mobile ad-hoc network
protocols. These protocols are designed for large numbers of mobile devices with-
out any centralized structure, so that devices may enter and leave at will. This for-
mat complements the nature of handheld devices, which often only support Blue-
tooth (although wifi support is mcreasmgly common) and which are designed for
mobility.

There are a number of potential applications for such networks. Ideally, they
could supplant cell phone calls with VOIP carried by Bluetooth, as suggested in
[22] which would allow for calls to be made in areas with no cell phone reception

and could thus be used to avoid consuming cell phone plan minutes. From a less
ambitious standpoint, these networks could be used to allow phones access to-
the Internet without having to pay for cellular Internet. At the very least, instant .
messaging could be done over these networks, avoiding the potentially costly use
of text messages. From a more research-oriented standpoint, it would be possible
to use a network such as this for a distributed computing framework, making it
easier to leverage the admittedly limited, though still potentially useful, processmg
power of Bluetooth-only devices.

In this paper, I will first provide background on both mobile ad-hoc networks
and Bluetooth in section 2, and look at some of the difficulties created when at-
tempting to combine the two, in section 3. Then, in order to get a better idea of -
how a mobile ad-hoc network that integrates Bluetooth might perform, I will ex-
amine in section 5 several mathematical models of mobile ad-hoc networks and try
to apply their results to the protocol described here. In addition, I will look at the
results of simulation models and papers that deal with the proper ways to perform’
them. Section 4 describes the steps I took to actually physically implement this
network, so as to get some idea of its feasibility. I then used the statistics I gath-
ered from my physical implementation and its testing in section 6.2 to simulate a
Bluetooth-integrating MANET, the results of which I detail in section 6.3. For the
simulation, I will look principally at the time the devices spent connected, as that
should give some indicator of how smoothly the network will perform in various
circumstances, which in turn will help determine which of the above applications
will be viable under this framework.

2 Background

2.1 Mobile Ad-hoc Networks

Mobile Ad-hoc Networks, or MANETS, have been the subject of a sizeable body
of research in recent years. As mentioned earlier, these are networks designed .
to support large numbers of mobile computers, without any kind of centralized
servers or routers [14].

In 1999, S. Corson and J. Macker published RFC 2501, a document that de-
scribes the principles behind MANETS in brief detail. While this was not the first
work on the subject, as many of the ideas that MANETSs employ have existed in
various forms since the 1970s, it is the first RFC (RFCs are standards documents
published by the Internet Engineering Task Force) published on the matter and

stands as a useful reference. Some of the primary characteristics of MANETS it
describes are fairly intuitive, such as the changing nature of their topologies, but
most are not readily apparent. MANETS often need to monitor their energy con-
sumption, as mobile devices often use batteries, and bandwidth often fluctuates
greatly, due to both the movement of the devices and the limitations of wireless
networking. Security also poses a problem, again because of the nature of wire-
less networking. .Note that there is no mention of the wireless protocol used;
hypothetically, MANETS can work over any means of wireless communication,
though most MANET implementations assume a medium similar to the IEEE
802.11 WLAN interface. | | »

The RFC also discusses a number of potential metrics that can be used to judge
the performance of MANET routing protocols, including throughput, delay, and
the time it takes to acquire routes from one device to another. Another metric
is the “efficiency” with which the protocol operates—how much network traffic
is required to transmit messages and to keep the network running smoothly. In
addition, the RFC stresses the consideration of the characteristics of the network
itself when measuring performance, rather than merely examining the protocol
in a vacuum. These characteristics include the amount of movement within the
network and the frequency thereof (if movement is constant, or if it starts and
stops), how spread out the network is, and how fast the links can transmit data.
All of these will directly affect a MANET’s performance, and some protocols may
~ be affected differently than others. One protocol might perform well in. networks
" with little movement but poorly when significant movement and unrehablhty are
introduced. In contrast, a different protocol might perform more slowly than the
first under ideal circumstances but handle better under difficult conditions.

Research into MANETS has yielded a large number of protocols, though most
of these have only been proposed and not implemented. Of those that have im-
plementations, three stand out as particularly important: the Optimized Link State
Routing protocol (OLSR), the Dynamic Source Routing protocol (DSR), and Ad
Hoc On Demand Distance Vector (AODV) routing.-Each of these protocols has at
least four different implementations [37], and each has an RFC that explains it in
detail [18].

The first of these, OLSR, is an example of a proactive protocol. This means
that it discovers routes actively, regularly flooding the network with control mes-
sages, which provide information about neighbors and link strength. Ordinar-
ily, this could clog the network with excess traffic; however, the protocol avoids
this problem by designating certain nodes as “multipoint relays” (MPRs). These
MPRs are the only nodes that actually forward the.control messages they receive,

5

which reduces the traffic by a significant amount [12].

AODV and DSR, on the other hand, are both reactive protocols, meaning
that they discover routes as necessary, rather than attempting to keep the net-
work topology constantly up to date. Ideally, this strategy reduces network over-
head and improves the network’s ability to accomodate large numbers of nodes
[30]. As in OLSR, route requests propagate through flooding, though there are no
equivalents to MPRs. For both protocols, a node sends out route requests when it
generates a message whose destination is not in the node’s routing table {30, 20].
In addition, AODV will send out a route request when a node receives a message
with a destination for which it lacks a route [30]. This difference arises through
the way each protocol specifies the routes for their packets. DSR attaches the en-
tire route from source to destination to the packet, whereas AODV specifies only
the source and destination nodes [30, 20]. Partially because of this, the two proto-
cols perform quite differently: AODV generates better throughput and less delay
than DSR in situations where devices are moving quickly and there are numerous
nodes, while DSR tends to do better in those metrics than AODV in circumstances
with less mobility and fewer nodes [31]. ‘

In addition to these three, other routing protocols have been proposed. Pei,
Gerla, and Chen have proposed “Fisheye State Routing”, a protocol that attempts
to reduce the overhead caused by maintaining a full network topology by only
updating nearby nodes in the network graph with any frequency [29]. Kyasanur
and Vaidya propose a protocol that takes advantage of both multiple channels
and multiple wireless devices on a single device [25]. Jipping and Lewandowski
have proposed the HAND network model, which includes a light MANET layer
designed to work on handheld devices [19].

Although few of these protocols have working implementations, most of them
have been tested using simulations. Even major protocols like AODV and OLSR
are often simulated to test for large-scale performance, as the cost of procuring the
necessary equipment often precludes a real-world test. Currently, the most popular
simulator is ns-2, though this apparently experiences problems with scalability.
Kargl and Schoch argue that the JIST/SWANS simulator actually functions better
on the whole, though it has yet to come into wide use [23].

Most researchers regard their simulated results with a high level of confidence,
but some have raised questions over the accuracy of these statistics. In particular,
Kiess and Mauve examined implementations of two MANETS, including AODV,
in 2002 and found that a number of problems arose in keeping connéctivity that
never appeared in simulations. In particular, they found poor signals that occa-
sionally gained high strength to be a major problem; the protocols would assume

6

these links would remain at high strength, and then would waste a fair amount of |
time repairing the network when transmissions timed out after the links returned
to their usual low connectivity [11].

Simulation is not the only form of testing that occurs, however. Toh et al de-
scribe the methods they used to test a new MANET protocol on a college campus,
giving them information on throughput and end-to-end delay, among other statis- -
tics [35]. Some researchers also model MANETSs. Khalil et al uSe‘ an epidemic
model to determine the optimal number of nodes for information to fully flood
a network, determining the density to be about 620 nodes/km? [24]. In addition,
Cai and Eun use random-walk models to verify a power-law distribution for the
time between meetings of mobile nodes in an unbounded area, and an exponential
distribution for a bounded area [8].

Finally, some contend the idea that MANETS are a particularly efficient way
to coordinate mobile traffic. Mahmud et al argue that MANETS are actually quite
inferior in most applications to mesh networks, which feature a number of static
routers in addition to the mobile nodes [27]. While they may have a point, mesh
networks lack some of the versatility of MANETS since they require a fixed archl- ‘
tecture and thus cannot be spontaneously deployed. Thus, research into MANETs
continues today.

2.2 Bluetooth

Bluetooth exists as one of the principal alternatives to the IEEE 802.11 wireless
interface. Like the 802.11 interface, Bluetooth employs the 2.4 GHz band, leaving
it open to interference from other devices. To circumvent this, Bluetooth devices
perform numerous frequency hops when operating [17]. Bluetooth’s bandwidth
rate is limited to 1 Mbps and most devices have a range of ten meters. Compared
to 802.11, these capabilities are quite limited, but Bluetooth is not intended to be
a direct competitor to this interface. Instead, it is designed to facilitate “Personal
Area Networks” (PANs) of electronic devices, many of which may be small and
battery powered. The lower bandwidth and range of Bluetooth actually facilitate
this, since they allow for significantly lower power consumption [17].

To provide easy interfacing between applications, Bluetooth devices employ
different service profiles, which provide different methods of communication be-
tween devices [17]. These include SPP, the serial port profile, which emulates a

serial connection between two devices; FTP, the standard Internet file transfer pro- - =

tocol; and OPP, or object push profile, which is another means to transfer files be-
tween Bluetooth devices[5]. These profiles operate on top of the several protocols .

(
7

that Bluetooth supports [17]. The most notable of these are the Service Discovery
Protocol (SDP), which allows Bluetooth to discover the services present on other
devices; BNEP, which allows for transport of IP and other networking protocols;
and RFCOMM, which provides serial port emulation [5].

