
Macalester College
DigitalCommons@Macalester College
Mathematics, Statistics, and Computer Science
Honors Projects Mathematics, Statistics, and Computer Science

4-28-2007

Object-Relational Mapping as a Persistence
Mechanism for Object-Oriented Applications
Jeffrey M. Barnes
Macalester College, J242110559@aol.com

Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors

Part of the Software Engineering Commons

This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at
DigitalCommons@Macalester College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an
authorized administrator of DigitalCommons@Macalester College. For more information, please contact scholarpub@macalester.edu.

Recommended Citation
Barnes, Jeffrey M., "Object-Relational Mapping as a Persistence Mechanism for Object-Oriented Applications" (2007). Mathematics,
Statistics, and Computer Science Honors Projects. 6.
https://digitalcommons.macalester.edu/mathcs_honors/6

https://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors/6?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Object-Relational Mapping as a Persistence
Mechanism for Object-Oriented Applications

An honors project presented by

Jeffrey M. Barnes

to

the Department of Mathematics and Computer Science
at Macalester College

in Saint Paul, Minnesota,

in partial fulfillment of the requirements

for the major in computer science

Advisor: Professor Elizabeth Shoop
Second reader: Professor G. Michael Schneider

Third reader: Professor Daniel Kaplan

April 28, 2007

Abstract

Many object-oriented applications created today, especially Web applications,
use relational databases for persistence. Often there is a straightforward corre-
spondence between database tables on the one hand and application classes on
the other. Application developers usually write a great deal of code to connect to
and query the database, code which differs little from class to class and is often
tedious to write. Moreover, the parallel class and table structures constitute
a duplication of information, which requires duplication of work and increases
the likelihood of errors. Ideally, we could automate this duplication, rendering
it invisible to developers. This is the idea behind object-relational mapping
(ORM), which achieves the mapping between the object-oriented world and the
relational world automatically. Many existing ORM tools do not realize the
goal of fully transparent persistence, however, and ORM tools have not become
pervasive in the software industry. We survey ORM technology, probing issues of
ORM system architecture and examining real-world ORM systems. We consider
the state of the art in ORM, asking why it is not more popular than it is and
anticipating the future course of ORM system development.

Contents

1 Introduction 6
1.1 The object-oriented paradigm . 7

1.1.1 Inheritance . 8
1.1.2 Encapsulation . 10
1.1.3 Polymorphism . 12
1.1.4 Competing definitions of OOP 14

1.2 Relational databases . 17
1.2.1 The relational model . 17
1.2.2 The entity-relationship model 20
1.2.3 SQL . 21
1.2.4 Object-relational and other advanced features of modern

DBMSs . 22
1.3 The use of relational databases in object-oriented programs . . . 24

1.3.1 Database drivers and APIs 25
1.4 The impedance mismatch . 28

1.4.1 Inheritance and polymorphism 29
1.4.2 Associations . 30
1.4.3 Data types . 31
1.4.4 Granularity . 32
1.4.5 Identity . 33
1.4.6 The database query explosion 35

1.5 The need for ORM . 36

2 Issues in ORM system architecture 38
2.1 Mapping paradigms . 38

2.1.1 Metadata-oriented . 38
2.1.2 Application-oriented . 39
2.1.3 Database-oriented . 39
2.1.4 Problems with this classification 40

2.2 Transparency . 40
2.3 Inheritance mapping . 40

2.3.1 Single table per hierarchy 41
2.3.2 Table for each class . 42
2.3.3 Table for each concrete class 44
2.3.4 Existing support for inheritance mapping methods 45

3

2.4 Transaction processing . 46
2.4.1 Isolation levels and locking 48
2.4.2 Application transactions 50

2.5 Caching . 53
2.6 Metadata . 55
2.7 Dirty checking . 56

2.7.1 Inheritance from a base class that monitors state change . 58
2.7.2 Manipulation of source code 58
2.7.3 Manipulation of bytecode 59
2.7.4 Reflection at run time . 60

3 Examples of ORM systems 62
3.1 Hibernate . 63

3.1.1 Architecture . 64
3.1.2 Metadata . 65
3.1.3 Querying . 66
3.1.4 Caching . 68
3.1.5 Transactions . 69

3.2 iBATIS . 69
3.2.1 Architecture . 70
3.2.2 Metadata . 70
3.2.3 Querying . 72
3.2.4 Caching . 72
3.2.5 Transactions . 74

3.3 TopLink . 74
3.3.1 Architecture . 75
3.3.2 Metadata . 76
3.3.3 Querying . 77
3.3.4 Caching . 79
3.3.5 Transactions . 80

3.4 Neo . 80
3.4.1 Architecture . 81
3.4.2 Metadata . 83
3.4.3 Querying . 84
3.4.4 Caching . 85
3.4.5 Transactions . 86

3.5 Gentle . 87
3.5.1 Architecture . 87
3.5.2 Metadata . 88
3.5.3 Querying . 90
3.5.4 Caching . 92
3.5.5 Transactions . 93

3.6 Active Record . 95
3.6.1 Architecture . 97
3.6.2 Metadata . 98
3.6.3 Querying . 99

4

3.6.4 Caching . 100
3.6.5 Transactions . 101

4 ORM: Present and future 102
4.1 Obstacles to the adoption of ORM 102

4.1.1 The learning curve and other up-front costs 102
4.1.2 Actual and perceived performance limitations 103
4.1.3 Sensitivity to architectural revisions 103
4.1.4 Accommodation of legacy systems 104
4.1.5 Limitations in expressing queries 105

4.2 The state of the art . 107
4.2.1 Performance enhancements 107
4.2.2 Standardization . 107
4.2.3 Multi-platform tools . 108

4.3 Future directions . 108

Bibliography 111

5

Chapter 1

Introduction

A huge number of applications created today, especially Web applications, rely
on two broad technologies: object-oriented programming (OOP) languages and
relational database management systems (RDBMSs). Object-oriented technolo-
gies allow applications to be built out of logical objects that act on one another.
Meanwhile, relational database technologies store data in tabular structures,
capture the relationships between these tables, and support querying of data.
These two technologies are superficially disparate but are related in two ways.
The first way is practical: object-oriented languages and RDBMSs complement
one another nicely. RDBMSs provide a framework for object-oriented applica-
tions to persist their data, and conversely object-oriented applications provide
an interface between the data and the user and also allow for processing and
manipulation of data beyond what can be accomplished by an RDBMS. The
second way is theoretical. There is an obvious correspondence between database
tables on the one hand and OO classes on the other. A typical application might
include a Customer table in the database with Name, Address, and Telepho-
neNumber columns and a corresponding Customer class in the application code
with Name, Address, and TelephoneNumber member data.

Object-relational mapping (ORM) is a technology that seeks to automate the
bridge between the object-oriented world and the relational world, eliminating
this duplication of data and the maintenance cost and susceptibility to error
associated with it. A great variety of ORM tools exists today, and new tools
are developed every day. However, many existing ORM tools do not realize
the goal of fully transparent data persistence, and ORM tools have not gained
overwhelming popularity in the software industry.

This paper reviews the state of the art of ORM and consider issues of
deployment and transparency. Its structure is as follows. Chapter 1 introduces
the concepts underlying ORM. It begins with an in-depth introduction to object-
oriented and relational technologies. (Software developers familiar with these
technologies can probably skim or skip to Section 1.4.) Next, it discusses the
way in which these two technologies relate to one another and the so-called

6

1.1. The object-oriented paradigm J 7

impedance mismatch between them. Finally, it introduces and motivates ORM
and discusses some foundational, operational issues that all ORM systems must
consider.

Chapter 2 discusses components and features of ORM technologies in much
greater depth. It presents issues that ORM system developers face and dimensions
along which existing ORM technologies vary.

Chapter 3 is an in-depth survey of the most popular and interesting ORM
technologies that exist today. ORM systems have appeared not only in classical
object-oriented languages like Java and C#, but also in surprising contexts,
in languages that can only barely be considered object-oriented at all. Chap-
ter 3 concludes with a head-to-head comparison of the features that the most
widespread and most capable ORM systems provide.

Chapter 4 concludes the paper by summarizing the present state of ORM
technology and suggesting the course of its future development.

1.1 The object-oriented paradigm

Object-oriented programming (OOP) is today the dominant paradigm in main-
stream software development, although it had a tentative beginning. Simula
introduced many of the fundaments of OOP in the 1960s, but it is only within
the last couple of decades that OOP has become popular in the mainstream.
It has indeed become popular, though; it is hard to overstate the prevalence of
OOP in industrial, scientific, and didactic applications.

OOP expresses itself by means of analogies with the real world. The idea is to
construct programming abstractions that model objects in the real world. As a
programming abstraction, an object is a discrete entity with state, behavior, and
identity. Ideally, it corresponds to a well-defined, meaningful “business object”
in the problem domain, such as a particular customer that a company wishes
to keep track of. Objects can interact with each other, exchange messages, and
process data.

In an object-oriented language, objects are grouped together into classes,
which encapsulate functionality common to many objects. For example, many
customer objects may be members of a single “customer” class, which represents
the set of all customers. The customer class defines the structure and behavior
common to all customers. For example, it records that all customers have a
“name” property, and all customers have the behavior of “buying” an item.

More explicitly, a class defines the state (i.e., the abstract data structure that
all class instances share) and behavior. The abstract data members defined by a
class are called its attributes, properties, or simply data members. The behaviors
it defines are called its methods. The following code snippet is a class definition
in Simula 67, the first object-oriented language.

Class Airplane (WingspanInMeters, LengthInMeters);
Real WingspanInMeters, LengthInMeters;

Begin

8 I Chapter 1. Introduction

Fruit

Orange Apple Pear

RedDeliciousApple GrannySmithApple GalaApple

Figure 1.1: A simple inheritance hierarchy

Real WingspanInFeet, LengthInFeet;

Procedure Convert;
Begin

WingspanInFeet := 0.3048 ∗ WingspanInMeters;
LengthInFeet := 0.3048 ∗ LengthInMeters;

End of Update;

Convert;
OutText("New airplane has wingspan ");
OutText(WingspanInMeters);
OutText("meters (");
OutText(WingspanInFeet);
OutText(" feet).");
OutImage

End of Airplane;

1.1.1 Inheritance
One of the most important techniques of OOP is inheritance, in which the
programmer creates new classes by extending existing ones. The derived classes
inherit the behavior and structure of the base class and add functionality on
top of this. A less common name for inheritance is generalization, as base
classes can be viewed as generalizations of their derived classes. For example,
there could be classes Apple, Orange, and Pear that have Fruit as a base
class. Often, inheritance relations form a tree: RedDeliciousApple, Granny-
SmithApple, and GalaApple could be derived classes of Apple, forming a tree
as depicted in Figure 1.1. (Of course, there would need to be a practical reason
that RedDeliciousApple needs additional functionality beyond that offered by
Apple; otherwise, there is no purpose in creating a new class for it.) In practice,
software architects try to limit the depth of inheritance trees for the benefit of

1.1. The object-oriented paradigm J 9

Airplane
wingspan
length

CargoAirplane
cargoPayload

MilitaryAirplane
militaryUnits

MilitaryCargoAirplane FighterAirplane
cannonType

Figure 1.2: A diamond-shaped inheritance graph of the sort that could occur only
in a language with multiple inheritance. Multiple inheritance affords additional
flexibility; in this example, the inheritance structure allows us to record that
some airplanes are both cargo airplanes and military airplanes. Moreover, for
such a military cargo airplane, we can record both its cargo airplane information
(its cargo payload) and its military airplane information (the military units that
use it). Of course, this introduces complexity.

code comprehensibility. The following Simula 67 code creates a subclass of the
Airplane class we just created.

Airplane Class PassengerAirplane (NumberOfPassengers);
Integer NumberOfPassengers;

Begin
comment Attributes and methods specific to

passenger airplanes belong here;
End of PassengerAirplane;

Some languages, such as C++, Python, and Common Lisp, allow multiple
inheritance, in which classes can inherit features from more than one base
class. In such a language, we could realize an inheritance hierarchy such as
the one depicted in Figure 1.2 (although we might not want to; diamond-
shaped inheritance graphs often elicit confusion). Others, such as Smalltalk
and Modula-3, exclude multiple inheritance. Many languages take some sort of
intermediate approach. For example, Java, the .NET Framework, and Objective-
C have both classes and interfaces (called protocols in Objective-C). An interface
specifies a set of methods that inheritors must implement, but omits their
implementation entirely, leaving the specification of the implementation entirely
to derived classes. These three environments support multiple inheritance for
interfaces but only single inheritance for classes. That is, a class in any of

10 I Chapter 1. Introduction

these environments inherits from exactly one class and implements zero or more
interfaces. For example, in the ASP.NET architecture of the .NET Framework
there is a Button class that models a push button control on a Web page.
The Button class inherits from the WebControl class, which defines methods,
properties, and events common to all Web controls (such as a Font property
and a RenderControl method) but also the IButtonControl interface and
the IPostBackEventHandler interface. The IButtonControl interface defines
properties and events that must be implemented to allow a control to act as a
button, such as a Click event. The IPostBackEventHandler interface defines
the RaisePostBackEvent method, which server controls must implement to
handle post-back events. Mixed approaches to multiple inheritance such as this
can alleviate much of the confusion that multiple inheritance can cause.

1.1.2 Encapsulation

Another often-cited property of object-oriented systems is encapsulation. This
term may have any of a few different meanings. Armstrong [4] mentions three
primary concepts of encapsulation that exist in the literature. Here we consider
each concept in turn and the degree to which it applies to the object-oriented
languages in existence.

• Encapsulation is a process used to package data together with the functions
that act on it. In the context of OOP, encapsulation refers to the property
that data and methods are packaged together into classes. Thus, all OOP
languages support encapsulation, as all OOP languages have classes with
both data and methods.

More strictly, though, we could say that for an object to be called encapsu-
lated, all operations on its state must be part of its interface. In this strict
sense, few languages enforce or even accommodate encapsulation. In Java,
for example, to calculate the sine of a number x, one writes Math.sin(x).
Strict encapsulation would demand x.sin().

• Encapsulation means hiding the details of objects’ implementation so that
clients access objects only via their public interfaces. Encapsulation is
beneficial because it frees clients from concerning themselves with classes’
implementations. If the implementation of a class changes, clients can
ignore the change without risk as long as the public interface and logical
behavior of the class remain the same.