Unlike 802.11, which is a broadcast medium, Bluetooth focuses on making
specific connections between devices. When connecting to each other, Bluetooth
devices form piconets of up to eight devices, wherein one is a master and the
others are slaves. The master coordinates communication among the slaves and
determines the series of frequency hops [17].

The small number of Bluetooth devices that can connect to each other could
prove a limiting factor. However, according to the Bluetooth specification, a de-
vice can be a master or slave in one piconet and a slave in another, forming a so-
called “scatternet”. Unfortunately, very few Bluetooth devices actually implement
this feature owing to difficulty in devising efficient scheduling algorithms for such
an arrangement [17]. A decently large body of research exists describing potential
algorithms; Racz et al, for instance, devised a method that coordinates scheduling
between piconets via a pseudo-randomly generated sequence of “meeting points”
between nodes in different networks [32]. They find that the algorithm performs
almost as well as the ideal scheduling algorithm; unfortunately, at no point do-they
give quantitative numbers about performance, such as the average delay. Misic
and Misic actually do analyze the delay in a two piconet scatternet, finding that it
can reach into “the range of seconds”, though they hasten to note that such delay
is acceptable for certain applications [28].

Much of the research into Bluetooth at this point seems to be theoretical.
Kapoor et al, authors of [21], look at support for transporting multimedia over
Bluetooth, comparing the results to 802.11. Surprisingly, Bluetooth performs
quite well, partially because its connection-oriented nature cuts down on interfer-
ence. However, the article seems to assume that scatternets exist, since it discusses
additional Bluetooth nodes increasing network capacity, which can only occur if
piconets can interact with each other. Thus, the practical results of this study are
dubious.

Similarly, a paper that describes a system integrating Bluetooth and 802.11,
much like this project, relies upon devices that combine both systems, as well as
the ability to sense signal strength, which the Bluetooth specification does not sup-
port [13]. Another paper, [10], describes means of interacting between IP access
points and Bluetooth devices and claims that its proposals can be implemented
with current technology. However, it appears to rely upon scatternets, which do
not function for most Bluetooth devices.

3 Difficulties with Bluetooth Based MANETS

Now that there has been a background on both the Bluetooth medium and MANET
protocols established, it is worth considering how the two will interact, given the
details of their functionality. This will directly inform the best way to implement
a MANET with Bluetooth.

The inability to form scatternets stands as the largest barrier toward success-
ful MANET implementations in Bluetooth. Certainly with scatternets, Bluetooth
MANETsS are entirely possible; [32] uses AODV as the routing protocol when
testing the performance of its scatternet algorithm. However, [22] describes a
potential Bluetooth-based MANET protocol, but notes that it is currently impos-
sible to implement on today’s hardware because no common devices implement -
scatternets.

Even allowing for scatternets though, Bluetooth has several quirks that need to
be considered when designing any networking system that employs it. Firstly, the
connection-oriented nature of Bluetooth forces a new connection for every data
transfer and prohibits any kind of broadcasting of messages. Secondly, device
discovery and connection setup are both relatively lengthy processes, requiring
careful consideration of how connecting is handled. Because of this, straightfor-
ward “ports” of MANET protocols to Bluetooth will face extensive delay times in
communication [22]. Also, though not directly related to Bluetooth, many devices
that run Bluetooth have relatively low memory and processor capabilities. Thus,
they may have difficulty running some of the more intensive protocols, such as
DSR, which requires the sending device to know the entire route of the packet
[191.

Given these limitations, the most efficient method for integrating 802.11 and
Bluetooth into MANETSs would be to use devices that have access to both inter-
faces to act as network access points (NAPs) to the 802.11 network, and to allow
Bluetooth- only devices to communicate solely with these. Bluetooth directly sup-
ports this use of the technology through the PAN service profile [4],-which allows
for connection to ethernet services through NAPs and assigns IP addresses to the
Bluetooth devices, among other things. Unfortunately, support of this service is
spotty; Mac OS X, for instance, does not provide it {2], though Linux does [6].
Using it would thus lead to problems with porting the protocol to different oper-:
‘ating systems, though it would faciliate the coding.

The alternative to using PAN would be to employ SPP; a basic service which

- would allow the packet data to be sent across a serial-like connection. This would

provide the necessary data transfer capabilities, although assigning a valid IP ad-

9 4 | '

dress to a Bluetooth-only device could be tricky. However, data transfer over SPP
is limited to 128 kbps [S], which could restrict its real-time applications (voice
transmissions, for instance, could become difficult). Alternatively, OPP (Object
Push Profile) could be used, though the operation of this is often quite clumsy and
may involve prompting the user to accept file transmissions on certain devices.
OPP also lies atop SPP [5], so devices that support one are likely to support the
other. .

In addition to Bluetooth considerations, one must also decide upon a MANET
protocol to employ. Because this project’s goal is to integrate Bluetooth into”
802.11 MANETs, writing a completely new MANET protocol makes little sense,
given time constraints. Furthermore, few implementations of MANET protocols

exist, as mentioned before, limiting the choice to one of DSR, OLSR, or AODV. -

Because Bluetooth devices often have fairly tight memory constraints, DSR can
be eliminated almost immediately, since each node needs to have complete knowl-
edge of the routes its packets travel. AODV and OLSR, while they do require the
nodes to keep a routing table, do not require the entire route to go into the packet
header, allowing Bluetooth-only devices to have only a rudimentary knowledge of
the network topology. In addition, the lengthy Bluetooth device discovery process
poses some problems. Because OLSR is an active protocol, it constantly queries
its nodes to ensure that connections hold stable, which could presumably allow for
fast discovery of a Bluetooth link break. In contrast, because AODV is reactive,
it will likely not discover a Bluetooth link break until it tries to send a packet, at
which point it will likely take a number of seconds to rediscover the device and
reestablish a route. While a more active behavior for Bluetooth nodes could be
programmed into AODYV, it is probably best to try to keep the protocol operating
under its standard set of principles.

Given these considerations, I chose to implement this using the PAN service
and AODYV, due to the relative ease which these provide. Thus, the architecture
of the protocol will have each Bluetooth only device designated as a PANU, and
each bluetooth-wifi gateway defined as a NAP. I describe this implementation in
the following section.

4 Implementation

Because most Bluetooth research seems to exist only in theory, I decided to imple-
ment the Bluetooth-wifi MANET integration, both to see whether this architecture
would work and to investigate the difficulties of programming for Bluetooth de-

10

~

vices. This entailed choosing a MANET protocol and then determining a way
to have Bluetooth devices automatically connect to each other and transfer data.
From there, I had to figure out a way to have the MANET protocol use the Blue-
tooth interface in addition to the 802.11 interface.

.For the MANET portion of this project, I decided to use AODV Whlle not
ideal for the small devices likely to run only Bluetooth, it still seemed better suited
than the other mainstream alternatives, OLSR and DSR. Because it is a proactive
protocol, OLSR requires nodes to constantly send routing messages throughout
the network, which could potentially clog the limited bandwidth of Bluetooth.
AODV only requires route discovery messages when necessary, which would cut
down on overhead. DSR, while reactive like AODV, requires sending nodes to
have complete information about routes and requires the message to contain the -
entire route, whereas for AODV, the message need only contain the beginning and
destination and the sending node need only know the next hop along the path.
Because of the nature of the Bluetooth component, Bluetooth only nodes will
never forward messages and thus can save storage space by only storing the next . "
hops. Similarly, the decreased message size will help save bandwidth.

The specific AODV implementation I chose to use was AODV-UU, due to its
standards compliance and its ready availability. This implementation is written
for Linux, so to program the Bluetooth connectivity component, I used Bluez,
Linux’s default Bluetooth library.

Bluetooth, and thus, Bluez, provide a number of different services which al-
low for connections between devices. As mentioned in section 3, I chose to use
the PAN service, which, when configured, allows Bluetooth to work analogously
to a standard network device. The standard Bluez distribution provides a dae-
mon, pand, that facilitates PAN connections. While the listening functions on this
work excellently, allowing for NAP nodes (those with both Bluetooth and wifi
access, allowing the pure Bluetooth nodes access to the broader network) to lis-
ten indefinitely for connections and run configuration scripts upon connection, the
connection functions proved inadequate for my purposes. The daemon allegedly
supports periodic polling of nearby nodes to attempt to connect, but I was unable
to get this to work properly. Because of this, and also to experiment with the us-
ability of the Bluez API, I decided to create my own program-to connect to NAP
nodes.

Rather than use direct C calls to the operating system, Bluez relies on DBUS,
Linux’s intra-system message passing system, to do most of its work. Essentially,
the utility that activates Bluetooth, hcid, sets up a number of objects to which
the user can send DBUS messages to make them perform most Bluetooth tasks,

11

such as device discovery and establishing connections. This allows for portability
between languages—the languages need only an interface to communicate over
DBUS-and, hypothetically, simplifies Bluetooth programming for the end-user.
Unfortunately, the documentation for Bluez is fairly sparse, consisting principally
of API documentation for the DBUS objects. Examples of code, especially for
C, the language in which I worked, are rare, and the GLIB DBUS API features *
arcane and convoluted syntax, leading to a steep learning curve.

To access the Bluetooth API, one must first establish a connection to the DBUS
system bus (not the session bus, which is also an option). From here, one can then
create proxies for the different Bluez objects and call methods on the proxies,
which then invoke the methods on the real objects and return the results. The
procedure for doing this is fairly straightforward: in the call, one must specify
the function called, the parameters and parameter types, and then the return types.
The only real complication occurs with determining what types to use. The API
appears to have been written mainly for use with the Python DBUS libraries, and
specifies return types like arrays of strings and dictionaries. A perusal of the
examples on the Bluez wiki [6] reveals that string arrays correspond to char ** in
C, while I believe dictionaries are returned as the type *GHashTable.