Many object-oriented languages accomplish encapsulation in two ways.
First, clients have no way of examining the implementation code of classes’
methods, only their signatures, so method implementation is hidden from
clients. Second, many object-oriented languages have a feature called access,
which allows class members (including both attributes and methods) to be
declared as private instead of public, making them accessible only to the
class itself, not to clients. Often there is also a protected access specifier
that makes members accessible only to derived classes, and sometimes

1.1. The object-oriented paradigm J 11

there are other access specifiers such as friend access in C++, which
grants access only to declared “friends” of the class, and internal access
in C#, which grants access only to clients in the same assembly. Because
of the benefits that encapsulation affords, software architects generally
make most data members private and expose only those methods that
are necessary for clients to use the class. The following C++ class has a
private data member with accessor functions that allow that data member
to be accessed and set, as well as other functions for doing calculations.

const double PI = 3.14159;

class Circle {
private:

double radius;
public:

Circle();
double getRadius();
void setRadius(double r);
double Circumference();
double Area();

}

Circle::Circle() {
radius = 0;

}

double Circle::getRadius() {
return radius;

}

void Circle::setRadius(double r) {
radius = r;

}

double Circle::Circumference() {
return 2 ∗ PI ∗ radius;

}

double Circle::Area() {
return PI ∗ radius ∗ radius;

}

If the implementation of the class should ever change, clients need not even
know about it, let alone adapt to it. Of course, in such a simple example,
this is not a serious concern, but this is important in more substantial
cases.

12 I Chapter 1. Introduction

• Encapsulation is a combination of these two ideas. More explicitly, encap-
sulation entails packaging data with the functions that act on it into a
discrete unit whose implementation details are hidden from the outside
world.

Henceforth we will refer to these three senses by the names separation of concerns,
information hiding, and encapsulation, respectively. Separation of concerns
and information hiding both predate OOP, but they are cornerstones of OOP
nonetheless.

1.1.3 Polymorphism
Another oft-cited concept in definitions of OOP is polymorphism, which allows a
single interface to be used with different types of data. There are several types
of polymorphism that appear in object-oriented (and other) languages:

Ad hoc polymorphism This is the most limited form of polymorphism. It
allows a function (or class, etc.) to be parameterized on a small (explicitly
enumerated) set of types. The clearest example is method overloading. The
Math class in the java.lang Java package, for example, has several abs
methods. All the abs methods take a single argument, but the parameters
have different types. There is one abs method that takes an int and
returns its absolute value, also as an int; another takes a double and
returns its absolute value as a double; and so on. When a client calls
Math.abs, Java calls the appropriate overload based on the type of the
parameter. If Java did not support ad hoc polymorphism in the form of
overloading, this functionality would require differently named methods,
one for each type to be supported: absInt, absDouble, absFloat, and so
on.

Overloads can vary not only on the type of parameter, but also on the
number of parameters. In the .NET Framework the Int32 class (for
storing 32-bit integers) has a ToString method that converts an integer
into its string representation. This method has four overloads with different
numbers and types of parameters. The most elaborate is

public string ToString (string format, IFormatProvider provider)

which executes the conversion using the specified numeric format string (for
controlling whether the integer is converted into decimal or hexidecimal
format, with or without leading zeroes, etc.) and culture information. The
simplest is public string ToString (), which executes the conversion
using the default formatting and the currently active culture.

Type coercion is sometimes considered another form of ad hoc polymor-
phism. Most languages support some implicit type conversion, and in some
languages, such as C++ and C#, class developers can define new coercions.
Then a function that takes an argument of type T can accept arguments
of any type that can be implicitly converted to T . This is the weakest sort

1.1. The object-oriented paradigm J 13

of polymorphism, as arguments are actually converted to the target type
before the function is executed on them.

Parametric polymorphism This is a much more powerful form of polymor-
phism in which generic code is written to accommodate a range of types.
C++ templates provide a good example. C++ programmers can write
code like

template <class anyType>
anyType GetMax (anyType a, anyType b) {

return (a>b ? a : b);
}

This function takes two arguments of any type on which the > operator is
defined—including primitive types and classes that have overloaded >—and
returns whichever is greater. Generic types, which are similar to C++
templates, were added to Java in 2004 [43, JSR 14] and the .NET Common
Type System in 2005 [24].

Parametric polymorphism is in no way specific to the object-oriented
paradigm (nor is ad hoc polymorphism). Haskell, Ada, and many other
non–object-oriented languages support parametric polymorphism, and in
fact ML, a functional language, was the language that introduced the
feature.

Subtype polymorphism This sort of polymorphism is specific to languages
that support subtypes, most prominently object-oriented languages, which
can support subtype polymorphism through inheritance. It is related to
type coercion and refers to the fact that in many languages, functions that
take a parameter of type T will also accept an instance of any subtype of
T . This means that functions that can work with type T are guaranteed
to support subtypes of T as well.

There is more to subtype polymorphism than this, though. Method over-
riding makes subtype polymorphism a powerful tool. In languages that
support method overriding, subtypes can provide their own implementa-
tions for interfaces in their base types. In the following C++ example, an
abstract base class provides for a function Area that is implemented in
derived classes.

const double PI = 3.14159;

class Shape {
public:

virtual double area (void) = 0;
}

class Circle : Shape {
private:

14 I Chapter 1. Introduction

double radius;
public:

// Radius accessors go here.
double area (void) {

return PI ∗ radius ∗ radius;
}

}

class Rectangle : Shape {
private:

double length, width;
public:

// Accessors go here.
double area (void) {

return length ∗ width;
}

}

Now we can build a function that accepts a Shape parameter. If this
function calls the area function of the argument, the overrides will be
called when an instance of a derived type is passed to the function. The
function will thus be able to obtain the correct area regardless of whether
the shape happens to be a circle or a rectangle. Of the three types of
polymorphism, subtype polymorphism is what is most often meant in the
context of OOP, although many object-oriented languages have the other
types of polymorphism too.

1.1.4 Competing definitions of OOP
Many competing definitions of object-oriented exist. Kristen Nygaard, the co-
creator of Simula 67 and hence one of the inventors of OOP, defines OOP as
programming in which “a program execution is regarded as a physical model,
simulating the behavior of either a real or imaginary part of the world” [21, p. 16].
Alan Kay, the inventor of Smalltalk and coiner of the phrase object-oriented
defines OOP much more narrowly:

OOP to me means only messaging, local retention and protection
and hiding of state-process, and extreme late-binding of all things.
It can be done in Smalltalk and in LISP. There are possibly other
systems in which this is possible, but I’m not aware of them. [18]

Armstrong [4] surveys the literature and identifies a number of “quarks” that fre-
quently appear in definitions of OOP. The most popular were inheritance, object,
class, encapsulation, method, message passing, polymorphism, and abstraction.

Rees [38] provides an “a la carte menu of features” that appear as components
of definitions of OOP, observing that different definitions of OOP appear to
choose subsets of the list almost ad hoc. Here I reproduce the list and elaborate

1.1. The object-oriented paradigm J 15

on each item, because some of them lead to further discussion of object-oriented
features.

Encapsulation Rees defines encapsulation as “the ability to syntactically hide
the implementation of a type.” Many languages enforce encapsulation in
some way, including C++ and Java, but some, such as Python, do not.

Protection Rees defines protection as “the inability of the client of a type to
detect its implementation.” This is closely related to what we are referring
to with the term encapsulation. Again, C++ and its descendants support
protection, but some languages, including Simula 67, do not.

Ad hoc polymorphism Most object-oriented languages do support ad hoc
polymorphism, but then so do many non–object-oriented languages in, for
example, functional and pure imperative paradigms.

Parametric polymorphism The same is true of this.

Everything is an object. Some theorists, possibly including Alan Kay, believe
that for a language to be considered object-oriented, everything must be
an object. This is true of Smalltalk (and arguably C# and Visual Basic
.NET). It is not true of C++ and Java, which have primitive data types
such as int that are not objects.

An even stronger restriction is that all objects fit into a singly rooted
inheritance tree. That is, there must be an Object superclass from which
all entities ultimately inherit. Such a superclass exists in Smalltalk and in
the .NET Common Type System, but in C++ there is no superclass from
which all objects inherit. (In Java there is an Object superclass, but as
mentioned, primitive data types do not inherit from it.)

All you can do is send a message. There is no direct manipulation of ob-
jects, only communication with or invocation of them. Very few languages
implement this actor model, although E comes close. Java and C#, for
example, fail because they allow for direct manipulation of public fields.

Inheritance with subtype polymorphism Essentially all OOP languages
support inheritance with some form of subtype polymorphism, all the way
back to Simula 67, so something like this is part of most OOP definitions.

Implementation inheritance This means that subtypes inherit implementa-
tion from their base types with no need to copy and paste code. Most
modern object-oriented languages have this feature, but some, such as E,
do not.

Sum-of-product-of-function pattern Objects are restricted to be effectively
functions that take as their first argument the name of the method to
invoke from a finite list. For example, consider a Java class C with methods
M1, M2, and M3. Then we can think of C as a function that takes a method
name as its first argument. In this conception, we can mandate that

16 I Chapter 1. Introduction

the first argument is in the list {M1, M2, M3}. In some languages, such as
JavaScript, clients are allowed to send messages to objects at will and see
what happens.

The point in considering all these definitions and elements of definitions is
that there is no universally accepted definition of object-oriented. We have lists of
features, but it seems that for any definition we can come up with, someone will
point to a language that ought to be object-oriented but isn’t, or isn’t but ought
to be. It seems that we may be relegated to the same position as Justice Potter
Stewart, confronted with the problem of defining obscenity, who famously said,
“I shall not today attempt further to define the kinds of material I understand
to be embraced within that shorthand description; and perhaps I could never
succeed in intelligibly doing so. But I know it when I see it” [41].

Fortunately, a perfect definition of OOP is beyond the scope of this paper.
The purpose of this section is to provide readers with an intuition for OOP and
an appreciation for the complexities of the issue of object orientation and the
diversity of object-oriented languages. In fact, the tools that we will describe
can be applied to a wide variety of languages, some of which are certainly
object-oriented and some of which many might claim are not. It is not important
for us to establish a dichotomy between object-oriented and not. Instead, let us
describe the tools that fit naturally under the umbrella of ORM and see how
they apply in a variety of contexts.

To conclude, OOP offers a number of benefits. It reduces the need for
duplicate code, as functionality common to many business objects can be stored
in a single place (the class definition), and indeed functionality common to
many classes can be encoded at the level of base classes. This also increases
the reusability of code. In addition, well-structured, object-oriented code is
relatively readable and understandable, as the abstraction inherent to OOP
invites engineers to take a high-level view of the architecture of the software,
examining the code at the highest level of abstraction appropriate to the task at
hand. Finally, many software architects feel that the object-oriented paradigm
has value as an intuitive framework, as objects and classes in an object-oriented
system may accord well with real-world objects and categories of objects in the
problem domain.

OOP is quite pervasive. Today, the most important object-oriented languages
in a classical mold, at least in industry, are languages such as C++, Java, C#,
and Visual Basic .NET, but Smalltalk, Python, Eiffel, and innumerable others
have their devotees. OOP has been so successful that object-oriented features
have been incorporated into a wide range of languages, even including scripting
languages such as JavaScript and server-side Web languages such as PHP and
ASP (now ASP.NET). Given the ubiquity of OOP, it seems inevitable that this
paradigm will be with us for many years, and probably decades, to come.

1.2. Relational databases J 17

1.2 Relational databases

Just as OOP is the dominant paradigm in modern application programming, so
is the relational model the dominant paradigm for queryable information storage.
Like OOP, the relational model has many competitors, but none have deposed
it from its throne (though they have clearly and deeply influenced it). This
section provides historical and conceptual background on relational database
management systems (RDBMSs).

1.2.1 The relational model

The relational model for database management was born in 1969 in the guise
of a now-famous paper [11] by the English computer scientist Edgar F. Codd.
In the relational model, all data are represented as mathematical relations. In
mathematics, a relation is a subset of the Cartesian product of several sets.
In other words, given a collection of sets S1, S2, . . . , Sn, a relation is a set of
n-tuples of the form 〈s1, s2, . . . , sn〉, where si ∈ Si for i = 1, 2, . . . , n.

In Codd’s model, a database relation comprises two parts: a heading and a
body. The body is a collection of n-tuples (i.e., a mathematical relation). The
heading is a set of n attributes describing the sort of data that the relation can
accommodate. Specifically, an attribute is an attribute name together with a
type name.

This is quite abstract and seems far removed from our casual understanding of
a database. An example will clarify the model. Consider a relation of customers
who shop at a particular store. We want to record each customer’s name, street
address, postal code, country, and telephone number. In this case, our attributes
might be

Attribute name Type name
1. Name String
2. Street address String
3. Postal code String
4. Country Country
5. Telephone number String

In this example, we declare that customers’ names, street addresses, postal
codes, and telephone numbers may be arbitrary strings, but customers’ countries
must belong to the Country data domain. (This domain would presumably
include elements such as China and India and exclude other entities, such as
Karachi, which is not a country.) The body of the relation would then be a set
of pentuples such as 〈Mary Smith, 123 Main St., 12345,USA,+1 555-555-0123〉.
For convenience, we usually think of relations in a tabular format, as in the
following example.

18 I Chapter 1. Introduction

Name Street address Postal code Country Telephone number
Mary Smith 123 Main St. 12345 USA +1 555-555-0123
Budi Dianputra 45 Pejompongan 67890 Indonesia +62 0123-456-789
Fernanda Silva Av. Ibirapuera 1234 02468-000 Brazil +55 21-0123-4567
Kamal Das 12 Nayapaltan 9630 Bangladesh +880 2-9876543

Often one attribute of a relation (or a combination of attributes) contains
values that uniquely identify each element of the relation. For example, a
customer relation might have a CustomerNumber attribute such that no two
customers share the same customer number. Such an attribute (or collection of
attributes) is called a superkey. A minimal superkey (i.e., a superkey K such
that no proper subset of K is also a superkey) is a candidate key. Often, a single
candidate key is identified as the primary key of a relation.

Often an attribute of one relation cross-references another relation. An
attribute (or combination of attributes) A is a foreign key of a relation R if A is
a primary key of some relation S. (Usually, but not always, R 6= S.) Foreign
keys allow for relationships between relations. In our example, we could have a
relation Country as follows:

Country code Name Capital city
050 Bangladesh Dhaka
076 Brazil Brasília
360 Indonesia Jakarta
566 Nigeria Abuja
643 Russia Moscow
840 USA Washington
...

...
...

(We mark the primary key by printing it boldface.) Now, our Customer relation
can have CountryCode as a foreign key:

Name Street address Postal code Country code Telephone number
Mary Smith 123 Main St. 12345 840 +1 555-555-0123
Budi Dianputra 45 Pejompongan 67890 360 +62 0123-456-789
Fernanda Silva Av. Ibirapuera 1234 02468-000 076 +55 21-0123-4567
Kamal Das 12 Nayapaltan 9630 050 +880 2-9876543

This may seem like a cosmetic change, but in fact it empowers us to ask more
sophisticated questions of the database, such as: Which customers live in the
country whose capital is Moscow?

The relational model itself is rather rigid, and few so-called RDBMSs follow
Codd’s relational model exactly. In fact, Codd bemoaned this trend in a 1985
article [10], publishing a list of twelve rules to which a DBMS ought to conform
in order to be considered truly relational:

1. All information is represented explicitly and in exactly one way: by values
in tables. This includes not only application data, but even the names of
the tables and columns themselves.

1.2. Relational databases J 19

2. Every datum in a relational database is accessible via a combination of
table name, column name, and primary key value.

3. Null values are fully supported for representing missing information and
are distinct from empty values such as zero-length strings and the value 0.

4. The database description is logically represented in the same way as
ordinary data and can be accessed via the ordinary query language.

5. There is a language that comprehensively supports data definition, view
definition, data manipulation, integrity constraints, authorization, and
transaction boundaries.

6. All theoretically updatable views are also updatable by the system.

7. Insert, update, and delete operations are supported for any retrievable set
rather than just for single rows.

8. The logical behavior of the database is isolated from the underlying physical
architecture.

9. Database users are isolated from changes to the logical structure of the
database.

10. Integrity constraints can be defined through the query language and are
stored in the catalog.

11. Database users are isolated from the introduction of data distribution or
the redistribution of data.

12. If there is a way to manipulate data other than via the query language, it
cannot be used to bypass the integrity rules and constraints expressed in
the query language.

Almost no modern “RDBMSs” conform to all these rules, and certainly no widely
used DBMSs conform to them all. Rules 9 through 12 are especially poorly
supported. Most DBMSs exhibit strong ties between the user’s view of the data
and the logical structure of the tables. Many DBMSs do not provide complete
support for integrity constraints. The nature of distributed databases makes
distribution independence difficult. Finally, many DBMSs allow low-level data
manipulation that bypasses integrity rules and constraints.

Besides these twelve rules, there are many other departures that modern
DBMSs make from the relational model. For example, the model treats a
relation as a set of tuples, meaning that the records in a relation have no
intrinsic order and, in particular, that it is impossible to represent duplicate
records. Most modern DBMSs accommodate duplicate rows in their tables, and
many systems order result sets predictably even when not asked to sort the
results (e.g., returning table records in the order in which they were inserted).

Some theorists dismiss modern, commercial DBMSs that fail to realize the
relational model completely as merely “pseudo-relational” DBMSs. However,

20 I Chapter 1. Introduction

most practitioners use the term RDBMS to describe all DBMSs based on the
relational model, including systems such as Oracle, Microsoft SQL Server, and
MySQL. Henceforth, we follow the latter convention.

1.2.2 The entity-relationship model

Although at a certain level we must conceive of a relational database in terms
of its relations and their attributes and keys, database designers often find it
convenient to operate at a higher level of abstraction. In the entity-relationship
model [9], which was introduced at the 1975 International Conference on Very
Large Data Bases, individual tuples in a relation (or records in a table) are
viewed as entities—“things” that can be distinctly identified (akin to objects
in OOP). Entities are grouped into entity sets such as Employee and Country.
Entity sets are analogous to relations in the relational model (or classes in
the object-oriented paradigm). Entities can be associated with each other via
relationships, such as a parent-child relationship between two person entities.
RDBMS, of course, realize these relationships via foreign keys, but this detail
is abstracted away at the entity-relationship level. Formally, a relationship is
a tuple of entities 〈e1, e2, . . . , en〉. Relationships are grouped into relationship
sets, which are mathematical relations among n entities. The role of an entity
in a relationship is the function it performs, such as child in a parent-child
relationship.

It is important not to confuse the concepts relation, relationship, and relation-
ship set. A relation is a creature of the relational model, representable as a table
and analogous to an entity set (in the entity-relationship model) or a class (in the
object-oriented paradigm). A relationship is an association between entities (i.e.,
an association between relations). A relationship set is a mathematical relation
(just like a relation in the relational model) that describes the associations that
exist between two entity sets.

In the entity-relationship model, entities have values such as “Mary Smith,”
“Budi Dianputra,” and “123 Main St.,” which are grouped into value sets that
we can label “Name,” “Street address,” and so on. (Value sets in the entity-
relationship model are analogous to data domains in the relational model.)
Formally, an attribute is a function that maps from an entity set or a relationship
set into a value set. For example, a DateOfBirth attribute may map from a
Person entity to the Date value set.

The entity-relationship model is often discussed in the context of entity-
relationship diagrams, which have been part of the entity-relationship model
from the beginning [9, §3]. Entity-relationship diagrams allow database designers
to appreciate the structure of a database at a glance. Different conventions
exist for drawing entity-relationship diagrams. In the classical notation, boxes
represent entity sets, diamonds represent relationship sets, and ovals represent
attributes. However, we instead use a crow’s-feet notation that we believe more
clearly reflects the structure of the relational database, similar to the notation
described in depth by Carlis and Maguire [7].

1.2. Relational databases J 21

1.2.3 SQL
Theoretically, it is possible to devise many languages that could act as query
languages for relational databases. In practice, SQL is the only language worth
discussing. SQL is used as the query language in practically all RDBMSs today.
SQL, then called SEQUEL for “Structured English Query Language,” was born in
the 1970s to support System R, an RDBMS developed by an IBM research group.
After other implementations of SQL appeared, including the Oracle DBMS, SQL
was standardized by the American National Standard Institute in 1986 and the
International Organization for Standardization in 1987. Revisions appeared in
1989, 1992, 1999, and 2003, and the SQL standards are often called by names
such as SQL-86, SQL-89, SQL-92, and so on. Despite standardization, significant
differences between implementations of SQL remain. As a consequence, SQL
scripts are generally not portable between DBMSs.

SQL (as originally conceived) is a declarative programming language, not
an imperative language like C or BASIC. SQL includes commands for data
retrieval, data manipulation, and data definition, as well as administrative
commands supporting functionalities such as database transactions, permissions,
and database triggers. The SELECT command is used for data retrieval and has
many syntactic variants that accommodate sophisticated queries. For example,
the question on page 18, “Which customers live in the country whose capital is
Moscow?”, can be expressed

SELECT Customer.∗ FROM Customer
JOIN Country ON Customer.CountryCode = Country.CountryCode
WHERE Country.CapitalCity = 'Moscow'

The primary data manipulation commands in SQL are INSERT, UPDATE, and
DELETE. INSERT adds a record to a table, as in the following example:

INSERT INTO Customer
(Name, StreetAddress, PostalCode, Country, TelephoneNumber)
VALUES ('Yelena Ivanova', '868 Pochtovaya', '287242',

643, '+7 495 375-76-55')

UPDATE changes values that already exist in the database, as in the following
command, which might have been executed when Zaire’s name changed to the
Democratic Republic of the Congo:

UPDATE Country SET Name = 'Democratic Republic of the Congo'
WHERE CountryCode = 180

DELETE, of course, removes existing records from the database.
Besides these data manipulation commands, SQL also includes data definition

commands for establishing the structure of content in the database—creating and
revising tables, rows, columns, and indices. Our Customer table, for example,
would have been created with a command such as

CREATE TABLE Customer (
Name nvarchar(50) NOT NULL,

22 I Chapter 1. Introduction

StreetAddress nvarchar(100),
PostalCode varchar(15),
Country smallint,
TelephoneNumber varchar(25)

)

Here nvarchar, varchar, and smallint are data types (Unicode string, non-
Unicode string, and integer), and NOT NULL indicates that no customer record
may have a null name. There are also DROP TABLE and ALTER TABLE commands
to delete and modify tables.

A third category of SQL commands is for controlling access to data. These
allow database administrators to GRANT, DENY, REVOKE, and UPDATE database
users’ access to specific database objects.

1.2.4 Object-relational and other advanced features of
modern DBMSs

Data manipulation, data definition, and data control remain central to SQL,
but SQL has come a long way since its 1986 standardization. Today’s SQL
implementations include features that make it a powerful and versatile tool for a
variety of data processing problems. In particular, SQL has gained object-like
features that bring it closer to the object-oriented paradigm of programming.
These features have brought the major RDBMSs to the verge of being object-
relational DBMSs, combining the best features of the relational model and the
object-oriented paradigm. SQL:1999, in particular, introduced an impressive
array of object-like features [22], some of which are not yet well supported
[14, 16]. Specific DBMSs have also introduced many new features to their own
implementations ([26], [29, §1.6], [32], [36], [37, App. E]).

One important change has been the addition of traditional programming
language features such as variable assignment and flow control structures such
as conditionals and loops. Transact-SQL (the proprietary SQL extension used in
Microsoft and Sybase products) includes IF-ELSE conditionals; WHILE loops; and
GOTO, BREAK, and CONTINUE statements [25]. PL/SQL (Oracle’s SQL extension)
similarly includes IF-THEN-ELSE conditionals, CASE statements, WHILE and FOR
loops, and the GOTO statement [32, §4]. These extensions, along with many other
implementations, also include support for variable declarations and assignment
and other features of programming languages. Such features allow users of these
SQL implementations to use the language in an imperative way, as the following
Transact-SQL snippet illustrates.

/∗ Check to make sure that there is at least a $20 difference between
our least and most expensive items. Customers hate it when they
don’ t have a large enough range of prices from which to choose. ∗/

DECLARE @minPrice money, @maxPrice money
SELECT @minPrice = MIN(Price) FROM Item
SELECT @maxPrice = MAX(Price) FROM Item
IF @minPrice IS NULL

1.2. Relational databases J 23

BEGIN
/∗ If the table is empty, populate it. ∗/
INSERT INTO Item (Name, Price) VALUES ('A cheap item', 5)
INSERT INTO Item (Name, Price) VALUES ('A pricier item', 30)

END
ELSE IF @minPrice < @maxPrice − 20
BEGIN

/∗ If there is insufficient price variance,
insert a new item to satisfy the postcondition. ∗/

INSERT INTO Item (Name, Price)
VALUES ('Really expensive item', @minPrice + 30)

END
/∗ Postcondition: The table contains a pair of items

with a price difference over $20. ∗/

Another feature of modern SQL implementations is cursors, control structures
that support traversal and row-at-a-time (instead of set-based) processing of
records. This allows for more sophisticated processing than can be accomplished
via the traditional declarative data manipulation commands, empowering data-
base users to apply control structures such as cnoditionals and loops to attain
finer control over data processing tasks.

SQL:1999 provides for stored procedures, self-contained modules of SQL code
that can accept parameters and accomplish data-driven tasks, as well as user-
defined functions, which accept parameters and return a single value. These
features, akin to subroutines or functions in procedural languages, are well
supported in modern implementations of SQL and widely used. SQL:1999 also
includes triggers, stored procedures that fire automatically when a specific data
modification occurs. These constructs, like all content in a relational database,
can be created, dropped, and modified through SQL itself, with commands such
as CREATE PROCEDURE and DROP TRIGGER.

SQL:1999 also includes user-defined types, which at their most sophisticated
look like classes in object-oriented languages.

CREATE TYPE Address AS (
StreetAddress nvarchar(100),
City nvarchar(50),
State nvarchar(20),
PostalCode varchar(15),
Country smallint

) NOT FINAL

Attributes of structured types can be accessed easily via a dot notation remi-
niscent of object-oriented languages such as C++. If we have a table Customer
with a column HomeAddress of type Address, we can write a query like

SELECT DISTINCT C.HomeAddress.State FROM Customer AS C

to get a list of customers’ home states.

24 I Chapter 1. Introduction

In fact, SQL:1999 allows database designers to provide not only the structure,
but also the behavior of user-defined types, via routines such as methods. Suppose
we want a method that returns a formatted address of the form

123 Main St.
Schenectady, NY 12345

Then we could add a method using syntax similar to the following.

CREATE INSTANCE METHOD formatted_address ()
RETURNS nvarchar(200)
FOR Address

RETURN SELF.StreetAddress + CHR(13) + CHR(10) +
SELF.City + ', ' + SELF.State + ' ' + SELF.PostalCode

Even more impressively, the SQL:1999 type system allows for inheritance.
To create a subtype Customer of an existing type Person, we would use syntax
such as

CREATE TYPE Customer UNDER Person AS (
-- Customer-specific attributes go here.
)
INSTANTIABLE
NOT FINAL

SQL:1999 also supports polymorphism. Method definitions can overload other
method definitions in the same class (with different parameters) and override
method definitions in supertypes.

Unfortunately for us, none of these object-oriented features are well supported
at present, but they do reflect a shift in the object-oriented direction for SQL.
In general, then, while SQL is retaining its roots as a declarative, set-based
language, it is being transformed by the addition of imperative and object-
oriented capabilities.

1.3 The use of relational databases in
object-oriented programs

Not only are object-oriented software and RDBMSs exceptionally common, but
they are especially commonly used in conjunction with one another. Many
applications need to retain the content of data structures over long periods of
time—and, in particular, between program executions. The capacity to do so is
called persistence. Without persistence, data exists only in memory and is lost
when the computer shuts down.

To achieve persistence, an application must store the data to non-volatile
storage such as a hard drive. For example, a software application that runs on
consumer computers (a game, for example) might persist data to the file system,
saving and loading data files to the hard drive in order to maintain state (e.g.,

1.3. The use of relational databases in object-oriented programs J 25

user settings and saved games) between program executions. Many applications,
though, especially applications that run on servers or other powerful machines
(e.g., Web applications), use relational databases for persistence of data.

Typically, developers map classes to database tables in a rather straight-
forward way, creating one table for each class that needs to be persistent. For
example, given a Customer class such as the following Java example

public class Customer {
private int customerNumber;
private String name;
private String streetAddress;
private String postalCode;
private short countryCode;
private String telephoneNumber;

/∗ Accessors and other methods go here. These are generally not
part of the class-to-table mapping process. Remember, the
database is for storing the data of the class, not its behavior. ∗/

}

a developer might create a table in the application database using code similar
to the following. (This example is in MySQL.)

CREATE TABLE Customer (
CustomerNumber int NOT NULL PRIMARY KEY,
Name nvarchar(50) NOT NULL,
StreetAddress nvarchar(100),
PostalCode varchar(15),
Country smallint,
TelephoneNumber varchar(25)

)

Typically, the developer adds Save and Load methods to the Customer class
that store and load the data in the database. It is worth spending a few minutes
examining how this is accomplished.

1.3.1 Database drivers and APIs

In the simplest terms, modern, object-oriented software applications connect to
databases via application programming interfaces (APIs), which provide program-
matic access to database drivers, the software components that actually connect
to and communicate with the database. In fact, it can be more complicated than
this, with several layers of APIs, drivers, and bridges, but from the application
developer’s point of view, all database access is performed through an API,
which is often built into the language or readily available through standard class
libraries. (In principle, an application could bypass the API and communicate
directly with the database driver, or even connect to the database directly by
implementing a communication protocol that the database supports, but in

26 I Chapter 1. Introduction

modern times this is never done, as it would be an unthinkable waste of time to
reinvent these facilities.)