An example of a typical DBUS call appears below. In this case, the call is to
the ListAdapters method, which provides a list of the Bluetooth adapters available.
The syntax, while cumbersome, is at least consistent.

if (!dbus_g_proxy_call (proxy, "ListAdapters",

&error, G_TYPE_INVALID,

G_TYPE_STRV, &name_list, G_TYPE_INVALID)) {
g_printerr("Error: %s\n", error->message);
g_error_free(error);
exit (1);

}

The syntax becomes significantly more complicated when callback functions
are necessary, as is the case with device discovery and connection establishment.
After a method with a callback is called, the DBUS object will then emit a signal,
which will result in a function from the original program being called. In order
to perform this, one must register a signal marshaller for the signal’s parameters,
register the signal, and link the signal to the callback function. GLIB provides
a number of single parameter signal marshallers, but in order to create a mar-
shaller for a signal with multiple parameters, one must run the glib-genmarshal

12

program, which creates both source and header files for a marshaller with param-
eters specified when starting the program, and then compile these files with the
final program. The signature for the callback function must take as its first param-
eter the object that sends the signal, followed by the parameters for the signal and
a void pointer to user-defined data specified when the callback is linked to the sig-
nal. The procedure on the whole is byzantine and far from intuitive; I determined
the necessary callback signature more or less through experimentation and some
extensive Google searching. :

The following code provides an example of how to register a signal with its
callback, as described above. In this case, this links the “Remote Device Found”
signal with the callback function remote_device_found_handler. This signal. is
generated during device discovery, when the. Bluetooth adapter detects another -
adapter within range. The signal calls the method with the address of the dis-
covered Bluetooth device, the class of the discovered device (represented in an’

_unsigned integer), and an int for the rssi value.

dbus_g_object_register_marshaller(
g_cclosure_user_marshal_VOID__STRING_UINT_INT,
G_TYPE_NONE, G_TYPE_STRING,
G_TYPE_UINT, G_TYPE_INT,
G_TYPE_INVALID); .
dbus_g_proxy_add_signal (adapter, "RemoteDeviceFound",
G_TYPE_STRING, '
G_TYPE_UINT, G_TYPE_INT);
dbus_g_proxy_connect_signal (adapter, "RemoteDeviceFound”,
G_CALLBACK (remote_device_found_handler),
connection, NULL);

-The actual procedure for establishing a PAN connection is fairly straightfor-
ward. All objects mentioned here are described in either the standard Bluez API .
or in the network service APLFirst, one uses the Adapter object to initiate device
discovery. Then, once a device is found, assuming it has the necessary services
(more on this later), one can actually establish a connection. This involves first
using the Manager object to start the network service and to obtain a proxy object
for it. Then, one uses the network service to create a connection proxy for the
Bluetooth address of the discovered device. Finally, one invokes the “connect”
method for the NAP service on the connection object. This method returns the
network interface for the connection, which will be bnep0 if no other Bluetooth

13

connection exists. Assuming the device successfully connects, the connection will
then send a “connected” signal. In the callback, it will then be safe to configure
the interface with an IP address, which can-be done by using execlp to run ifcon-
fig from within the program. For this to function properly, the program must have
been started with root privileges.

Once the device loses the connection, the connection object will generate a
“disconnected” signal. In the case of my program, this causes the connection
process to begin again, starting at device discovery.

In order for this procedure to work, the target of the connection must have
the NAP service enabled; otherwise, the connection will fail. One way to deter-
mine this is to scan the services offered by the remote device and only attempt -
to connect if it offers the NAP service; unfortunately, service discovery may take
several seconds, slowing connection time. Though I have not experimented much
with this, it may be faster to automatically try to connect and abort if the service is
not offered. This depends on one of the method calls reliably generating an error
message, though, which I am not sure is the case. Currently, my program uses a
service scan.

While the Bluez DBUS API works well for client connections, it does not
work nearly as well for listening for connections. There appears to be no way to
determine whether a connection has been established by a remote agent, making
it next to useless for this purpose. In addition, running any program that employs
the network services offered by the DBUS API renders pand non-functional. Fi-
nally, the documentation for this portion of the API is incomplete, and possibly
incorrect in spots (at the time of writing).Thus, it is significantly more convenient
to simply use pand to listen for connections on the NAP side. pand’s functionality
is documented at the Bluez pand HOW-TO, which provides a number of useful
examples for setting up network connectivity [33].

Because AODV-UU allows the user to specify any network interface for its op-
eration, the PANU can simply start it for the interface bnep0. Unfortunately, this
does not work for NAP nodes, since they will have a separate interface for each
connection made to them and they will need to communicate over the ethQ inter-
face as well. I solved this problem using network bridging, directly as described
in the BlueZ pand HOWTO. This involves creating a network bridge, pan0, with
the ethO interface automatically added to it. When invoking pand to listen, specify
in the devup parameter a script that adds the bnep interface generated upon con-
nection to the bridge. To run AODV-UU on the NAP after doing this, one then
invokes aodvd, the AODV-UU daemon, for the pan0 interface.

Ultimately, my implementation proved reasonably successful. While several

14

quirks exist, as described in the performance testing, it should be possible to fix:
them, given time. My impression of the usability of the Bluez API is mixed, how-
ever. While the initial learning curve is immense, the coding becomes relatively
straightforward, albeit wordy, after one learns the basics. The actual performance
of the APIs as advertised seems shoddy, as demonstrated with my failure to use .
the server functions. However, the development team is updating the libraries at a
rapid rate, and the issues may be fixed soon.

15

S Modeling

Now that an implementation for a mixed Bluetooth-802.11 MANET exists, the
next step is to investigate how well it works. Before engaging in direct simulation
or testing, however, it helps to have an idea of how MANETS generally perform.
This section will examine models, both analytical and simulation-based, to deter-
mine this. In addition to looking at general properties of MANETS, I will try to
apply some of the analytical models to my own protocol.

5.1 Background

Modeling is of key importance to most MANET projects. Rigorously testing a
MANET requires hundreds of systems distributed over a fairly broad area and
numerous trials. Few organizations, especially in the research community, can
muster the resources needed for such an effort. Thus, researchers usually turn to
models to verify a MANET’s performance.

In some cases, these models are analytical. This forces the possible scope of
such models to be fairly narrow; if the models strive too hard toward realism, the
analysis often becomes intractable. Thus, these models usually consider the gen-
eral properties of MANETS, rather than those that derive from specific protocols,
like the effect of multipoint relays in OLSR, for instance. Instead, certain models,
such as [3] and [34], deal with the necessary conditions to keep a MANET con-
nected, while others, such as [24] and [26], analyze the efficiency of information
flow over the MANET. In addition, [13] presents a model for a situation similar to
that with which I am dealing, albeit with a few notable differences.

Most models, however, are simulation-based. The majority of these use ns-
2, though other simulators, such as JiST/SWANS, may work better [23]. These
simulators go into a high level of detail in simulating different protocols; the code
often resembles that of the actual MANET. A fair amount of discussion exists on
how realistically simulations behave. Ref. [9] looks at the different mobility mod-
els one can use for the nodes in the network, and how the choice affects the results
of the simulation, for instance, and [11] criticizes simulations for not adequately
reflecting reality (in this case, the effects of weakening signal strength). Despite
this, most papers that compare MANET protocols, like [31] and [7], rely entirely
on simulation for their results.

16

7

5.2 Analytical Models

5.2.1 Connectivity and Transmission Range

Mobility in MANETS introduces the possibility that not all nodes may be con-
nected to each other at a given time. Indeed, detection and repair of broken routes
comprises a critical function of most MANET protocols, though these can be
time-consuming operations. As such, analysis of the connectivity of a MANET
- can provide helpful insight into the overall efficiency of a MANET. This is espe-
cially important for Bluetooth, since its range is very limited compared to that of
802.11 wireless. '

One of the most useful models I have encountered thus far is the subject of [3].
This paper analyzes the transmission range necessary to achieve different levels
of connectedness within a given MANET using graph theory. Graphs consist of .
collections of nodes connected by links, or edges. When modeling a network, the -
nodes represent individual systems—in this case, PANUs, NAPs, or devices with
only wifi access—and the links represent connections between them.

In performing analysis, [3] looks at two related metrics: minimum node degree
across the network and k-connectivity. Node degree refers to the number of nodes
which are linked to a specific node; thus, minimum node degree would be the
minimum number of nodes attached to any specific node in the network. The
direct analog to this in the actual MANET would be the minimum number of
devices connected to any device in the network. Regarding the latter metric, a
graph is connected when any node can be reached from any other node. A graph
is k-connected when there exist at minimum k mutually independent paths from
any given node to each other node. This corresponds to the number of routes that
the data can take between devices in the MANET. In Figure 1, the minimum node
degree is two, since node E is only connected to nodes D and B. The graph is also
2-connected, since there exist only two independent paths from node E to node
A; while more paths exist, they all have to travel through either edge D-E or edge
B-E.

To construct the model, the author assumes that the nodes in the network occur
in a uniform random distribution across a two-dimensional plane. This is critical,
since it allows the author to avoid actually modeling mobility; he assumes that
the motion of the nodes will preserve the distribution, which means that change
in position need not be accounted for. A pair of nodes can communicate if their
transmission power, which decreases based on distance, is above a certain thresh:
old; transmission range is based on this.

17

Figure 1: Example of minimum node degree and connectivity.

18

The analysis in the paper begins by simply attempting to determine the proba- ‘
bility that a network will have.nio isolated nodes; that is, that each' node will have
at least one neighbor with which it can communicate. This does not, however, say
anything about the connectivity of the network, as it is possible to have isolated
“islands”, where several nodes communicate with only each other but no other
nodes in the network. To determine this probability, the paper looks at the nearest -
neighbor distance, the distance between a node and-the closest node to it. For this,
the paper considers the nodes to be a set of points arranged in a two-dimensional
homogeneous Poisson point process. A Poisson point process is a means of mod-
eling the layout of events, either in time or at specific locations, that occur at
random intervals at an average rate based on a constant over a two dimensional
plane, independent of previous points in the area[15]. As a result, the occurence
of the points follows a Poisson distribution.

Preexisting work in spatial data analysis has shown that in this case, the prob-
ability density function for the nearest neighbor distance is f (§) = 2mp€e™"" &
where ¢ is the nearest neighbor distance greater than 0, and p is the node density
in the initial area (the derivation is not given in the paper). From this function,

the paper notes that the probability of the nearest neighbor being within transmis-
~ sion range is equal to the integral of this function from O to 7o, which evaluates to
1—e~#™" where g is the range. To find the probability that each node has at least
one neighbor, one raises this to the n, to account for each node in the network:

P (dmin > 0) = (1= e7™8)". B

Here, d,;, refers to the minimum degree of all nodes. From here, I solved this
equation for node density necessary to achieve a probability p, yielding the fol-
lowing: (.
—~1In(1 — p») ' ,
o - P=) ' \ (2)
After this step, the paper expands the model to look at the: probability of all
nodes having minimum degree n. This is a more useful metric than merely having
no isolated nodes; because a node that has multiple neighbors will not become
disconnected from the network if one of its neighbors goes down. A node with
only one neighbor in such a case will, however, become isolated. The math here is
not a direct extension of the previous methods used, but the techniques are similar,
as this portion also considers the nodes to be distributed in a Poisson-point process.
First, the paper considers the one-dimensional case. To find the probability
that a node has minimum degree no, it considers the probability that there are ng -

19

nodes within the transmission range of the node. This can be approximated with
a Poisson distribution, producing the following formula where the range is ro:

P(d=no) = %‘%eﬂ’%, 3)

the probability that one node has a degree of exactly ng. The quantity 2r, appears
in the formula because the “area” covered on the one-dimensional line by the
node’s transmission is composed of the transmission range on each side of the
node. .
To arrive at the two-dimensional case, the paper changes lengths to areas in
the Poisson distribution, yielding, after similar manipulations,
2\70
P(d = ng) = LT o,)
(no!)

Here, 2ry changes to 7r2 to reflect that the area covered by the wireless transmis-
sion is now circular, rather than linear.

The final equation for the probability that all nodes have at least n neighbors
is

no=l (prr2)N 2\
P (dmin 2 m0) = [1= D e | . (5)
iz N

This can be obtained by noting that the probability that a node has at least degree
ng is equal to one minus the sum of all probabilities that a node has a specific.
degree less than ng, taken to the nth power, so that all nodes in the network are
considered. This formula is significantly more difficult to use and calculate than
the previous formula for the probability of no isolated nodes, but, as mentioned, it
provides a stronger benchmark and can still be calculated without a great degree
of difficulty, especially if one employs a computer to do so.

Figure 2 displays a plot of the probability that a network has minimum node
degree two for an area of 1000mx1000m, based on the transmission range and the
number of nodes. The plot consists of a plateau of high probability of connec-
tion, which drops off sharply to almost no probability. This indicates that for a
given amount of nodes in an area of that size, there is a narrow range of trans-
mission ranges for which the value will actually matter. Outside of this range, the
transmission range is either too short for the distribution of nodes to be able to
effectively communicate among each other, or the nodes are too close together for
an increase in the range to actually matter.

20

Figure 2: Plot of Equation 5 with dp;, = 2.

This still leaves the question of connectivity open, which is a far more useful
benchmark, since it guarantees that no “islands”™ will exist in the network. Be-
cause k-connectivity provides redundancy when nodes fail, it has even greater
utility. To model connectivity, the author considers the links in the graph, not
just the nodes. A fully random graph, with both nodes and links created at ran-
dom, cannot adequately function as a model for a MANET in this case, -since the
links will not necessarily correspond to connections. Thus, [3] uses random geo-
metric graphs (see Figure 3 for an example), which have random node placement
and links which exist between nodes if the nodes are within a certain distance of
each other. This directly models MANETS, given the paper’s assumptions. Con-
veniently, Bettstetter uses previous findings that, given a large number of nodes,
there is high probability that a random geometric graph will have k-connectivity
when it has minimum node degree k. Thus, the formulas provided earlier for min-
imum node degree also apply for k-connectivity, when using high probabilities.
In the paper, Bettstetter demonstrates that this holds true for networks with 1000
nodes distributed over a 1000mx1000m area. It should be noted that this figure’
uses toroidal distance-nodes near one border are considered to be close to those
near the opposite border—to improve its results, which may be disingenuous since

21

Unit length

Figure 3: Random geometric graph, with distance equal to the width of a node.
Note that the bottom two nodes are not connected to the upper group, since they
are too far away.

it does not reflect reality.

The assumptions in this model are fairly limiting. For one, the model does not
consider imperfect links or the possibility of fluctuations in signal power. While
the simulated results nonetheless generally agree with those of the model, the
problem cited in [11], that simulations do not account for fluctuations in signal
strength, means that these omissions could still be a major issue in the model’s
accuracy. This, however, can be avoided by treating the range of the wireless
device analyzed to be the minimum range that is likely to be encountered; since
the model is probabilistic, this should not cause many problems. More problem-
atically, the model only works under certain mobility models; specifically, those
which preserve a uniform distribution of nodes. This seems weak when consider-
ing the practical applications of the model. On the other hand, taking these issues
into consideration could lead to the model becoming overly complex and difficult

22

to analyze in a meaningful way.

Despite these objections, the model still works overall as an approximation
of connectivity; however, the model cannot be exactly applied to the networks
formed by this protocol. Bluetooth nodes will only be able to connect to one other
Bluetooth node at any given time, regardless of the number in range, and a given
Bluetooth access point can only connect to seven other devices. Still, finding
the probability of a minimum degree of one and 1-connectivity for a network
should give some idea of the potential performance of the network (likely an upper
bound).

As mentioned earlier, the necessary node density for a minimum node degree
of one given a range and a desired probability is 2. For a Bluetooth network, 7o is
approximately equal to 10 m. Assuming a network with 500. Bluetooth nodes, a
desired probability of .99 will require a minimum node density of 0.034 nodes per
m?, or a minimum area of 14,700 m? (121 m to a side). In contrast, an 802.11g
network has an outdoor range of about 140 m [36], which for the same conditions
will require a minimum node densxty of 1.5 - 10~ nodes per m?, or a minimum
area of 3.4 - 107m? (5830 m to a side). In addition to this, Figure 4 provides
a plot of the necessary density versus the desired probability and the number of
nodes. Somewhat unexpectedly, an increase in the number of nodes increases the
required node density to a degree that a smaller area is required.

The node density value calculated above serves as a lower bound for this pro--
tocol. The equation assumes that any Bluetooth node will be able to connect to any
other; this is not the case, as PANU nodes can only connect to NAP nodes. Given
an equal distribution of NAP and PANU nodes, these numbers should reflect re-
ality, as 1-1 connections for every device should be entirely possible. However,
in the case where there are many more PANU nodes than NAP nodes, which is
highly likely, the concentration of Bluetooth nodes will have to be greater.

Even assuming the best case, it is significantly more difficult to establish a
high degree of connectivity with uniformly distributed Bluetooth nodes than it is
with 802.11 nodes, as one would expect. Thus, Bluetooth nodes will likely have
to make an effort to cluster around NAP nodes to maintain connectivity, which
hurts the mobility of the network. Furthermore, NAP nodes are limited to seven
connections, making the practicality of establishing connections even lower in
situations where PANU nodes outnumber NAP nodes. -

Given this constraint, it would be helpful to have some idea of how many
NAP nodes are required for a given number of PANU nodes. Cordeiro et al. have
explored a situation similar to that which arises in this protocol in [13], which
describes a framework for delivering Internet access to Bluetooth devices using

23

ABEnber Of Modes

1.00

Figure 4: Plot of Equation 2 with d,;, = 2.

24

specially. designated “gateways”, which function like NAP nodes. At the end of
the paper, they derive an upper bound on the number of gateways needed in a
network.

However, the assumptions they use are quite different from those in 1 this pa-
per. They assume that the master of each piconet will not be the gateway node.
More importantly, their network assumes the existence of scatternets, and that
each gateway will bridge two piconets. Though the authors do not explicitly state
- this, mobility in this network seems to be minimized, if not existent at all. Thus,
their paper has limited direct applicability to this project. However, one can com-
pare the number of gateways needed for this architecture to the ideal number of -
NAPs needed in my architecture to see which method yields better results in this
area. -

In {13], the»piconets are assumed to be circles centered around the master
node, and a gateway occurs at the intersection of two piconets Therefore, to deter-
mine the maximum number of gateways needed, the piconets must form a circular
arrangement in which each piconet lies tangent to several other piconets. Specif-
ically, the arrangement that they form is the most compact arrangement of circles
possible; refer-to the paper for more detail. The authors then use properties of
circular geometry and-the area covered by each piconet to derive an equation for
an upper bound on the number of gateways in a network: | 2| — 2|4y/n — 4],
where n is the number of piconets in the network. Specifically, they determine that
the number of boundary piconets is |4+/n — 4], by finding the area of the annulus
that constitutes the border piconets and dividing it by the area of a single piconet.
Since each piconet can have up to seven nodes bordering on another piconet (the
master cannot lic on a boundary), there can be 7n gateways. However, for each
boundary piconet, there are four nodes that cannot border on another piconet, so
one must subtract four times the number of boundary piconets. Finally, this would
double-count the gateways shared between piconets, so the total must be divided
by two, yielding the prior equation.