Modern object-oriented languages’ standard libraries, such as the Java Plat-
form, Standard Edition (Java SE), and the .NET Base Class Library, provide
ready support for a variety of database platforms. Since these libraries provide
excellent examples of database APIs, we will be using them exclusively for the
rest of this section, but many other languages also provide facilities for database
access. In Java, applications normally access databases via the Java Database
Connectivity (JDBC) API. .NET applications use ADO.NET. A discussion
of each of these technologies will illuminate the way in which object-oriented
software connects to databases and reveal differences that exist between different
database APIs.

JDBC has been part of Java SE since version 1.1 of the Java Development
Kit was released in 1997 [42]. In the basic JDBC architecture, a Java application
sends instructions to the JDBC API, which communicates with the database
server via a DBMS-specific, proprietary protocol using a JDBC driver. In other
situations, the communication may go through additional levels, such as through
vendor-specific middleware. In this case, the JDBC driver translates JDBC
calls into the protocol of the middleware, which in turn uses a proprietary
protocol to communicate directly with the DBMS. Another typical architecture
involves a JDBC-ODBC bridge, which converts JDBC calls into ODBC calls.
Open Database Connectivity (ODBC) is a language-independent API that can
connect to many DBMSs (and even other data sources such as XML files and
spreadsheets). Much of this complexity is hidden from the application, which
only needs to call the JDBC API.

So how does this look from the application’s perspective? In a typical JDBC
interaction with a database, the application loads the correct database driver,
connects to the database, creates a Statement object, executes a query that
returns a result set, processes the result set, and cleans up. The following Java
snippet provides a Load method for the Customer class definition given above.

// This function loads a customer. It takes the unique customer number
// as input and returns a Customer object as output.
public static Customer Load(int customerNumber) {

// Load the JDBC database driver for MySQL.
Class.forName("com.mysql.jdbc.Driver");

// Connect to a remote MySQL database.
Connection conn = DriverManager.getConnection(

"jdbc:mysql://example.com/customerdb",
"databaseUserName", "databasePassword");

// Create a Statement object to execute SQL code.
Statement stmt = conn.createStatement();

// Execute a query and get the results.

1.3. The use of relational databases in object-oriented programs J 27

ResultSet rs = stmt.executeQuery(
"SELECT ∗ FROM Customer WHERE CustomerNumber = ?");

Customer c; // This will be the return value.
if (rs.next()) { // If there is a result,

// populate a new Customer object with the data from the database.
c = new Customer(customerNumber);
c.name = rs.getString(1);
c.streetAddress = rs.getString(2);
c.postalCode = rs.getString(3);
c.countryCode = rs.getShort(4);
c.telephoneNumber = rs.getString(5);

}
else // If no customer with specified identifier exists,

c = null; // this function will return null.

rs.close(); stmt.close(); conn.close(); // Clean up.
return c;

}

(This snippet is simplified. A live example would need to handle connection
errors and SQL exceptions as well as null values in the database.) This code is
rather dull to write, and even more so once exception handling and null value
handling are added. The structure of code like this varies little from class to
class and even from application to application. As you can imagine, in a class
with many attributes, it can become tedious to write. As we will see, this is one
of the problems that object/relational mapping addresses.

Roughly speaking, the .NET equivalent to JDBC is ADO.NET, which is a
reinvention of an earlier product called ActiveX Data Objects (ADO), a set of
Component Object Model objects that could be used for accessing (via OLE
DB, Object Linking and Embedding Database) data stores including relational
databases from languages such as VBScript and Visual Basic, as well as (less
often) Delphi, C++, and other languages. ADO.NET differs substantially from
its predecessor. Perhaps most conspicuously, rather than being a standalone
component, it is integrated into the Base Class Library of the .NET Framework,
meaning that it is immediately accessible from any of the .NET languages,
such as C# and Visual Basic .NET. At present, ADO.NET includes four data
providers: a proprietary-protocol data provider for Microsoft SQL Server, an
Oracle data provider, an ODBC data provider, and an OLE DB data provider.
(The ODBC and OLE DB data providers allow .NET to use a variety of data
sources including many relational databases.) All four data providers have
Connection, Command, Parameter, DataReader, and DataAdapter classes to
support database operations.

Despite some architectural differences, from a developer’s point of view
ADO.NET bears many similarities to its Java counterpart, JDBC. The following
snippet is the C# equivalent of the Java code above.

28 I Chapter 1. Introduction

public static Customer Load(int customerNumber) {
// Connect to a Microsoft SQL Server database.
SqlConnection conn = new SqlConnection(

"server=localhost;uid=sa;pwd=;database=example");
using (conn) {

conn.Open();

// Create a SqlCommand object to execute SQL code.
SqlCommand cmd = new SqlCommand(

"SELECT ∗ FROM Customer WHERE CustomerNumber = ?",
conn);

// Execute the query and get the results.
SqlDataReader rdr = cmd.ExecuteReader();

if (rdr.Read()) { // If there is a result,
// return a new Customer object with the data from the database.
Customer c = new Customer(customerNumber);
c.name = rdr.getString(1);
c.streetAddress = rdr.getString(2);
c.postalCode = rdr.getString(3);
c.countryCode = rdr.getInt16(4);
c.telephoneNumber = rdr.getString(5);
return c;

}
else // No customer with specified identifier exists.

return null;
}

}

As you can see, some of the names and protocols are different, but the idea is
basically the same.

1.4 The impedance mismatch

The so-called object-relational impedance mismatch is simultaneously a moti-
vation and an obstacle for object-relational mapping. The term impedance
mismatch is borrowed from electrical engineering, where impedance measures
opposition to the flow of an alternating current in a circuit. The most efficient
exchanges between electrical systems happen when their impedances are closely
matched. Impedance mismatch is a problem that occurs when two circuits with
different impedances are connected, which can ultimately result in attenuation
and noise. The problem can be correct through impedance mismatching.

The analogy is that object-oriented systems often seem to be mismatched to
relational database systems. To clarify the metaphor, impedance mismatch in

1.4. The impedance mismatch J 29

both electrical engineering and software engineering occurs when one system is
unable to interact with another system efficiently.

Object-relational impedance mismatch occurs because the object-oriented
and relational database paradigms have different conceptions of data. The object-
oriented paradigm views data primarily in the context of actions performed on
it. That is, objects are important not just because of the data they contain, but
because of their ability to perform tasks on the data and exchange information
with other objects. The relational paradigm is data-focused. It places importance
on the data itself and its structural (not behavioral) relationship with other
data.

Less abstractly, the impedance mismatch manifest itself in several specific
ways:

1.4.1 Inheritance and polymorphism

The notion of inheritance or generalization is central to OOP. Indeed, in many of
the most clearly object-oriented languages and type systems, such as Smalltalk,
Java, and the .NET Common Type System, all objects ultimately derive from an
Object superclass, meaning that all objects in the entire system exist together
in an enormous, intricate inheritance hierarchy. In practice, things are not
quite so bad as this might sound, as many business objects inherit directly from
Object, and many inheritance hierarchies of business objects are quite shallow,
but inheritance is nonetheless an integral concept in an object-oriented system.
By contrast, inheritance is not intrinsic to the classical relational model, which
instead concerns itself with structural relationships between data.

How would we map an inheritance hierachy such as the one in Figure 1.1 to
a database? Our default inclination to map each class to its own table, resulting
in a Fruit table, an Apple table, an Orange table, a RedDeliciousApple table,
and so on. But are there better ways of mapping such an inheritance hierarchy?
As it turns out, there are several options, which we will discuss in depth in
Section 2.3.

Even if we achieve an inheritance mapping, complications remain. The
inheritance mechanisms in object-oriented languages often provide important
features, the most substantial of which is subtype polymorphism. To flesh out
our fruit example, suppose the software we are building is an application for
simulating the dieting patterns of lemurs, so we have a Lemur class with data
members for modeling its nutrition (caloric intake, dietary protein consumption,
vitamin deficiencies, and so on). It has an Eat method which takes a Fruit
argument. Subtype polymorphism allows it to update its nutritional information
in a manner appropriate to the specific type of fruit it is eating—namely by
using members of the Fruit class that its dervied types override.

Relational databases have no straightforward way to represent this polymor-
phism. This can be problematic. Suppose, for example, that for each lemur we
want to persist the fruits it has eaten. If we were only dealing with a Lemur
table and a Fruit table, this would mean that there should be a foreign key
in the Fruit table that refers to the primary key of the Lemur table, creating

30 I Chapter 1. Introduction

a one-to-many relationship. But how does this work if there are several tables
that we are thinking of as somehow subtypes of Fruit? The answer depends on
what sort of inheritance mapping we use, but it is a complex issue in need of
resolution.

1.4.2 Associations

Aside from subtyping, classes in object-oriented systems relate to each other in
two important ways. First, they can pass messages to each other. Most simply,
this can mean that they call each others’ methods, but it can also mean that
they catch each others’ events. This sort of relationship is behavioral and hence
normally immaterial to object-relational mapping. The other important way
classes relate to each other is via membership associations.

Consider a software application for modeling employees and their professional
certifications. Suppose that each employee can have a certification, but multiple
employees have the same certification. There are several ways we could model
this relationship in an object-oriented language. First, we could place a reference
to the Certification class in the Employee class, as follows:

public class Employee {
private string name;
private string payRate;
private Certification certification;

}

Alternatively, the Certification class could reference a collection of Employee
objects, recording the employees who have each certification.

public class Certification {
private string name;
private string grantingAuthority;
IList<Employee> employees;

}

(These examples are in C#. As a matter of syntax, it is worth noting that
these references are indeed references to objects in memory, not actual copies
of those objects. In C++, these examples would be written using pointers—
Certification *certification and so on.)

If the association is to be traversable in both directions (i.e., if the application
needs to be able to determine both the certification that an employee has and
the employees who have a certification), then both of these associations must
be implemented simultaneously (and application logic must ensure that the
two directions preserve the same data). The correct choice in this situation—a
Certification reference in Employee, a list of Employee references in Certi-
fication, or both—is a question of software architecture. The important point
to note is that all three of these cases ought to be mapped to the same data-
base structure, namely an Employee table and a Certification table with a

1.4. The impedance mismatch J 31

Employee
Id
Name
PayRate

Certification
Id
Name
GrantingAuthority

Figure 1.3: A one-to-many association in a relational database

Employee
Id
Name
PayRate

CertificationOfEmployee
Certification

Id
Name
GrantingAuthority

Figure 1.4: Representing a many-to-many relationship in a relational database
requires a utility table.

many-to-one relationship between them (i.e., a foreign key in the Employee table
associated with the primary key of the Certification table), as in Figure 1.3.

What if an employee can have multiple certifications, while at the same time
multiple employees can have the same certification (which seems to be the most
likely relationship between the two entities)? The object-oriented code for this
case would result in an Employee class with references to multiple Certifications,
a Certification class with references to multiple employees, or both. However,
the relational model does not naturally accommodate many-to-many relationships
(although they can be drawn in an entity-relationship diagram). Establishing
a many-to-many relationship in a relational database requires the creation of
a utility table that represents the relationship itself. In this case, the utility
table would be called something like CertificationOfEmployee and would be
related to Employee and Certification in the way depicted in Figure 1.4.

1.4.3 Data types

A more mundane sort of object-relational impedance mismatch is caused by
data types. Different RDBMSs and different object-oriented languages all have
their own peculiar data types, and it is not always completely clear how to map
between them. Certainly, a 32-bit integer type (int in Java and C#) should map
to a 32-bit integer type (int in most SQL implementations). But what about
less commonplace types? Many languages and RDBMSs have date/time types
and currency types, but they vary in range and precision. .NET has a DateTime
type that represents times from 1 c.e. through 9999 c.e. with accuracy to a
tenth of a microsecond. Few DBMSs can match this precision with their date
types. The datetime type in Transact-SQL, the most precise date/time type
available in that language and the one with the greatest range, supports dates
from 1753 through 9999 with a precision of 1/300 of a second. This is ample for

32 I Chapter 1. Introduction

storing purchase records or appointment times, but for applications that rely on
the greater range and precision of the DateTime type in the .NET Base Class
Library (historical applications that use the type to record events in the Middle
Ages, or physiological event simulators that require sub-millisecond precision)
mapping the .NET DateTime type to the Transact-SQL datetime type would
be insufficient.

Other languages have primitive types that do not map directly to standard
SQL types. In Python, complex numbers are primitives. In Lisp, linked lists are
primitives. And how are arrays in Java or C++ to be mapped? With a little
thought, these situations can be resolved on a case-by-case basis, but is there a
general solution that we can apply systematically to such instances?

An even more mundane issue in this category is character encoding. If the
application uses a Windows-1251 encoding for storing Cyrillic characters and
the database assumes an ISO 8859-1 encoding, there will be problems. If the
application uses UTF-32 and the database supports only ASCII characters, there
will be more severe problems. Nationalization issues can crop up with other
data types as well (year-month-day, day-month-year, and month-day-year date
formats, for example). Issues such as these are not too hard to deal with (as
long as both the object-oriented language and the DBMS are modern, both
should support Unicode character encodings and culture-invariant international
formatting standards anyway), but they remind us that there are not only
architectural differences, but also a plethora of banal issues that need to be
resolved for an object-oriented application to communicate with a database.

1.4.4 Granularity

We have been implying so far that every class will map to its own database table.
In fact, this is not always practical. For example, suppose we have a pair of
classes like this:

public class Customer {
private int customerNumber;
private String name;
private Address address;
private String telephoneNumber;

/∗ Accessors and other methods would be here. ∗/
}

public class Address {
private String streetAddress;
private String city;
private String state;
private String postalCode;
private short countryCode;

1.4. The impedance mismatch J 33

/∗ Accessors and other methods would be here. ∗/
}

In this example, instead of including the address fields in the Customer class
itself, we encapsulate them in a new Address class, which may be used many
times throughout the application. If we were to map each class to a table, we
would get a database like that depicted in Figure 1.5. This is workable, but
unless individual addresses are likely to be reused many times in many places in
the application, storing the addresses in their own, separate table just introduces
overhead. (There is a performance penalty for every query in which a join
between two tables must be carried out, such as any data selection statement
that makes use of a foreign key.) Database designers more typically include
all this information in a single table (Fig. 1.6), even if this does not mirror
the structure of the classes in the object-oriented language, not only for the
performance benefit, but also because it makes better intuitive sense for all a
customer’s address fields to be stored in one place. (If our DBMS supports
user-defined types, we might also considering making Address a user-defined
type in the database, so that the Customer table can have an Address column
of type Address to store address values conveniently, compactly, and efficiently.)
So this is one case in which creating a table per class might be a mistake (though
not a fatal one).