Given this equation, a network with 72 piconets (up to 500 PANU nodes)
would require 188 gateways. To show that this is the maximum, the authors point
out that an arrangement with fewer piconets on the boundaries will have more
gateway nodes, and a circle has the shortest perimeter for a given area. This
means that no arrangement can have fewer boundary piconets and therefore, no
arrangement can have more gateways.

As mentioned before, this formula is mainly useful for the sake of comparlson
to the results of this paper. According to this, the worst-case ratio of all nodes
to gateway nodes is about 2.7. If this project requires a node-to-NAP proportion

25

less than or close to 2.7, it will work better than, or at least as well as, BlueStar.
However, BlueStar does not account for connection efficiency in their equations,
looking instead for coverage, so it will likely be necessary to look at the sum of the
time spent connecting and the time spent connected when simulating this paper’s
protocol to determine whether it performs comparably to Bluestar.

5.2.2 Information Dissemination

The ability for MANETS to communicate is not the only important factor in ana-
lyzing their behavior; efficiency in communication also plays a critical role. Gen-
erally, most analyses of MANETSs employ epidemic models in determining how
quickly information will spread throughout the MANET. Again, this analysis is
important for Bluetooth, given both its low bandwidth rate and range.

Ref. [24] takes a fairly basic approach to such modeling. The paper employs a
basic SI compartment model from infectious disease epidemiology, wherein S(t)
represents the number of susceptible nodes (i.e., those looking for information)
and I(t) represents the number of infected nodes (i.e., those with the information).
The authors begin with the standard equations

dS
gy~ 5

Here, o is a parameter that describes the diffusion of data between the “infected”
and “uninfected” nodes. In this case, a = %I (t), where (3 is the probability that
data will be transferred when an infected node contacts an uninfected node and x
is the number of contacts that a given susceptible node makes per unit of time. The
authors then substitute a for the coefficient %, describing a as “the progress of
information dissemination in the MANET”. They then derive the equation I(t) =
Tﬁ—a_m using standard solving techniques for first order equations. Here,
I(t) is the rate at which nodes receive information, and N is the number of nodes.
Unfortunately, deriving the value of a, which depends on the MANET algorithm
used, the mobility model followed by the nodes, and the characteristics of the
communcation medium, among other factors, can only be accomplished through
simulation, which is beyond the scope of this paper.

Using the value found for a, the authors find an optimal node density of
620km . It should be noted that the parameters for the model appear somewhat
bizarre in certain cases; the communication range is set to 75 m, and the com-
munication rate to 2048 Kbits/s (twice that of Bluetooth), corresponding neither

26

to Bluetooth nor any of the iterations of 802.11. Given this, though, the optimal
node density for the Bluetooth nodes in this protocol will naturally be higher.

In contrast to the fairly simple model described above, [26] uses a complex se-

ries of probability equations to analyze the performance of a buffered data sharing
algorithm, seven degrees of separation, over a MANET given parameters of the
devices including the transmission range, the buffer size, and the size of the area
over which the devices are distributed. The primary characteristic that the model
measures is the buffer hit rate, which depends on the probability of accessing the
information in local buffers and in remote devices.

The model provided is quite thorough, but its applicability to my current 51tu-
ation is limited. As all the models discussed here do, the paper assumes a homo-
geneous network, wherein all devices are identical. This could be worked around;
however, much of the efficiency analysis relates to buffer size and similar features,
which will vary widely depending on the type of machines running the protocol.
While I have only tested the implementation on full computers, it is entirely pos-
sible that handheld devices with significantly less available memory could be run-
ning stripped-down AODV implementations. Due to these issues, and because of '
the model’s complexity, implementing it and testing it for Bluetooth networks lies
beyond the scope of the paper. In addition, the math of the paper is closely tied to
the buffer system used, so I shall not go into detail on it here. That said, it should-
be noted that, for the parameters of the equation they used (similar to 802.11g),
an increase in the number of nodes generally yielded a small linear increase in
performance (about 10 percentage points from 50 to 250 nodes). While it should
be noted that the area considered is relatively small (1000x1000 meters), these
results may indicate that, in general, once there is a decent level of connectivity
within the network, increasing the number of nodes will only gradually affect the
distribution of data. '

5.3 . Simulation Models

While analytical models are quite useful in their own right, they have their limita-
tions. In order to be tractable, they need to make broad simplifying assumptions,
such as a uniform node distribution throughout the sample area, and they often fail
to account for details of the specific protocol being used. To obtain more accurate-
models, one must ultimately turn to simulations.

The complexity of such models often varies quite a bit. [34] uses a fairly
simple simulation to back up heavy analysis work. This paper looks at a very
similar issue to that explored in [3], seeking to ascertain the “critical transmission

27

range” given a number of nodes. Unlike [3], the range is determined using a graph
that connects the nodes based on their “direct neighbors”, pairs of nodes closer
to each other than any other nodes. The algorithm then constructs a minimum
spanning tree over this graph, and finds the longest edge, the length of which is
the critical transmission range. Though there is a strong theoretical basis behind
the model, it cannot be effectively used without simulating node movement using
a computer, which also allows multiple mobility models to be considered.

The model used three different mobility models (random waypoint, a random
Gauss-Markov model, and an unrealistic model in which nodes randomly appear
at points in the area) and an area of 500x500 units. In all cases, which included -
up to 100 nodes, the mean critical transmission range was over 100, agreeing
with the results of [3] when applied to Bluetooth MANETs. This model lacks
some of the pitfalls of the analytical connectivity model, but since it requires a
simulation and the experiments performed with the simulation are fairly limited
in scope, it is difficult to make any conclusions about the performance of the mixed
Bluetooth-wifi protocol proposed here. However, since 802.11 has a significantly
longer range than Bluetooth, the possibility exists that, in many cases, critical
transmission range will not be a problem, though, once again, this points to a
need for the PANU nodes to cluster around the NAP nodes.

The above model is something of an exception regarding simulation models
for MANETSs. The majority of simulation models go into heavy detail in simu-
lating networks, attempting to simulate nearly every aspect of the protocol and
the environment. [23] provides a list of the components that generally comprise
a simulation: an underlying simulation program (such as ns-2 or JiST/SWANS);
a simulation of physical characteristics, like the mobility model and transmission
range; emulation of the underlying transmission protocol, such as 802.11 or Blue-
tooth; a version of the network protocol programmed for use in the simulator;
and some means to collect and analyze results, which include metrics like rout-
ing overhead, the ratio of packets delivered to those received, and the length of
paths through the network [7]. The code for the network simulator that emulates
the protocol ends up looking very similar to the actual code for the protocol. In
AODV-UU, for instance, the simulator code and the real code share the same files;
the two are distinguished using a compiler option when building the program.

The first option that confronts one when trying to create a detailed simulation
such as this is which simulator to use. ns-2 seems to be by far the most commonly
used simulator, and it has a good deal of libraries written for it, including emu-
lation of Bluetooth. [23] makes a fairly strong case for JiIST/SWANS, arguing in
favor of its scalability, faster speed, and implementation in Java, rather than C. Al-

28

ternatively, given the complexity of these sort of programs, one can try to code a
MANET simulation by hand; this will likely not be able to be as comprehensive as
simulations using pre-existing software, but may be adequate for one’s purposes.

Another highly important factor is the selection of the mobility model to use.
[9] provides an in-depth analysis of how the mobility model affects the perfor- .
mance of MANETS, looking at both individual and group models. The paper
spends the most time analyzing the Random Walk model, where nodes randomly
choose directions and speeds at which to travel, and the Random Waypoint-model,
wherein nodes pause for a time and then choose a random destination and speed.
Other models analyzed include the Gauss-Markov model mentioned earlier and
the Nomadic Community Mobility model, in which nodes travel together in clus-
ters. The paper concludes that the mobility model chosen can have a dramatic
effect on performance, and recommends that the mobility model should be cho-
sen based on the anticipated scenario. It also gives specific recommendations for
models in general circumstances, particularly recommendlng the. Random Way-
point and Gauss-Markov models.

29

6 Testing

6.1 Introduction

The implementation section proved that Bluetooth and 802.11 MANET integra-
tion could be done, and the modeling section gave some idea of how this would
work; now, it remains to demonstrate more specifically whether it can be done
effectively. In order to do this, I must perform two steps. First, I must do actual,
physical testing to get an idea of the various physical parameters affecting the
network. Ideally, I would then be able to perform a rigorous physical test of the.
MANET, but a dearth of equipment makes this impossible. Therefore, I must do
simulation testing, using the parameters gleaned from the previous phase to make
this as realistic as necessary. In these latter tests, I will principally look at the aver-
age time each node spends connected, as well as the time each spends connecting.
The former will give some basic insight into how usable the network is; the latter
will help indicate whether any problems that exist are because of Bluetooth’s low
range (if the time spent connecting is relatively low) or because of Bluetooth’s
slow connection times (if the time spent connecting is relatively high).

6.2 Preliminary Performance Testing

Before actually testing the performance of AODV with Bluetooth, I first did some
basic testing of Bluetooth’s capabilities to get some idea of how well Bluetooth
performs in general. The first tests I did were of the time for a PANU device to
discover and connect to a NAP node. I did three instances of these tests, with
one, two, and three NAP nodes present. The connection times in milliseconds are
as follows, along with the NAP to which the PANU connected. The first NAP
was immediately next to the PANU, the second was on the floor above the NAP,
and the third was in the same room. These tests strictly measure discovery and
connection time; they do not account for the time it takes to discover services.
From this data, several details become apparent. First, the proximity of each
NAP to the PANU seems to have little effect on the NAP to which the PANU
will connect. Secondly, increasing the number of available NAPs from one to two
dramatically increases connection time, though going from two to three yields
little, if any change (using three NAPs yielded no outliers, but this is not likely
to be significicant). This indicates that it may be better for to have a network in
which the NAP distribution is relatively sparse, as a ten second connection time
could cause severe problems for any application that relies on uninterrupted data

30

Time (ms)

10750
823
768
1127
618
857
1318
1977
1186
11478

848

Time (ms)

NAP

- 11062 .

10638

11420

11365

10997
384

10972

10890
10635
11696
1142
10908

NN = = NN === -

'Rbbi:OneNAP

Table 2: Two NAPs

31

transfer, like VOIP. However, it could be difficult to both achieve this and ensure
that almost all PANUs have a NAP with range.

When the service check before connection is implemented, the times for a
PANU to connect when there is a single NAP in range resemble those to connect
to two or more NAPs. The times appear in the table below; naturally, these will
be increased if there are devices in range that do not support the NAP service (like
other PANU).

Z
>
v}

Time (ms)
11561
11459
11498
11539
11955
10750
11733
11789
11521
12546
11467
10761

= N NN =N = WWwN N

Table 3: Three NAPs

Connection Time (ms)
10826
11079
11329
11325
11117
11667
11089
11166
10735
11342
11420

Table 4: One NAP with service check

32

Interestingly, however, there is no noticeable difference between the version
with the service search and that without when the number of NAPs is increased to
two. This strongly implies that there is no change in connecting time when there
are multiple available NAPs. ‘

Time (ms) NAP
11161 '
11158
11234
11461
12298
12324
11286
11366
11293
11342
11234
11274

Table 6: Connection Time With Two NAPs and the Service Search

Similarly, there is no significant difference when not all of the machines are o
valid NAPs, as seen in tables 8 and 10. ‘ \

A difference does occur, however, when trying to connect to a NAP with one
PANU to which it is already connected. The connection times are shown in Ta-
ble 12. This difference is statistically significant, with a p value of .0028 when
compared to the standard results for connecting to a single NAP when using the
service search. Unfortunately, logistical obstacles prevented me from carrying out
this experiment with more than one PANU; however, these results have an impor-

tant signficance in the simulation results, as described in the section below. In

addition, they indicate, contrary to previous impressions, that it may be better to
have a denser amount of NAPs, so as to reduce the average number of PANUs
connected to each NAP, as well as make it more likely for any given PANU to
have at least one NAP in range.

33

2 machines, 1 NAP 3 machines, 1 NAP

Time (ms) Time (ms)
11199 11732
11291 11752
11263 11879
11250 11747
11497 11714
12026 11653
11252 11755
11294 11723
11239 11778
10981 11737
11002 11763
10999 12434
11207 12704
10996 - 11800
11228 ' 11779
Average 11248.3 11863.3
Standard Deviation 258.204 294,982

Table 8: Connection Times With One Valid NAP and One Non-NAP Device

34

- Time (ms) Connected NAP
' 11872 1
11918
- 11619
11683
11879
11883
11861
11820
12472
11824
11773
11915
11892
11886
, 11784
Average 11872.07
Standard Deviation 186.54

o om0 RN = RN == N —

Table 10: Connection Times With Two Valid NAPs and One Non-NAP Device'

35

One PANU already connected =~ No PANU connected

Time (ms) Time (ms)
13848 11369
14931 12096
13084 11773
12473 11387
12276 11574
12697 11450
13539 13901
13576 11483
14369 12100
12510 11816
12908 11437
12303 12658
12590 11371
13173 13273
12498 11450
12529 11465
12521 11358
13410 11519
12515 11439
14102 11405
24309 11200
Average 13626.7142857143 11786.9
Standard Deviation 2556.79 - 692.70

Table 12: Connection Times For a NAP With and Without a PANU Already Con-
nected

36

~ After connecting the PANU and NAP nodes, I then needed to test the time it
takes for the two nodes to discover each other over AODV-UU. The average value
for this was 544 milliseconds, with a standard deviation of about half that, a fairly
small value compared to the time to connect the nodes over Bluetooth. The full
results appear in Table 14.

Time (ms)

772

15

484

239

997

658

644

588

702

202

635

61

282

743

647

534

95

816

316

559

584

Average: 544.19
Stdev: | 269.60

Table 14: Connection Times For AODV-UU over Bluetooth

Once the PANU and the NAP were connected, I then ran a ping between the
two devices for 1183 packets, over the course of 1182080 milliseconds. The first

37

three packets failed to transmit for some reason, but after this, the average ping
time was 36.147 ms, with a minimum of 9.142 ms, a maximum of 587.992 ms,
and a standard deviation of 23.343 ms.

It is worth noting that I ran into a number of errors when running these tests.
The first time the PANU connection program is run, it will almost inevitably fail
to connect. In addition, the program will occasionally time out when trying to
connect, though this seems to occur without any particular pattern. Finally, the
connection will occasionally drop for no apparent reason. This is particularly
noticeable when using AODV-UU. If, on the PANU, one is merely connecting
with bnep0, the operating system will enter into an uninterruptible infinite loop
waiting for the bnepQ interface to be freed when the connection drops, which
prevents effective use of the terminal and precludes turning off the system. This
is likely fixable by using a net-bridge solution similar to that used for the NAP,
since the PANO interface will persist after the connection dies. I have yet to test
this, however.

6.3 Simulation Testing

Simulating a mixed Bluetooth-wifi network proved to be incredibly problematic.
Initially, I hoped to use ns-2 to gain an accurate view of how AODV-UU would
perform for such a network. This requires several extensions to ns-2 in order to
function properly. First, it needs an extension to simulate the Bluetooth medium.
A number of these exist, the most recent of which is UCBT [1]. In addition,
it also requires support for nodes with multiple interfaces to represent the NAP-
wifi nodes. The only extension I could find for this is The Enhanced Network
Simulator [16].

Unfortunately, these extensions were not compatible with each other. TENS
is written for release 2.1b9a of ns-2, whereas UCBT requires at least version 2.26
[1, 16]. Neither will work with a version of ns-2 that supports the other. In addi-
tion, I could not find other extensions with similar functionality that would work
together. Thus, due to time constraints, I chose to implement my own simulation
in Java.

In the interests of avoiding complexity, I made a number of simplifying de-
cisions in the model. First, because the area over which I ran the tests would
generally be small enough that the range of the wifi would be inconsequential, I
assumed that all wifi nodes would be in range of each other throughout the exper-
iment, and only modeled the Bluetooth connections. Based on empirical testing,
I assumed the connection time to be about 11 milliseconds, and modeled time

38

on a second by second basis. This ignores the case in which there is only one
NAP in range, as the case is unlikely to occur and checking for it would signif-
icantly increase processing time. For NAPs with multiple PANU connections, I
took the worst case scenario from my empirical testing earlier, and assumed that
each PANU connected to a node increased the time it takes to connect by two sec-
onds. While this may not be accurate, any differences will likely only improve the
results (unless the increase in the amount of time increases with each ‘additional
PANU, in which case the results will be worse). Finally, because it is relatively
small, I ignored the AODV-UU connection time.

For a mobility model, I used a simple random waypoint method, where each
node selects a destmatlon and moves towards it. Because the area is relatively
small, I assumed that movement would be accomplished by walklng, which should
move at a relatively constant rate of .5 m/s. :

The algorithm for the simulator works as follows. First, it creates an array
of nodes with a set number of NAP and PANU nodes placed at random indices
throughout .the array. Once this is complete, it enters a loop for a number of
iterations; each iteration represents the passage of a second. In each step of the
loop, the simulator iterates through the node array and updates each node therein.
For all nodes, this entails moving the node closer to its set destination, or, if the
node is stationary, checking to see whether it is assigned a new destination. In
addition, the PANU nodes also have to check their Bluetooth connection.

Checking the Bluetooth connection involves several steps. First, if the node
is not currently connected to a NAP, or “searching”, it iterates through the node
array until it finds a NAP node that is in range. If it succeeds, it sets its state to

“connecting”, sets a timer to eleven ms-the amount of time for a PANU to connect
to a NAP-and returns. Otherwise, it does not change its state.)

If the node is currently connecting, it first checks to see if the node to which it
is trying to connect is still within range. If not, it clears its timer and resets its state
to “searching”; it will resume its search from the array index of the-node following
that to which it tried to connect. However, if the node is still in range, it checks
the timer. If the timer is currently zero, it checks the NAP to ensure that it has
fewer than seven connections. If so, it sets its state to “connected” and notifies the
NAP node of the connection; otherwise, it resumes searching as described above.
This assumes that, when a piconet is full, other devices will be refused only after
completing discovery. ‘While this may not be the case, I lacked the resources to
verify it; if devices are instead immediately refused, the connection process may
go significantly faster in some cases (this is addressed later).

If the PANU node is connected to a NAP, it first performs the range check,

39

returning to searching if out of range and notifying the NAP that it has been dis-
connected. Otherwise, it increments a timer that measures how long the node has
been connected. Upon being disconnected, this timer gets appended to a linked
list of times; the average time that a node spends connected is then calculated by
taking the average of the times contained in this list, along with the current value
of the connected timer.