This is an example of a granularity mismatch. Classes in an object-oriented
system may exist at many levels of granularity, from coarse-grained entity classes
such as Customer, which model important business objects, to finer-grained
classes like Address. In many languages, basic data types like DateTime and
String and even Integer have their own, even more fine-grained classes, but
surely these should not be mapped to tables. In order to carry out an object-
relational mapping, we must decide which classes deserve tables of their own
and which are too fine-grained to merit this treatment. Fine-grained classes
should instead be mapped to user-defined types or to collections of columns (or,
in the case of sufficiently primitive types like DateTime and String, to single
columns).

1.4.5 Identity

Identity is very improtant to the relational model. Indeed, many relational
theorists believe that no table should be without a primary key. Primary keys
ensure that all records in the database are unique, even if they are otherwise
identical in content to other records. In other words, it gives them a sense of
identity.

Objects in object-oriented systems have two instrinsic types of identity, two
ways by which objects can be determined to be equal or unequal. These ways
are reference comparison and value comparison. Reference comparison checks
whether two object references refer to the same object. In languages with
pointers, such as C++, this is obvious. To compare whether two pointers *a
and *b are equal in C++, one simply evaluates a == b instead of comparing the

34 I Chapter 1. Introduction

C
u
stom

er
C

u
stom

erN
u
m

b
er

N
am

e
A

ddress
T
elephoneN

um
ber

1
M

ary
Sm

ith
32

+
1

555-555-0123
2

B
udiD

ianputra
33

+
62

0123-456-789
3

Fernanda
Silva

30
+

55
21-0123-4567

4
K

am
alD

as
38

+
880

2-9876543

A
d
d
ress

Id
StreetA

ddress
C

ity
State

P
ostalC

ode
C

ountryC
ode

30
A
v.Ibirapuera

1234
P
alm

as
T
ocantins

02468-000
076

32
123

M
ain

St.
A

pplefield
N

ew
Y

ork
12345

840
33

45
P
ejom

pongan
Slaw

i
C

entralJava
67890

360
38

12
N

ayapaltan
B

arisāl
B

arisāl
9630

050

F
igure

1.5:
A

database
designed

w
ith

too
fine

a
granularity.

F
igure

1.6
illustrates

a
m

ore
naturaldesign.

C
u
stom

er
C

u
stom

er-
P
ostal-

C
ountry-

N
u
m

b
er

N
am

e
StreetA

ddress
C

ity
State

C
ode

C
ode

T
elephoneN

um
ber

1
M

ary
Sm

ith
123

M
ain

St.
A

pplefield
N

ew
Y

ork
12345

840
+

1
555-555-0123

2
B

udiD
ianputra

45
P
ejom

pongan
Slaw

i
C

entralJava
67890

360
+

62
0123-456-789

3
Fernanda

Silva
A
v.Ibirapuera

1234
P
alm

as
T
ocantins

02468-000
076

+
55

21-0123-4567
4

K
am

alD
as

12
N

ayapaltan
B

arisāl
B

arisāl
9630

050
+

880
2-9876543

F
igure

1.6:
A

database
designed

w
ith

a
coarser,probably

m
ore

naturallevelof
granularity

than
that

in
F
igure

1.5.

1.4. The impedance mismatch J 35

Customer Order OrderItem0..1 0..* 0..1 0..*

Figure 1.7: An aggregation chain, which could cause a database query explosion

pointer referents *a and *b. Modern languages such as Java, C#, and Visual
Basic .NET have reference-type semantics that obscure the distinction between
objects and references to objects. In Java, for example, two objects a and b
are compared using reference equality with the syntax a == b. This sort of
comparison amounts to comparing whether two objects occupy the same memory
location.

The other type of object comparison is value comparison. Value comparison
compares objects attribute-by-attribute. In Java, C#, and Visual Basic .NET,
two objects a and b may, under the right circumstances, be compared for value
using the syntax a.Equals(b) (C# and Visual Basic .NET) or a.equals(b)
(Java). This sort of comparison indicates whether two objects store the same
information.

These three types of identity are all different. Reference comparison differs
from database identity comparison in that two objects need not share the same
location in memory in order to represent the same database entity. In other
words, it is possible to have two copies of the same entity in memory. Value
comparison differs from database identity comparison because the point of an
identity is that two database entities can be different even if they carry the same
content (aside from their identity).

There are a few ways of resolving this mismatch, but usually it is the object-
oriented code that is adapted to be in agreement with the relational database.
Often, the primary key of a table is made an attribute of the object-oriented
class, even if the primary key is a surrogate.

1.4.6 The database query explosion
A final problem with object-relational mapping is that if it is implemented
naïvely, navigation of object graphs can result in an exponential explosion in
application queries to the database. Suppose that we have an application in
which each customer can have multiple orders, and each order can have multiple
order items, as depicted in Figure 1.7. Now suppose that in our object-oriented
application, we want to list (or otherwise process) all the order items that a
certain customer has ever purchased. To accomplish this, we might write a
function such as the following:

function ProcessOrderItemsOfCustomer(int customerId) {
Customer c = Customer.Load(customerId);
foreach (int orderId in c.OrderIds) {

Order o = Order.Load(orderId);
foreach (int orderItemId in o.OrderItemIds) {

OrderItem i = orderItem.Load(orderItemId);

36 I Chapter 1. Introduction

Console.WriteLine(i.ToString());
// Here we could do whatever processing on i that we wished.

}
}

}

In this example, we are making a number of structural assumptions about the
mapping. We assume that the Customer, Order, and OrderItem classes have
static Load methods that take primary keys as arguments and return class
instances. We are assuming that the Customer class has an OrderIds property
that is a collection of the primary keys of the orders that a customer has made.
(That is, the Customer class only stores the primary keys of the orders associated
with, not the entire content of each order.) The Order class has an analogous
OrderItemIds property. These assumptions are reasonable, although the mapper
could have made different choices.

The problem is clear. If the customer has made m orders, and each order has n
items, then the function will call Order.Load m times and OrderItem.Load mn
times. If each Load function establishes its own connection to the database and
makes its own SELECT query, this function could be an incredible performance
sink. Of course, things needn’t be so bleak; in fact, we could retrieve the
information we want with a single query:

SELECT OrderItem.∗ FROM Customer
INNER JOIN [Order]

ON Customer.CustomerId = [Order].CustomerId
INNER JOIN OrderItem ON [Order].OrderId = OrderItem.OrderId

However, architecting a mapping to allow this single-query access to the desired
data is not a trivial problem.

In conclusion, changes to SQL and to DBMS features over the years have
alleviated the object-relational mismatch to some degree, and increasing support
for the object-oriented facilities in recent SQL standards will continue this
trend. At the same time, programming conventions have made bridging the gap
between the two paradigms easier. For example, objects are given identity values
with special behavior that reflect the importance of primary keys in database
systems. Nonetheless, the object-relational mismatch continues to be a problem
for software architects.

1.5 The need for ORM

In section 1.3.1, we saw how persistence code is written. Typically, an object-
oriented application uses a API that in turn calls a driver to communicate
commands to the database. This code differs little from class to class and is
largely the same even from application to application and is often tedious to
write.

Part of the reason this process is tiresome is that it is generally very straight-
forward. Designing a database to support persistence for a collection of object-

1.5. The need for ORM J 37

oriented classes, creating the database, writing code to interface with the database
(or, more immediately, with the database connection API)—all of these tasks
tend to be mechanical. They do not tend to invite creativity. Fortunately,
software developers have a strategy for dealing with boring, mechanical, uncre-
ative tasks: engineering software to undertake them. This is one motivation for
object-relational mapping.

Saving time is reason enough to wonder about the practicality of object-
relational mapping, but it is not the only reason. We have seen that many
persistent software applications have parallel class and table structures. If the
application has a Customer class with Name and Address member data, the
database likely has a Customer table with Name and Address columns. This
could reasonably be viewed as duplication of information, which is justifiably
viewed by software architects as a bad thing. Perhaps the most obvious problem
is that duplication of structure means duplication of work; developers have to
create the classes in the application code and then turn around and reproduce
the same structures in the database. Slightly more subtly, this duplication of
structure increases the likelihood of errors. If a software developer adds a Title
field to the Customer table and forgets to tell the database administrator to
change the database, the application will break. Indeed, even if the software
developer wants to extend the permissible length of the Name attribute from 50
characters to 100 characters, a change in the database must mirror the change
that the application developer makes to the validation code in the user interface
layer. If not, input over 50 characters will be truncated or cause an exception.
(A problem like this may not be caught in testing, unless a quality assurance
analyst thinks to test exceptionally long names. Quite likely, it will be an end
user who first encounters the problem.) Object-relational mapping offers the
prospect of eliminating this duplication—or, more precisely, automating it and
hiding it from developers.

There is no universal consensus for the meaning of the term object-relational
mapping. In the broadest sense, it can refer to any of the tasks mentioned in the
previous paragraph—designing object-relational mappings, building databases,
generating API code—or any combination of them (often all three). It can even
refer to tasks in the reverse direction: taking a database and transforming it into
a set of classes. Software already exists and has been deployed to accomplish all
of these tasks.

Chapter 2

Issues in ORM system
architecture

Thus far we have portrayed the class of ORM tools as a relatively homogenous
group of technologies for confronting a fixed set of problems. It should come as no
surprise to learn that this is a simplification. In fact, object-relational mappers
are remarkably diverse in their range of approaches to the ORM problem and in
the features they provide. In this chapter, we consider, one by one, many of the
most important points on which ORM systems differ—or, equivalently, the most
important questions that ORM system designers face.

2.1 Mapping paradigms

There are a number of perspectives from which one can approach ORM. Choice of
paradigm is perhaps the most fundamental decision involved in the development
or selection of an ORM system. In this section, we describe and compare three
major perspectives that an ORM system can assume.

2.1.1 Metadata-oriented

In the first type of ORM system, the only input of the application developer
into the ORM process is metadata. The ORM system itself then generates
the code. (This paradigm is often called code generation, but we use the term
metadata-oriented to distinguish it from database-oriented ORM systems.)

The database can either preexist to be described by the metadata, or the
mapper can instead generate the database as it does the code. This is likely to
vary on an application-by-application basis. In systems that are constructed
from the ground up, it is convenient if the mapper can build the database. If the
code is to use a legacy database, the mapper need not generate the database,
but instead must write the code to be compatible with the existing schema.

38

2.1. Mapping paradigms J 39

The advantage of this method is simplicity for the developer. Not only does it
free the developer from worrying about the persistence mechanism, but also from
worrying about the internal workings of the mapped object or of the database
itself (except to the extent that the developer needs to specify some of these
details in the metadata). The disadvantage is a loss of flexibility. Since the code
is generated, the developer cannot ordinarily modify it and is limited to the
functionality that the mapper provides. Likewise, since the database is either
generated or preexisting, the developer cannot update it directly either.

2.1.2 Application-oriented

Here, the application developer writes the object-oriented code for all of the
application, including the objects to be mapped (except their persistence code).
The mapper, usually aided by additional metadata provided by the user, then
writes the persistence code for these objects. It may create the database in which
the objects are to be persisted itself, or it may use an existing database or one
created by the application developer.

The advantage here is flexibility, as this model enables the developer to write
arbitrary logic into the classes that are to be mapped. This model also has
the theoretical advantage that it allows application developers to focus on their
domain of expertise—the object-oriented world—shielding them from the less
familiar (and more distant from the business logic) world of databases. Due
to these advantages, many, though by no means all, of the most popular ORM
systems today are application-oriented.

An obvious requirement for a application-oriented mapper is that it be able
to read the code. There are three ways of approaching this. First, the mapper
can parse and interpret the raw code. Second, it can parse and interpret the
compiler output (e.g., machine code or bytecode). Third, it can use reflection
to access the structure of the code at runtime. This last method is the most
sophisticated and the most resource-intensive.

2.1.3 Database-oriented

A final perspective for a mapper to take is that of the database. Here, the
application developer builds the database, and the mapper probes the database
and infers the class structure from it (again often assisted by metadata). It
finally generates the code for the objects.

Just as application-oriented mapping has the advantage of speaking to devel-
opers in their own (object-oriented) language, database-oriented mapping has
the perceived disadvantage of speaking to them in exactly the wrong language
and denying them the flexibility to edit the mapped classes. On the other hand,
this model may be well suited to applications in which the data structure and
the relationships between different types of data are especially salient and the
business logic is less important.

40 I Chapter 2. Issues in ORM system architecture

2.1.4 Problems with this classification
Not all mappers fit neatly into this taxonomy. Some mappers have more than
one mode of operation. In some situations, application developers may actually
build all three components themselves—code, metadata, and database—leaving
the mapper with the sole task of adding persistence functionality to the existing
code, using the provided metadata to reference the existing database. It is not
clear which category such a system might best fit into.

2.2 Transparency

Different ORM systems, even ORM systems that adhere to the same mapping
paradigm, often exhibit substantially different architectures. One property
of an ORM system is transparency. The term transparency is usually used
in reference to application-oriented systems. Such a system is transparent if
classes do not need special infrastructure to persist their data. Some ORM
systems require classes to implement mapper-specified interfaces or carry special
attributive structures in order to be persistent. By contrast, a transparent system,
“ordinary” classes can be persisted, without cluttering them with structure whose
sole purpose is to satisfy the persistence layer. Indeed, in a transparent system,
classes do not even know that they are persistent. Transparency is based on the
notion that business classes should not need to know how, why, or even whether
they persist their data; objects should behave the same whether they exist only
in memory or whether they are stored permanently.

In a transparent system, auxiliary classes in the persistence layer carry out
the mapping. These classes consume business classes and persist their data,
often via existing database APIs such as ODBC and JDBC. In particular, there
is often a persistence manager class that provides all persistence services for
application objects: constructing and executing queries, controlling transactions,
and managing the cache.

2.3 Inheritance mapping

Inheritance is one of the most fundamental and integral notions in object-oriented
programming [4]. However, the concept is absent from the relational paradigm.
Consequently, the issue of mapping inheritance hierarchies is one of the first
deep problems that ORM systems must confront. Of course, the problem is
not exclusive to ORM. Software engineers writing database connection code
for classes by hand face the same problem. However, software engineers can
intelligently decide inheritance mappings on a case-by-case basis; ORM software
must adopt a consistent, systematic strategy for mapping inheritance hierarchies
that works reasonably well all (or almost all) the time.

In this section, we consider several strategies for mapping inheritance hi-
erarchies. To concretize our discussion, we will consider how these strategies
would be applied to the simple inheritance hierarchy depicted in Figure 2.1.