The simulation collects a number of statistics about the experiments, which
consist of 100 runs for each set of parameters. The primary statistics that I ana-
lyzed were the average time each PANU spent connected, as well as the average
time that each PANU spent connecting. In addition, the simulation also reported
the average number of connections for each node, the maximum and minimum
amount of time any one node spent connected, and the aggregate time spent con-
nected by all the nodes.

In total I conducted six different experiments. Three of these varied the area’s
size, the number of NAP nodes, and the number of PANU nodes, respectively,
with a .5 chance of movement each second after a node reaches its destination.
The other three varied the same parameters, but used a .05 chance of movement.
Each experiment was run for ten hours. In all cases, the results were statistically
significant, except where noted.

The results of the first experiment, in which the area varies and the probability
of movement is .05 appear below in Figure 5. This was conducted with 10 NAP
nodes and 40 PANU nodes.

As one would expect, the average connected time begins at a high percentage
of the total time of the experiment, and then gradually decreases as the area of
the experiment is increased. Correspondingly, the time spent connecting gradu-
ally increases. The curves seem relatively hyperbolic, though it is difficult to say
whether this trend will be continued. It seems unlikely for the connecting time
curve, since the last point demonstrates a slight decrease that falls]ust short of
statistical significance with a p-value of .054. :

The corresponding experiment with .5 probability of movement, shown in Flg-
ure 6, provides similar results, but with worse performance. With the exception
of the 30x30 trial, each trial seems to have its total connection time decreased by
about 500, which likely results from the higher mobility making it. more likely for
a PANU to move out of range of its NAP. The connecting times curve is shifted -
correspondingly higher; interestingly, it exhibits a decrease in the final point sim-
ilar to the previous data, but here, this decrease is significant. The decrease likely
arises from the increased area, which makes it more probable that a PANU will
be completely isolated from other nodes and thus unable to begin the connecting -

40

—— ‘Average Time Connected |
—@—— Average Connecting Time

1000

4000
3000
—
2]
\E/ 2000
QE) .
.I:
1000 A __,,,§~w §
././//i’—/
0 T T T T T T J T T T
0 10 20 30 40 50 60 70 80 90 100 110
Width (m)
Figure 5: Varying Size, .05 Movement Probability
—4@— Average Tlme Connected - f§ — Average Connecting Time]
4000
3000 4
g
» 2000
€
=4

Width (m)

" Figure 6: Varying Size, .5 Movement Probability

41

——— Average Connected Time (ms)
—a—— Average Time Connecting

2500
2000 +
)
E 1500
)
g 1000 ____,__,_é s 8]
}._
500
0 1 1 1 1 1
0 20 40 60 80 100 120
Number of NAPs
Figure 7: Varying NAPs, .05 Movement Probability
process.

Both experiments where the number of NAPs varied, shown in Figures 7 and
8, provided predictable results: as the number of NAPs increased, the average time
connected increased in a roughly asymptotic fashion approaching 1800 ms for the
more mobile network, and 2400 ms for the less mobile one. Again, the less mobile
network outperformed the one with more mobility; the difference generally some-
where around 600 ms. In both cases, the average connecting time increased with
a similar, though less regular curve, which ultimately approached 1200 ms for the
less mobile network and 1800 ms for the more mobile. The curve here likely oc-
curs because, initially, the PANU nodes have a greater opportunity to connect to
NAP nodes when a NAP node is added, increasing the connecting time. Eventu-
ally, though, there are enough NAP nodes so that when one connection breaks, a
node can then immediately start to connect to another, so adding additional NAPs
has little effect.

The experiments with the PANUs varied also gave the expected results, shown
in Figures 9 and 10, with the time connected holding an inverse linear relationship
to the number of PANUs. Again, the less mobile network outperformed the more

42

1800

| -—4— Average Connected Time (ms) —Jli— Average Time Connecting

1600
1400
1200
1000

800 -

Time (ms)

600
400
200 4

20 40 60 80 100
Number of NAPs

Figure 8: Varying NAPs, .5 Movement Probability

———— Average Connection Time
—a@—— Average Connecting Time

2200
2000
1800 -
1600 -
1400 -
1200
1000 -
800

Time (ms)

600
400 -
200

20 40 60 80 T 100

Number of PANUs

Figure 9: Varying PANUS, .05 Movemént Probability

43

| —4@— Average Connection Time —@— Average Connecting TimeJ

2000

1800

1600 -

1400

1200

1000

Time (ms)

800

600 -

400

200 1

0 T T T T 1
0 20 40 60 80 100 120

Number of PANUs

Figure 10: Varying PANUs, .5 Movement Probability

mobile one, with the connected and connecting times both differing by about five
hundred for each trial. The connected time becomes greater than the connecting
time significantly more quickly for the more mobile network, with the curves
intersecting at 20 PANUSs. In contrast, the curves for the less mobile network only
intersect at 100 PANUEs.

These experiments show that the most important factor in determining the
performance of a Bluetooth-wifi network is the number of PANUs. Increasing
the number of PANUs will have a roughly constant detrimental effect. Increasing
the number of NAPs available will aid performance significantly early on, but the
effect of additional NAPs will gradually grow negligible as their number grows
large. This corresponds with the results mentioned in [26], which, as mentioned
in section 5.3, find that adding additional nodes once the NAP is well-connected
becomes ineffective. Finally, increasing the area will naturally make the perfor-
mance worse, but the degree by which this does so also decreases as the area
grows large.

In addition, I also tried several of these experiments with the PANUs check-
ing the fullness of the NAP’s piconet before connecting, to simulate the PANU
simply ignoring these piconets, rather than trying to connect. Surprisingly, in
every case tested—100x100 with 10 NAP nodes and 40, 80, and 100 PANUs—

44

statistically significant differences were not achieved in connected times, though
they were in times spent connecting. This is likely because full piconets only be-
come problematic when the number of PANUS significantly exceeds that of the
NAPs. Using higher number of PANUSs would likely cause a statistically signifi-
cant diffeérence, as the p value progresswely grew smaller (.08 for the experiments
with 100 PANUS), but the prospect of PANUs outnumbering the NAPs by more
than ten to one seems improbable.

Finally, I also ran an experiment with 400 PANUSs and 100 NAPs in a 130mx130m
area with .05 movement probability. According to the connectivity model exam- -
ined in 5.2.1, a network with 500 Bluetooth nodes in an area of this size should be
connected close to 99% of the time (the exact area should be around 121mx121m
for this probability). This, however, was not the case: on average, nodes were
connected for 1568.03 seconds out of 3600, or 43.6% of the time, with a standard "
deviation of 85.14 seconds. The time spent connecting was almost equal to this,
at an average of 1583.87 s with a standard deviation of 96.06 seconds. Thus, the
model provided a good predictor of the amount of time the nodes would be in
contact with each other; however, it failed to account for connection times. These
connection times caused the PANUS to be connected for drastically less time than
they otherwise would have been, indicating that this will be a serious factor when
considering- Bluetooth MANETs. In addition, that fact that the two times were-
almost equal indicates that the PANUs are likely seldom in contact with a single
NAP for more than ten seconds at a time, since that is the amount of time it takes
to connect.

7 Results

To some extent, the results of these experiments surprised me with how well they
performed; I had expected something virtually unusable, but instead, the PANUs
tended to be connected about one third of the time even in the worst case tested.
“ However, this is far from ideal, as the unstable connection will cause problems
for applications that require constant data transfer. VOIP would be completely
infeasible, as would anything requiring streaming media.

Currently, these results will support, albeit with a good amount of potent1a1
user frustration, basic web browsing and messaging services. The latter would
likely require some kind of buffering of messages on the NAP end, since it'is
entlrely possible that the destination PANU would move out of range before the
message could be completely transmitted. The network could not 51mp1y drop the

45

messages, as this could lead to uncertainty as to whether the message had been
transmitted.

The main problem for usability, moreso than the range, seems to be the ten
second or more connection time. If the only issue were range, there still would
be problems with achieving a necessary density to have all nodes connected at all
times. However, in situations where the density was less than this, being discon-
nected would not necessarily be terribly problematic, as one could hypothetically
move around a bit until one came in range of another NAP. Unfortunately, though,
with the long connection times, even if there is a high enough node density to
hypothetically support 99% connectivity, a PANU would still encounter a delay
of at least ten seconds when the NAP to which it was connected inevitably moved
out of range. This kind of delay is usually unacceptable to most users.

Furthermore, the connection problem becomes more severe when one notes
that the simulation only accounted for the perfect scenario: no obstructed range,
no arbitrary breaks in the connection, and no failures to connect. Any number of
these factors could prove problematic, again because of the lengthy connection -
time. I was unable to accurately measure the frequency of these occurrences,
but if they occur often, they would provide yet another barrier to successfully
implementing a useful Bluetooth-wifi MANET.

Admittedly, however, the current method for connecting to devices may not
be not the most efficient one. The task that appears to occupy the majority of the
time is device discovery. If the Bluetooth address of a device is already known,
it usually takes a negligible amount of time to connect (at least when the device
is the first one to connect). Thus, if there is some means of getting the Bluetooth
addresses of the NAPs in the network to a PANU upon connection, connection
and discovery time could hypothetically be shortened by quite a bit. A protocol
for doing this would take a fair bit of investigation; in addition, I am unsure of
how long it takes for an attempted BNEP connection to time out. If this time is
fairly long, such address sharing might not actually save any time. - -

Another alternative would be to keep the NAP nodes stationary in a sort of
wireless mesh network set-up. This has its own set of problems, though, mainly
stemming from the eight node size limit for piconets. With this, if there are a de-
cent number of PANU users, it is not at all unlikely that they would congregate in
one place in the actual network, rather than being randomly distributed, causing
the NAP in that area to fill up rather quickly. Even allowing for the use of scatter-
nets, a large number of connections would quickly sap bandwidth from the NAP,
as mentioned earlier in this paper. One potential solution would be to use multiple
NAPs to cover an area, and, for low mobility networks, this is probably the best

46

~ solution.