2.3. Inheritance mapping J 41

Person
name

Customer
amountSpent

Employee
wage

Manager
numberOfEmployeesFired

Salesperson
amountSold

Figure 2.1: An inheritance hierarchy of the sort that an ORM system might
encounter. The Person class is abstract (its name is in italics); all others are
concrete.

Strictly speaking, this hierarchy suffers from a number of design problems that
refactoring could solve. For one thing, it doesn’t allow a person to be both a
customer and an employee. Also, depending on system requirements, we would
probably want to store more information than just, say, number of employees
fired; we would probably want to know which employees a manager fired on
which dates. Nonetheless, this example will reveal the basic issues that an ORM
system faces in handling inheritance hierarchies.

There are three major approaches to inheritance mapping, described in [5,
§3.6] and [1, §2]. The rest of this section covers each in turn.

2.3.1 Single table per hierarchy

Perhaps the simplest way to map an inheritance hierarchy to the relational
model is to map it to a single table. This single table must contain the columns
necessary to describe any instance of any class in the hierarchy fully. In our
example, this procedure would produce a single table, Person, with a column
for each data member of each subclass of the Person class (Fig. 2.2). There are
also two new columns: a surrogate key (PersonId) and a field recording the
subtype to which the instance belongs (PersonType). Figure 2.3 shows sample
data for this table structure.

Besides being easy to understand and implement, this method also has the
advantage of relatively high performance. The DBMS does not need to execute
any joins or other resource-intensive operations across tables, and the job of the
persistence layer is likewise straightforward.

A disadvantage of the method is that it maps large inheritance hierarchies to
wide tables. Since each class in the hierarchy may have many data members,

42 I Chapter 2. Issues in ORM system architecture

Person
PersonId
PersonType
Name
AmountSpent
Wage
NumberOfEmployeesFired
AmountSold

Figure 2.2: The hierarchy of Figure 2.1 can be mapped to this single table.

Person
NumberOf-

Person- Amount- Employees- Amount-
Id PersonType Name Spent Wage Fired Sold
1 Employee Liz null $15 null null
2 Customer Pat $200 null null null
3 Salesperson Jim null $10 null $1200
4 Customer John $500 null null null
5 Manager Mary null $50 7 null

Figure 2.3: Sample data for the table structure of Figure 2.2

the number of fields in the resulting table could quickly become unmanageable.

2.3.2 Table for each class

The opposite strategy is to create a table for each class in the inheritance
hierarchy. In our example hierarchy, this would result in five tables (Fig. 2.4).
Now PersonId becomes the primary key for all five tables—and simultaneously
a foreign key for all but the base class.

Although all three methods preserve all the data that passes through the
persistence layer, this method is the only one that perserves the structure of
the inheritance hierarchy in its entirety. In essence, it translates the inheritance
structure of the object-oriented system directly into a relational structure in
the database, confronting the object-relational impedance mismatch head-on.
The output of this method is at a higher level of normalization (at least in an
informal sense) than that of the other methods; it renders all the null values
of the first method unnecessary by persisting the inheritance structure to the
database.

This has a certain theoretical appeal, but the downside is a large quantity of
tables and relationships and relatively low performance. The normalization that
this method affords may not be worth these costs.

2.3. Inheritance mapping J 43

Person
PersonId
Name

Customer
AmountSpent

Employee
Wage

Manager
NumberOfEmployeesFired

Salesperson
AmountSold

Figure 2.4: Here, we map each class in the hierarchy of Figure 2.1 to a table.

Person
PersonId Name
1 Liz
2 Pat
3 Jim
4 John
5 Mary

Customer
PersonId AmountSpent
2 $200
4 $500

Employee
PersonId Wage
1 $15
3 $10
5 $50

Manager
PersonId NumberOfEmployeesFired
5 7

Salesperson
PersonId AmountSold
3 $1200

Figure 2.5: Sample data for the table structure of Figure 2.4. This is the same
data as Figure 2.3 but under a different mapping.

44 I Chapter 2. Issues in ORM system architecture

Customer
CustomerId
Name
AmountSpent

Employee
EmployeeId
Name
Wage

Manager
NumberOfEmployeesFired

Salesperson
AmountSold

Figure 2.6: Here, we map each concrete class in the hierarchy of Figure 2.1 to a
table.

Customer
CustomerId Name AmountSpent
2 Pat $200
4 John $500

Employee
EmployeeId Name Wage
1 Liz $15
3 Jim $10
5 Mary $50

Manager
NumberOf-

EmployeeId EmployeesFired
5 7

Salesperson
EmployeeId AmountSold
3 $1200

Figure 2.7: Sample data for the table structure of Figure 2.6. This is the same
data as Tables 2.3 and 2.5 but under a different mapping.

2.3.3 Table for each concrete class

The final method is a slightly more pragmatic version of the technique just
discussed. Here, once again, there is a table for each class, but this time abstract
classes are excluded. (In our example, the Person class is the only abstract
class.)

This compromise is problematic. First, it unappealingly requires duplication
of semantically identical fields across tables. Here, the Name field occurs in two
tables, and the problem would be worse if Person had more subclasses or if
Employee were also abstract. If we wanted to modify this field, we would have
to do so in several places. More importantly, this mapping makes polymorphic
queries difficult. If we want to search for all people named Pat, we must first
search the Customer table and then the Employee table. This is an inconvenience
and a performance hit.

2.3. Inheritance mapping J 45

2.3.4 Existing support for inheritance mapping methods

Existing enterprise-quality ORM tools often provide software developers with
a choice of inheritance mapping techniques, so that inheritance mapping can
be optimized on a case-by-case (hierarchy-by-hierarchy) basis. For example,
Hibernate provides <subclass>, <joined-subclass>, and <class> metadata
elements to achieve table-per-hierarchy, table-per-class, and table-per-concrete-
class mapping, respectively. The following snippet of Hibernate metadata XML
would map our person example to a single table.

<hibernate-mapping>
<class name="Person" table="Person" discriminator-value="P">

<id name="id" column="PersonId" type="long">
<generator class="native"/>

</id>
<discriminator column="PersonType" type="string"/>
<property name="name" column="Name" type="string"/>
<subclass name="Customer" discriminator-value="C">

<property name="amountSpent" column="AmountSpent"/>
</subclass>
<subclass name="Employee" discriminator-value="E">

<property name="wage" column="Wage"/>
<subclass name="Manager" discriminator-value="M">

<property name="numberOfEmployeesFired"
column="NumberOfEmployeesFired"/>

</subclass>
<subclass name="Salesperson" discriminator-value="S">

<property name="amountSold" column="AmountSold"/>
</subclass>

</subclass>
</class>

</hibernate-mapping>

This code is rather clear. The only points that may need explanation are the
“discriminator” element and attributes. These control the schema and content of
the PersonType field, which distinguishes between different subtypes of Person.
(Remember that in this model, all data goes into one table, so the only reliable
way to determine which subtype a record belongs to is via this discriminator
field.)

In conclusion, large and complex hierarchies are problematic for any in-
heritance mapping technique. Under a mapping strategy that maps an entire
hierarchy to a single database table, large hierarchies can result in unman-
ageably wide tables. Under a strategy that maps each class to its own table,
large hierarchies produce unmanageably numerous tables. However, large and
complex inheritance hierarchies are a design problem independent of ORM.
Skillful refactoring can reduce the complexity of an inheritance hierarchy with-
out compromising its integrity, making it more maintainable and useable and

46 I Chapter 2. Issues in ORM system architecture

simultaneously obviating much of the problem of inheritance mapping.

2.4 Transaction processing

Traditionally, applications interact with DBMSs in transactions, or logical units
of work. According to the classical definition [15], the system guarantees that it
will execute the transaction exactly once (reliability); that if it executes one part
of the transaction, it will execute all of it (atomicity); and that it will insulate the
transaction from other database operations, so no such operation can see the data
in an intermediate state (isolation). Additionally, the database must be in a legal
state when the transaction begins and when it ends (consistency). In practice,
modern transaction processing systems do not always meet all these criteria all
the time, but they abide by them to the extent that pragmatic considerations
allow.

Nowadays, transaction processing is a core functionality of any professional-
grade DBMS. Most flavors of SQL contain commands such as START TRANSAC-
TION, COMMIT, and ROLLBACK [19]. (In fact, transaction processing commands
have been part of the SQL standard since 1992 [14].) To execute a database
transaction, an application issues a START TRANSACTION command and then
performs a sequence of database operations. At that point, it can COMMIT these
changes, concluding the transaction and making its effects visible to all users.
Alternatively, it can ROLLBACK the transaction, which returns the database to
its previous state and terminates the transaction.

The classic example of a scenario requiring the protection of a transaction is
a transfer between two bank accounts. Suppose that Angela wants to transfer
$100 to Bob. We can view this transfer as two operations: withdrawing $100
from Angela’s account and depositing $100 in Bob’s account. We could naïvely
complete such a transfer by first issuing a

UPDATE Account SET Balance = Balance − 100 WHERE Id = 1

statement against Angela’s account. Subsequently we would issue a command

UPDATE Account SET Balance = Balance + 100 WHERE Id = 2

to Bob’s account. (In practice we might want to insert checks to make sure that
the balance does not fall below 0, but for simplicity we ignore such considerations
in this example.) This works fine in ordinary circumstances. However, if the
second command fails, the database is left in an inconsistent state; $100 has
disappeared from the system. Moreover, even if both commands ultimately
succeed, a query from some other user could be interposed between the two, and
that query would see the database in an inconsistent state, possibly leading to
incorrect or incoherent results. Transactions solve this problem.

START TRANSACTION
UPDATE Account SET Balance = Balance − 100 WHERE Id = 1
UPDATE Account SET Balance = Balance + 100 WHERE Id = 2
COMMIT

2.4. Transaction processing J 47

This ensures that no error or interruption will leave the database in an inconsistent
state and that no other statements can become interposed and leave the database
in an inconsistent state.

Database APIs often provide interfaces for database transactions that use
the transaction functionality that the DBMS provides. This allows API users to
conceive of transaction processing at a higher level of abstraction. For example,
consider the following Java snippet, which uses JDBC to perform the bank
transfer described above.

con.setAutoCommit(false);
PreparedStatement changeBalance = con.prepareStatement(

"UPDATE Account SET Balance = Balance + ? WHERE Id = ?");

changeBalance.setBigDecimal(1, −100.00);
changeBalance.setInt(2, 1);
changeBalance.executeUpdate();

changeBalance.setBigDecimal(1, 100.00);
changeBalance.setInt(2, 2);
changeBalance.executeUpdate();

con.commit();
con.setAutoCommit(true);

The setAutoCommit method in the first and last lines refers to the auto-commit
feature in JDBC, which automatically wraps each statement in a transaction.
With this feature activated, as it is by default,

UPDATE Account SET Balance = Balance − 100 WHERE Id = 1
UPDATE Account SET Balance = Balance + 100 WHERE Id = 2

would become

START TRANSACTION
UPDATE Account SET Balance = Balance − 100 WHERE Id = 1
COMMIT
START TRANSACTION
UPDATE Account SET Balance = Balance + 100 WHERE Id = 2
COMMIT

Turning auto-commit off effectively begins a manually controlled transaction.
Using a prepared statement for improved performance, we subtract $100 from
account 1 and add it to account 2. Finally, we commit the transaction and
restore auto-commit.

Transaction processing is too complex and domain-specific a functionality
to be provided by object-relational mappers automatically. In general, there is
no way for a mapper to tell when groups of commands need to be issued as a
transaction and when they can be issued individually. The mapper, then, must

48 I Chapter 2. Issues in ORM system architecture

present the user with an interface for transactions that leverages the transaction
processing infrastructure of the underlying DBMS (or API).

Hibernate provides a good example of this. Its API provides a Transaction
interface with methods for enclosing a database transaction.

Session session = getSessionFactory().openSession();
Transaction tx = null;
try {

tx = session.beginTransaction();

Customer angela = (Customer) session.get(Customer.class, 1);
angela.changeBalance(-100.00);

Customer bob = (Customer) session.get(Customer.class, 2);
bob.changeBalance(100.00);

tx.commit();
}
catch (Exception e) {

if (tx != null) tx.rollback();
throw e;

}
finally {

session.close();
}

Hibernate does not actually propagate any of the database actions until Trans-
action.Commit is called. This “flushes” the session, synchronizing it with the
database. If an exception occurs in the meantime, this code rolls back the
transaction. Regardless of what happens, exception or no exception, the code
concludes by closing the session, which releases the JDBC connection to the
pool.

2.4.1 Isolation levels and locking

In order to maintain transaction isolation, DBMSs rely on locking, which tem-
porarily prevents concurrent access to particular data structures. Under a
pessimistic locking policy, a database user locks an item of data as soon as it
reads it and retains the lock until it completes the transaction. This guarantees
isolation, but it can lead to database-level deadlocks, which limits the scalability
of the policy. Consequently, many systems relax their demands on the isolation
of their transactions, allowing for a more lenient isolation level than complete
isolation. The possible isolation levels are defined by the ANSI/ISO SQL stan-
dard in terms of the isolation anomalies that they allow or prevent. There are
three relevant types of isolation anomaly:

Dirty read This occurs when one transaction reads changes made by another

2.4. Transaction processing J 49

transaction that has not been committed. This becomes problematic if the
other transaction is rolled back, invalidating the value read.

Non-repeatable read This occurs when a transaction reads the same record
twice and receives different results. This would happen if a concurrent
transaction had modified the record (and committed its modification)
between the two reads.

Phantom read This occurs when a transaction executes a query twice and the
second result set includes records that were absent from the first. This
could happen if a concurrent transaction had inserted new records (and
committed its insertion) between the two reads, or if it had modified
existing records to satisfy the query.

The four isolation levels are defined by the anomalies they allow:

Serializable This level specifies full isolation and eliminates all of the anomalies
described above. It behaves as if all transactions in the system were
executed serially (although there can be concurrency in fact as long as the
appearance of serial execution is preserved).

Repeatable read This level still prevents dirty and non-repeatable reads but
allows phantom reads.

Read committed This allows phantom reads and non-repeatable reads but
still prevents dirty reads.

Read uncommitted This level allows phantom, non-repeatable, and dirty
reads. This is not equivalent to the absence of isolation, as read uncom-
mitted locking still protects against some anomalies not described above,
such as a lost update, which occurs when two transactions update a single
row and the second one aborts, causing the first change to be lost as well.

These levels differ in the type and duration of locking they require, but the
details are irrelevant.

The appropriate choice of isolation level varies from application to application.
Developers must determine how to balance a desire for increased concurrency
and better performance with a need to avoid subtle application bugs that are
difficult to predict or reproduce. Read uncommitted isolation yields the best
performance, but is dangerous to allow a transaction to use an uncommitted
change from another transaction. Serializable isolation is the safest but does not
scale well and is unnecessary for many applications. The factors that go into
these decisions are again beyond the scope of this paper (see e.g. [28, pp. 181–183]
for more information). What is important is that isolation level can vary on a
per-application basis, so many persistence frameworks provide applications with
a means of configuring the isolation level. Of course, database administrators
can set a default isolation level on the database itself, but many database APIs
and persistence frameworks allow this value to be reset by the application. In a
Hibernate configuration file, for example, an application developer can write

50 I Chapter 2. Issues in ORM system architecture

hibernate.connection.isolation = 4

to set repeatable read isolation.
Some persistence layers also allow applications to set database locking on a

per-item basis, affording them a finer level concurrency control. Let us continue
to use Hibernate as an example, since it offers especially good concurrency
control. The Hibernate API includes a LockMode class, which allows API users
to demand a pessimistic lock on a particular item. (It has other features too,
such as forcing Hibernate to bypass the cache or execute a version check.) To
obtain a pessimistic lock on a customer, one would use an API call like

session.get(Customer.class, customerId, LockMode.UPGRADE)

If unspecified (as it has been in previous examples), the default lock mode is
LockMode.NONE.

2.4.2 Application transactions

The transactions we have discussed—called database transactions or system
transactions—so far are what are usually referred to when people speak of
transactions. These are fine-grained transactions and must be restricted in
duration, lest their isolation requirements prevent concurrency and reduce the
scalability of the application. Besides these database or system transactions,
though, we can also talk about coarser-grained units of work, transactions at
the level of the application or business logic.

For example, consider a Web application that interacts with a user in a
standard request-response paradigm. In a typical sequence of events, the (server-
side) application might query data from the database and provide it to the client
in a Web response. The user might indicate modifications to be made to the data
via the Web browser and send these modifications to the server as a Web request.
Finally, the server might make those modifications. This exchange might take
many minutes. This is far too long for a database transaction. If we tried to wrap
this entire sequence in a database transaction, the entire database system could
be held up while waiting for the user to respond to the request (which might
take a very long time or might never happen at all). This is clearly unacceptable
in a system with more than one user. At the same time, this sort of interaction
does raise concurrency issues. What happens if someone else modifies the data
between the initial response to the client and the client’s update request? The
database can provide no help here, so it is up to the application to handle these
application transactions or user transactions.

For the purpose of clarity, let us take an even more concrete example to use
throughout this section: a wiki page. A wiki is a content-based Web site that
allows any user to edit any page, often without registration. On popular wikis,
scenarios like the following are common:

1. Anthony requests a wiki page. The server responds with the current version
of the page.

2.4. Transaction processing J 51

2. Barbara requests the same wiki page. The server responds with the current
version of the page.

3. Anthony submits edits to the page. The server updates the database to
reflect the new content.

4. Barbara submits her edits to the page, unaware that a competing user
(Anthony) has already submitted edits of his own.

How should the application handle such an occurrence? There are several
possibilities:

Record locked during editing One option is for users to notify the appli-
cation when they are about to make edits. The application would then
prevent other users from attempting to make updates until the first user
had completed the edit. In this example, Anthony would, in step 1, no-
tify the application (as part of his request) that he was planning to edit
the content. Then, when Barbara made a similar request in step 2, the
application would deny her access until Anthony completed the request
in step 3. This policy is extremely problematic, as it prevents concurrent
data use entirely for minutes at a time—perhaps much longer, if Anthony
disconnects from the Internet when the application is still awaiting an
edit from him. It would also require substantial database infrastructure
to support it, including a lock table for keeping track of application-level
locks. We present this policy for completeness and because it is analogous
to database-level pessimistic locking; it would seldom be appropriate for
application-level transactions in a real, concurrent system.

Last commit wins Under this policy, both updates would succeed. Barbara’s
update would overwrite Anthony’s, and neither user would receive any
notification or error message. This is the easiest solution to implement
(it requires no work at all on the part of the application developer or
the persistence layer), but it is problematic. What if Anthony’s edit was
to correct an important error in the content of the page and Barbara’s
update was to correct a different but also significant error elsewhere in the
page? Anthony’s update would be lost, and no one would be the wiser for
it (unless Anthony happened to check back later and notice the update
missing).

First commit wins The opposite strategy is to allow Anthony’s edit to prevail,
presenting Barbara with an error message when she attempts to overwrite
his edit. This solution, also called optimistic locking, is often sufficient, as
Barbara can take appropriate action to deal with the conflict.

Merge updates A related strategy is to not only notify Barbara of the conflict,
but also give her the opportunity to merge her changes with Anthony’s
selectively. This gives users a great deal of power to resolve conflicts in
the best way possible—to assert that their own changes should overwrite

52 I Chapter 2. Issues in ORM system architecture

conflicting users’ changes, to retract their own changes in the light of
conflicting changes, or to merge changes so that the essence of all competing
changes is preserved.

An even more sophisticated policy is to merge changes automatically
whenever possible. For example, if Anthony corrects a typographical error
in the first paragraph of a lengthy document and Barbara corrects an
error in the final paragraph, the application might be intelligent enough to
reconcile those changes without needing to consult any humans. Of course,
users still need to be consulted when conflicts occur in proximity to each
other. Automatic merging is not widespread in present-day wikis, but it is
found in some version control systems such as CVS [8, §10.2].

In order two apply either of the last two policies, of course, an application needs
to be able to detect conflicts. This is not as trivial as it might sound. If our
wiki were implemented as naïvely as the preceding text suggests, the application
would have no way of knowing whether Anthony had been editing the version
of the page that Barbara submitted or whether he had been using an old copy
(as, in fact, he was). To empower our application to recognize such situations,
we must introduce some notion of versioning. Each wiki page must have some
notion of the version it is currently on, or at least a time stamp indicating
the date and time of the last edit. This version number or time stamp should
be passed on to database users like Anthony and Barbara, who must indicate
what version of the record they are editing when they submit their requests.
In this case, both Anthony and Barbara would indicate that they were editing,
say, version 4 of the page, or the version that took effect on February 18, 2007,
at 21:42:32.591. When Anthony submitted his update, the application would
increment the version number in the database record (or update the time stamp)
at the same time as it made the changes he requested. Then, when Barbara
submitted her update, the application would notice that the version number or
time stamp she provided (4 or 2007-02-18 21:42:32.591) did not match that in
the database (5 or the time of Anthony’s update) and could handle the situation
according to its conflict resolution policy.

This is where ORM comes in. An ORM tool can manage versioning for the
application, saving the developer considerable work. In an ORM system that
supports managed versioning, the developer typically adds an integral Version
column (or something similar) to the database and indicates in the metadata that
it should be used for managed versioning. In the Hibernate metadata format,
for example, there is a version element that looks like this:

<version name="version" column="Version" />

(Hibernate also supports time stamps.) Hibernate modifies all its persistence
commands accordingly, automatically incrementing the version column at each
update and committing updates only when the version field holds the expected
value. Instead of executing SQL like

UPDATE Customer SET Surname = "Johnson" WHERE Id = 3

2.5. Caching J 53

Application

ORM system

Cache Database

Application server Database server

Figure 2.8: High-performance ORM systems insert a cache between the appli-
cation and the database. The cache stores a subset of the information in the
database—the subset that the mapper deems (at run time) most likely to be
used soon—for faster access to these items, improving application performance.

Hibernate would execute

UPDATE Customer SET Surname = "Johnson", Version = 5
WHERE Id = 3 AND Version = 4

Hibernate throws a StaleObjectStateException if the update fails. The appli-
cation can catch this exception and apply a first-commit-wins or merge-updates
strategy appropriately.

2.5 Caching

One criticism of object-relational mapping has been founded on the assumption
that mapping systems generally suffer from poor performance relative to hand-
coded solutions. On its face, this assumption seems reasonable. Not only
can hand-coded solutions exploit, in principle, domain-specific peculiarities to
improve performance, but also many mapping systems rely on resource-intensive
features such as reflection.

In fact, mapping systems can often improve on the performance of hand-
coded solutions. One of the most important reasons for this is the incorporation
of caching functionality into mapping systems. In many database-driven applica-
tions, database access (i.e., communication with a database server) is a bottleneck.
By caching the results of queries locally, applications can often get away with
less frequent communication with the database server. Of course, hand-coded
persistence solutions can certainly employ caching, but the formidability of
developing a caching solution for application objects on an individual basis often
makes this practice uneconomical. By contrast, a mapping system can provide
this functionality to applications freely and often transparently.

More explicitly, an object-relational mapping cache is a temporary store that
resides between the application and the database (most often on the application
server machine itself) and retains some content from the database so that the

54 I Chapter 2. Issues in ORM system architecture

application can access this content without a round trip to the database. This
cache is part of the object-relational mapping system and is separate from any
cache that might exist as part of the database management system (or as part
of the application). It is conceptually analogous to any other computer cache,
such as a CPU cache. However, the nature of an RDBMS-driven application
persistence mechanism poses unique issues and challenges.

In their book on Hibernate, Bauer and King [5], §5.3.1 explicate a classification
of ORM caches based on their scope. They identify the following cache scopes:

• Transaction scope. The cache is associated with a particular “unit of work,”
which may be a database transaction or a meaningful unit of work in an
application.

• Process scope. The cache may be shared by many transactions.

• Cluster scope. The cache may be shared by multiple processes or multiple
machines. A cache at this scope requires remote process communication
for consistency, and data must be replicated to all nodes in the cluster.

Using any cache beyond the scope of a transaction can create problems with
concurrent access. This is especially problematic when an application does not
have exclusive access to the database. Suppose, for example, that our ORM-
backed application shares a database with a legacy application that predates
the ORM system. In general, barring the construction of some complex, custom,
environment-specific solution using database triggers, our application has no way
of knowing when the legacy system has changed the contents of the database.

If an application does have exclusive access to the database, though, higher-
level caching can be helpful. Some classes are better candidates for high-level
caching than others, of course. A class whose data is relatively static is a better
candidate for process-level caching than one whose data changes frequently. Also,
in some application domains, it may be acceptable to see slightly out-of-date
data occasionally. For this reason, major mapping systems provide mechanisms
for setting caching strategy on a class-by-class basis. To take a concrete example,
iBATIS supports the following caching models [2, §3.8]:

• “Memory” cache. Cache data is stored in reference types, so the garbage
collector effectively manages the cache.

• LRU cache. When the cache becomes full, the least recently used object is
removed from the cache. According to the iBATIS documentation, this
model is well suited for situations in which certain objects may be popular
over long periods of time.

• FIFO cache. When the cache becomes full, the oldest object is removed
from the cache. This model is good for situations in which an object is
likely to be referenced several times in quick succession, but then perhaps
not again afterwards.

2.6. Metadata J 55

2.6 Metadata

Some database-driven applications are so simple that a clever mapper can infer
the relationship between the code and the database just by examining one or
the other (or both). In virtually all non-trivial cases, though, a mapper will
need some extra information to understand the relationship between the code
and the data. At the least, it seems, a mapper ought to know which classes
are to be mapped, since in most applications there are many classes that do
not correspond to database relations. Hence there should be some way to mark
specific classes for mapping (or perhaps instead mark specific classes that are
not to be mapped). Most likely, though, the metadata will be substantially more
elaborate than this. The mapper will need to know which classes correspond to
which relations, which members correspond to which columns, the types to which
specific fields should be mapped, and so on. These decisions can sometimes be
inferred automatically, but in many cases this is impossible.

There are several ways in which mapping metadata can be created and stored.
A popular medium is the Extensible Markup Language (XML). Hibernate, for
example, is an important mapper that keeps its metadata in XML documents.
The syntax and structure of a Hibernate mapping document are enforced by the
rules of XML syntax and by a Hibernate-specific Document Type Definition,
respectively. A Hibernate mapping document has a <hibernate-mapping>
XML tag as its root. It typically has child tags such as <class>, which provides
metadata for a specific Java class in the application. A <class> tag can in turn
have children such as <property> and <id>. All these tags have attributes that
provide the metadata (see §3.1.2). Many other mappers use essentially the same
idea (see e.g. §3.2.2 and §3.4.2).

There is nothing that restricts us to XML. Other mappers use other textual
formats for metadata. For example, the Enterprise Objects Framework, an
object-relational mapper built into Apple’s Web application server software,
WebObjects, relies on custom-format files called model files to describe mappings
between classes and tables, between class attributes and database columns, and
between instances and database rows [3]. There is no fundamental difference
between XML and other textual formats, so we regard them as conceptually
the same. (There are, of course, practical differences. XML provides several
advantages over custom formats. Perhaps most importantly, most developers
are already familiar with XML, so the learning curve will be shallower for
XML-based mappers. Additionally, a wide variety of tools exist for composing,
editing, visualizing, and validating XML, which gives developers a great deal
of flexibility in constructing and managing mapping documents. XML also
makes programmatic creation and manipulation of mapping documents relatively
easy, since many enterprise frameworks and class libraries have built-in XML
functionality. On the other hand, custom formats may provide other advantages,
such as terseness.)

Whether using XML or a custom format, mappers that keep their metadata
in text files often provide graphical interfaces to allow developers to create

56 I Chapter 2. Issues in ORM system architecture

mapping documents more easily and intuitively. This saves them the trouble
of remembering syntax rules and navigating lengthy, machine-readable text
documents. In the Enterprise Objects Framework mentioned earlier, model
files are practically always constructed using a visual tool such as EOModeler.
Ordinary developers never even see the underlying text. Of course, the visual
tool need not be developed by the developers of the mapper themselves. Since
the text formats are (at least ideally) generally simple, well defined, and clearly
documented, it is easy for third parties to develop graphical tools for manipulating
mapping metadata files. Regardless, placing a graphical tool on top of a text
format does not represent a fundamental change in conception. It is nothing
more than a productivity aid for developers. These graphical interfaces may have
substantial practical importance, but they are of little theoretical significance in
this context.

A more fundamental distinction exists between mapping systems that keep
their metadata in standalone text files, which we have just described, and systems
that keep metadata inline, within the code itself. The Microsoft .NET languages,
in particular, incorporate features that make the latter technique more elegant
than it would be in other languages. Specifically, .NET introduced the idea of
attribute-based programming. An attribute is a language construct that allows
developers to impart metadata to code elements such as types to extend their
functionality. This is done inline via a syntax designed for the purpose.

In languages without attributive syntax, such as Java, this technique is not
quite as elegant. Most often, it is done through the use of specially marked
comments. XDoclet is a code generation library that introduces attribute-based
programming to Java via custom Javadoc tags. XDoclet can be configured
to generate XML mapping documents for Hibernate from the inline Javadoc
tags. For completeness, we should note that Java Specification Request 175
introduces “annotations” to Java [43], which are analogous to .NET attributes.
JSR 175 annotations are likely to supplant XDoclet in the future. Still, the idea
of simulating attribute-based programming via specially marked comments is not
unique to Java. The same technique could be used to introduce attribute-based
programming, and hence inline ORM metadata, to other languages.