It is worth noting that the network architecture proposed here i 1gnores the pos-
sibility of scatternets. Scatternets could, hypothetically, improve the situation a
fair bit, especially if they were used to “daisy-chain” several PANUs to a NAP; .
this would alleviate the problem of limited range and allow for a much smaller
NAP to PANU ratio. Redundant connections created with scatternets would also
make a connection break to a NAP less cataclysmic, since a PANU could have ac-
cess to multiple NAPs at once. Unfortunately, support among Bluetooth devices-
for scatternets seems spotty and possibly non-existent. The Bluetooth adapters
that I used in the course of my research claim to support scatternets, but I have no
idea how this works and was unable to test this due to a lack of resources. This also
would require significantly more complexity in the routing protocol, which could
lead to difficulties with the small processing power found in many Bluetooth-only
devices. Finally, as mentioned earlier, it is entirely possible that scatternets could
introduce significant delays of their own [28].

Even with the current network architecture, the routing protocol could be prob-
lematic, as others have addressed [22]. Not only are memory-usage. and process-
ing power an issue, but actually implementing the protocol would be necessary,
since current implementations of most MANET protocols are written for major
operating systems like Windows and Linux. One possible means of dealing with
both problems would be to- write a client tailored specifically to this network ar-
chitecture. Because AODV does not require the route to go out with the package,
PANU nodes would only need to store the IP address of the NAP to which they
are connected. Similarly, much of the protocol’s instructions for dealing with
things like link repair and error messages could be ignored, since all routes from
the PANU go through the NAP. This should simplify the behavior of the protocol
significantly. Again, though, with scatternets, a full implementation of AODV or
a similar protocol would be necessary since a node could have multiple routes
leading from it. :

On the whole, a number of obstacles must be overcome before an integrated -
Bluetooth-wifi mobile ad-hoc network could become truly practical. While there
is more promise than I initially thought, overall performance is still mediocre at
best, and the ten second connection time could prove hugely problematic, even
in well-covered networks. Given the increasing availability of wifi capabilities on
small devices, barring any kind of major improvement in Bluetooth, the utility
of pursuing this line of research further is debatable. That said, if some of the
approaches suggested here, such as storing the device addresses, work, there could
be promise.

47

References

(1]

[2]
(3]

(4]
(5]
(6]
[7]

9]

[10]

[11]

Dr. Dharma Agrawal and Qihe Wang. Ucbt — bluetooth extension for ns2 at
univ. of cincinnati.

Apple. The Mac OS X Bluetooth Profiles and Applications, 2007.

Christian Bettstetter. On the minimum node degree and coonnectivity of a
wireless multihop network. In MobiHoc ’02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pages
80-91, New York, NY, USA, 2002. ACM.

Bluetooth SIG. Personal Area Networking Profile, 2007.
Bluetooth SIG. Profiles Overview, 2007.
bluez.org. BlueZ Wiki, 2007.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva. A performance comparison of multi-hop wireless ad hoc net-
work routing protocols. In MobiCom '98: Proceedings of the 4th annual
ACM/IEEE international conference on Mobile computing and networking,
pages 85-97, New York, NY, USA, 1998. ACM.

H. Cai and D. Y. Eun. Crossing over the bounded domain: from exponential
to power-law inter-meeting time in manet. In Proceedings of the 13th annual

ACM international conference on Mobile computing and networking, pages

159-170. International Conference on Mobile Computing and Networking,

2007.

T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad
hoc network research. Wireless Communications and Mobile Computing
(WCMC):, 2(5):483-502, 2002. '

W. Chan, J. Chen, P. Lin, and K. Yen. Quality-of-service in ip services over
bluetooth ad-hoc networks. Mobile Networks and Applications, 8(6):699—
709, December 2003. '

Kwan-Wu Chin, John Judge, Aidan Williams, and Roger Kermode. Imple-
mentation experience with manet routing protocols. SIGCOMM Comput.
Commun. Rev., 32(5):49-59, 2002.

48

[12] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol. IETF,
2003.

[13] C. Dg M. Cordeiro, S. Abhyankar, R. Toshiwal, and D. P. Agrawal. Blues-
tar: enabling efficient integration between bluetooth wpans and ieee 802.11
wlans. Mobile Networks and Applications, 9(4):409-422, August 2004.

[14] S. Corson and J. Macker. Mobile Ad hoc Networking (MANET) Routing
Protocol Performance Issues and Evaluatlon Considerations. IETF, 1999:

[15] D. Cox. Point processes. Chapman and Hall, London New York 1980.

[16] Indian Institute of Technology Department of Computer Science & Engi-
neering. The enhanced network simulator.

[17] M. Dideles. Bluetooth: a tecﬁnical overview. Crossroads, 9(4):11-18, June
2003.

[18] IETF. Mobile ad-hoc networks (manet) charter.

[19] Michael J. Jipping and Gary Lewandowski. Parallel processing over mo-
bile ad hoc networks of handheld machines. In MobiHoc '01: Proceedings
of the 2nd ACM international symposium on Mobile ad hoc networking &
computing, pages 267-270, New York, NY, USA, 2001. ACM.

[20] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing' Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4. IETF, 2007.

[21] R. Kapoor, M. Kazéntzidis, M. Gerla, and P. Johansson. Multimedia support
over bluetooth piconets. In Proceedings of the first workshop on Wireless
. mobile internet, pages 50-55. Wireless Mobile Internet, 2001.

[22] Frank Kargl, Stefan Ribhégge, Stefan Schlott, and Michael Weber.
Bluetooth-based ad-hoc networks for voice transmission. In- HICSS "03:
Proceedings of the 36th Annual Hawaii International Conference on System
Sciences (HICSS’03) - Track 9, page 314.1, Washington, DC, USA, 2003.
IEEE Computer Society.

[23] Frank Kargl and Elmar Schoch. Simulation of manets: a qualitative com-
parison between jist/swans and ns-2. In Proceedings of the Ist international
workshop on System evaluation for mobile platforms, pages 41-46, Interna-
tional Conference On Mobile Systems, Applications And Services, 2007.

49

[24]

[25]

[26]

(27}

(28]

[29]

[30]

(31]

[32]

Abdelmajid Khelil, Christian Becker, Jing Tian, and Kurt Rothermel. An
epidemic model for information diffusion in manets. In MSWiM °02: Pro-
ceedings of the 5th ACM international workshop on Modeling analysis and
simulation of wireless and mobile systems, pages 54-60, New York, NY,
USA, 2002. ACM.

Pradeep Kyasanur and Nitin H. Vaidya. Routing and link-layer protocols
for multi-channel multi-interface ad hoc wireless networks. ACM SIGMO-
BILE Mobile Computing and Communications Review, 10(1):31-43, Jan-
uary 2006.

Christoph Lindemann and Oliver P. Waldhorst. Modeling epidemic informa-
tion dissemination on mobile devices with finite buffers. In SIGMETRICS
'05: Proceedings of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages 121-132, New
York, NY, USA, 2005. ACM.

S. A. Mahmud, Shahbaz Khan, Shoaib Khan, and H. Al-Raweshidy. A com-
parison of manets and wmns: commercial feasibility of wireless networks
and manets. In Proceedings of the Ist international conference on Access
networks, volume 267. ACM International Conference Proceeding Series,
2006.

V. B. Misic and J. Misic. Performance of bluetooth bridges in scatter-

nets with limited service scheduling. Mobile Networks and Applications,
9(1):73-87, February 2004.

Guangyu Pei, Mario Gerla, and Tsu-Wei Chen. Fisheye state routing: A
routing scheme for ad hoc wireless networks. In ICC (1), pages 70-74,
2000.

C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. 1ETF, 2003.

C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina. Performance
comparison of two on-demand routing protocols for ad hoc networks. IEEE
Personal Communications, pages 1628, February 2001.

A. Racz, G. Miklos, F. Kubinszky, and A. Valko. A pseudo random coor-
dinated scheduling algorithm for bluetooth scatternets. In Proceedings of

50

the 2nd ACM international symposium on Mobile ad hoc networking and
computing, pages 193-203. International Symposium on Mobile Ad Hoc
Networking & Computing, 2001.

[33] Michael‘ Schmidt. Howto set up common pain scenarios with bluez’s inte-
grated pan support.

[34] Miguel Sanchez, Pietro Manzoni, and Zygmunt J. Haas. Determination of
critical transmission range in ad-hoc networks.

[35] C.-K. Toh, Richard Chen, Minar Delwar, and Donald Allen. Experiment-

ing with an ad hoc wireless network on campus: insights and experiences.. .

ACM SIGMETRICS Performance Evaluation Review, 28(3):21-29, Decem- ‘
ber 2000.

[36] Wikipedia. Ieee 802.11.

[37] Wikipedia. List of ad-hoc routing protocols.

51

	Macalester College
	DigitalCommons@Macalester College
	5-4-2008

	Implementing Bluetooth Support In Wifi-Based Mobile Ad-Hoc Networks
	Christopher Dragga
	Recommended Citation

	tmp.1222350260.pdf.9wIjc