2.7 Dirty checking

Dirty checking is a technique that exists in several ORM systems. To perform
dirty checking, an ORM system must determine transparently whether and
how a persistent object has been modified by the application since it was
last synchronized with (i.e., retrieved from or stored to) the database. This
allows the system to tell whether the application and the database need to
be resynchronized (i.e., whether the database needs to be updated to reflect
the changes that the object has undergone). To clarify the metaphor implicit
in the name dirty checking, a system that supports dirty checking determines
whether an object has been “dirtied”—modified—since it was last known to be
in a “clean”—up-to-date—state.

2.7. Dirty checking J 57

Dirty checking is primarily a convenience for application developers. It is not
by any means a necessity, nor is it an integral component of any ORM system,
and many ORM products lack it. The alternative to dirty checking is to persist
objects only when application developers explicitly request it (i.e., by expressly
calling the persistence layer to operate on specific objects in the business layer).
This is not so bad; it just means that application developers must remember
to save their changes when they are done making them. In particular, if they
persist an object and make subsequent changes to it after the save, they must
remember to persist the object again before disposing of it, so that the changes
will not be lost. Many ORM tools function perfectly well with this model.

However, although not an imperative, dirty checking is a convenience. A
mapper that supports dirty checking can save the application developer the
trouble of thinking about when and when not to save objects. The danger
in failing to save objects when they have changed state is clear: the changes
will be lost, and future operations that rely on the data that should have been
persisted will be incorrect. However, it is worth noting that there is also a
danger, albeit a lesser one, in saving too often: performance. Developers could
take the naïve approach of saving after every change they make, but all these
database interactions would result in severe performance penalties. Thus, dirty
checking can improve performance by ensuring that objects are saved only when
they need to be.

To clarify the change that dirty checking effects from the developer’s point of
view, consider the following sequence events in a system without dirty checking:

1. Via the application-provided user interface, the end user requests, in effect,
that order 38 be associated with customer 92.

2. In response to the request, the application creates a transaction by calling
the appropriate procedure in the persistence layer (i.e., the API provided
by the ORM system).

3. Via the persistence layer, the application loads customer 92.

4. Via the persistence layer, the application loads order 38.

5. Via the business layer, the application associates the loaded order with
the laoded customer. This would be done via the methods on the business
objects that the application developers themselves have likely architected.
The syntax might look something like c.Events.Add(o), where c is the
customer object and o is the order object. (This example is in C# or
Visual Basic .NET. Here, Events is supposed to be a read-only collection
property of the Customer class.)

6. The application saves the customer record. Note that, from the database
point of view, what actually needs to be saved (in order for the change
described above to persisted) is not any data in the Customer table at
all. Instead, a relationship must be established between a Customer entity
and an Order entity. Assuming the relationship between Customer and

58 I Chapter 2. Issues in ORM system architecture

Order is an ordinary, one-to-many relationship, this means that what
actually needs to be saved is not the Customer table at all, but instead
the Order entity in question needs a new foreign key value. An ORM
system without dirty checking is not smart enough to realize this though.
Consequently, either the application developer is left with the task of
specifying exactly what part of the Customer object needs to be saved
(in this case, one of its associated orders)—which is a burden for the
developer—or the Customer object needs to save everything—not just the
data in the Customer table itself, but also all data for all objects associated
with Customer. If Customer has a large graph of objects associated with
it, this could be a very expensive operation.

7. The application closes the transaction.

Dirty checking solves the problem presented by step 6 in a very clean way: by
eliminating step 6, or rather making it implicit in step 7. In a system with dirty
checking, all changes to the persistent objects that participate in the transaction
are saved to the database.

The major question with dirty checking is that of how to detect when an
object changes state. This is harder than it might sound; remember, in the
object-oriented model, objects are black boxes and expose themselves only
insofar as they wish to be exposed. They are not, in general, compelled to notify
anyone when they change state, including the ORM system (which itself may be
transparent to the object). There are a number of approaches to this problem.

2.7.1 Inheritance from a base class that monitors state
change

The oldest, most naïve method of detecting object state changes is to generate an
abstract base class that contains the logic for managing state changes. Usually,
this base class is generated or otherwise provided by the ORM solution. The
problems with this approach are obvious. First, it is a burden on developers.
It is an inconvenience for business classes to have to inherit from a common
base class (which the developers may have to go to some trouble to generate).
But it is more than just an inconvenience. In languages and language systems
that support only single inheritance, such as Java and the .NET Common Type
System, inheriting from a particular base class prevents a class from extending
any other class. This means that if a class is to be persistent, it cannot otherwise
make use of inheritance as a language feature. A more theoretical problem is
that this approach precludes transparency. Classes have to know that they are
going to be persistent; they cannot be made persistent at will.

2.7.2 Manipulation of source code
Another approach is to insert a step into (or, rather, immediately before) the
compilation process, a step that modifies the source code to insert state change
management logic directly into each class that is to be persisted via the ORM

2.7. Dirty checking J 59

framework. That is, the ORM system directly rewrites the source code before it
is compiled, adding functionality to it in the programming language itself.

Rewriting source code has a messy feel to it that makes experienced software
engineers cringe, and with good reason. In order to rewrite source code, an
ORM system has to first understand the existing code well enough to know
where to insert what kind of code. This means that it must replicate much of
the functionality of a compiler, such as lexical analysis, syntax analysis, and
semantic analysis. It seems nonsensical for an object-relational mapper, of
all things, to duplicate the functionality of a compiler. (At best, an object-
relational mapper might be able to utilize existing compiler elements to parse and
analyze the code, rather than using its own, custom-build parsing and analysis
functionality, if the language provides compiling facilities that are transparent
and accessible enough, but even this feels messy.) For one thing, this is a lot
of work for the developers of the ORM software. For another, building parsing
and analysis into an ORM system is prone to error. What if the authors of the
ORM software fail to accommodate some little-known and little-used element of
language syntax? Finally, code rewriting is very sensitive to language changes,
such as the incremental modifications made to language specifications from
subversion to subversion. An ORM system that works with version 2.1 of a
language specification may not work with version 2.2.

There are more pragmatic considerations as well. If source code is rewritten
before compilation, the error messages and other output produced by the compiler
will be incorrect from the application developer’s point of view. Line numbers
will almost certainly be dramatically wrong.

Finally, it is hard to integrate source rewriting into the build process trans-
parently. The sequence of operations in the build process varies greatly not
only from language to language, but also from development environment to
development environment (and between different developers using the same
development environment, according to each developer’s environment configu-
ration). It is impossible to construct a general, reliable strategy for inserting
a rewriting step before compilation that will work across many development
environments. The problem is especially acute in development environments
that support incremental compilation, a feature that effectively compiles as the
developer types (or, rather, appears to do so from the developer’s point of view),
alerting the developer to both syntactic and semantic problems. Some systems,
such as Microsoft Visual Studio 2005, even perform complete builds of projects
on the fly to support requests for developer-architected services as they occur.
It is difficult to see how source code rewriting could be reliably integrated into
such a system.

2.7.3 Manipulation of bytecode

Many modern language implementations compile into a bytecode or intermediate
language, which is in turn interpreted by a virtual machine that translates
bytecode into platform-specific machine code (usually on the fly at run time) and
executes the machine code. Java, .NET, Python, Tcl, and Perl (since version 6)

60 I Chapter 2. Issues in ORM system architecture

are all compiled into bytecode and executed by a virtual machine, and Ruby
plans to adopt this model in version 1.9.1, due for release at the end of 2007
[27]. This model presents an alternative to rewriting source code: rewrite the
bytecode instead. This carries a number of advantages over rewriting source
code. Bytecode, though hard for a human to read, is easier for a machine to
read (after all, it is designed for consumption by virtual machines, not people),
which means that ORM technology can more easily understand and rewrite it.

Bytecode is also, to some degree, language-independent. To develop an
ORM solution for the .NET Framework that used source rewriting, for example,
ORM software engineers would need to support not just C#, but also Visual
Basic .NET, C++/CLI, J#, and any other popular language that compiles into
the Common Intermediate Language (CIL), the language interpreted by the
.NET virtual machine, the Common Language Runtime. (This list is practically
unbounded, since one of the selling points of the .NET Framework is that it is
easy to write languages that compile into CIL.) Instead, ORM software engineers
can directly manipulate the CIL, which allows them to support any of these
languages, even .NET languages that are not widely used (like Boo and Mondrian
for .NET) or do not even exist yet (Simula.NET, perhaps).

Bytecode processing is also more transparent to application developers than
source rewriting. Indeed, application developers seldom have cause to even think
about the bytecode that the compiler generates, let alone any modifications
that ORM software might make to the bytecode after it is compiled. Of course,
bytecode processing certainly won’t cause problems of the sort one encounters
with source rewriting—incorrect compiler output and the like.

Finally, bytecode processing is at least somewhat easier to incorporate into
the build process than source rewriting. Bytecode processing happens after the
rest of the build cycle is entirely completed (but of course before the bytecode
is ever seen by a virtual machine). It is somewhat less problematic to insert a
new step after the end of the build process than to insert one at its onset. Even
so, depending on (intermediate) language and development environment, some
complications arise in automating this step.

2.7.4 Reflection at run time

Many modern programming languages, including Java, the .NET languages,
Objective-C, Smalltalk, Tcl, Eiffel, and most modern scripting languages, are
reflective. A reflective programming language is one that allows an application
to access and manipulate information about itself in the same way that it can
access and manipulate information about its application domain. For example,
object-oriented, reflective programming languages and platforms have classes
that represent classes, classes that represent methods, classes that represent data
members, and so on. Consider the following Java example. (In Java, reflection
is provided by the java.lang.reflect package.)

Class c = Class.forName("Car");
Method m = c.getMethod("FillWithGasoline", null);

2.7. Dirty checking J 61

m.invoke(c.newInstance(), null);

Here, we instantiate the Class class; the new instance represents the entire Car
class (not any particular instance). Then, we instantiate the Method class; this
instance represents the FillWithGasoline method of the Car class. Finally, we
invoke this method on a new instance of the class. This code is equivalent to
the following, non-reflective Java code.

Car car = new Car();
car.FillWithGasoline();

Of course, this code is much simpler and cleaner. One would never write reflective
code when non-reflective code would do equally well. However, the purpose of
this example is to illustrate that it is possible for an application to reason about
itself in the same terms that it can reason about its application domain; one
can manipulate classes and methods in the same way that one manipulates cars
and customers. Reflection has many practical applications, such as dynamically
optimizing an application (perhaps even via self-modification) or adapting to
diverse execution contexts at run time. Here, we will see another.

Reflection has one major problem: performance. In most platforms, includ-
ing Java and the .NET Framework, reflection is quite expensive, due to the
complexity of constructing memory structures that mirror the structure of the
application itself. Indeed, even theorists who emphasize the importance of code
maintainability over performance often shy away from reflection; reflection is
dramatically more expensive than most ordinary operations. Fortunately, this
will be slightly less of a problem for us. As it turns out, database operations are
incredibly expensive themselves; a single use of reflection doesn’t approach the
time necessary to establish a database connection and transfer data across it.
This is even more true if the database server is a different machine from the appli-
cation, requiring communication across a network, which is even more expensive.
Of course, reflection can still pose a performance problem if overused enough
(especially when used to traverse large object graphs), but in general, moderate
use of reflection will be much less expensive than the database operations that
ORM systems, by their nature, must carry out frequently.

Reflection allows us to hook up state change monitoring logic at run time
(rather than before or during the build). This affords a tremendous amount of
transparency and flexibility. As far as the developer is concerned, business classes
can appear entirely independent from the ORM framework that will support
their persistence—and not only at design time, but even when the software has
been built. Only at run time does the ORM software attach itself to the business
layer. Provided that we can accept a performance hit, reflection provides a
transparent, simple, and clean way for an ORM framework to monitor the classes
it is to persist.

Chapter 3

Examples of ORM systems

It would be impossible to list, let alone examine, every ORM system in existence.
There are hundreds or thousands of object-relational mappers that can be
downloaded for free on the Internet or purchased through middleware vendors.
Beyond that, an incalculable multitude of proprietary ORM software exists for
private, internal use at individual software development companies. Here, we
present a tiny, nonrepresentative subset of ORM systems that see widespread use
in industry. We aim to exhibit systems that demonstrate the concepts underlying
ORM exceptionally well, systems that are of especial theoretical interest, systems
that present innovative solutions to the ORM problem, systems that test the
limits of the applicability of ORM, systems that are particularly mature and
well developed, and systems that are very widespread. Of course, these aims
often overlap.

To emphasize that different ORM systems face the same sorts of questions,
even though their answers to those questions may differ drastically, the sections
in this chapter have parallel structure. We begin each section with an overview
of the ORM system at hand, disclosing the basic facts about it, in many cases
providing a simple example of its use, and perhaps briefly describing its history. In
the first subsection, we look at the architecture of the system—not only whether
it is, say, application-oriented or database-oriented, but also the structure of the
ORM system itself. Then, we examine how the system handles the problem of
metadata—how it gets the information it needs in order to wire up the persistence
mechanism (see Section 2.6). Next, we tackle querying—the interface the system
provides the application to express questions to ask the database. The next
subsection is on caching, whose primary purpose is performance (see Section 2.5).
Finally, we look at how the system handles transactions and concurrency in
general (see Section 2.4).

62

3.1. Hibernate J 63

3.1 Hibernate

Hibernate (http://hibernate.org/) is one of the most popular ORM systems
in existence. Hibernate has been a non-commercial, open-source project since
development began in 2001. Originally developed for Java, it was ported to
.NET under the name NHibernate in 2005. Hibernate is not the oldest ORM
system, but it is an excellent example to begin with, because it is a mature
system that adopts a fairly traditional view of ORM while at the same time
introducing a number of innovations to streamline the mapping.

To be persisted via Hibernate, objects need not implement any Hibernate-
specific interfaces nor be placed in special wrapper objects. Hibernate can
“manage” (make persistent) instances of ordinary classes with no special members
at all. Instead of special interfaces or attributive devices, Hibernate uses mapping
metadata in the form of XML files. Suppose we have a class called Customer like
the one in Section 1.3. We could use a mapping document such as the following
to orchestrate the mapping.

<hibernate-mapping>
<class name="Customer" table="Customer" discriminator-value="P">

<id name="id" column="CustomerId" type="long">
<generator class="native"/>

</id>
<property name="name" column="Name" />
<property name="streetAddress" column="StreetAddress" />
<property name="postalCode" column="PostalCode" />
<property name="country" column="Country" />
<property name="telephoneNumber" column="TelephoneNumber" />

</class>
</hibernate-mapping>

An instance c of this class can be saved to the database using code like the
following:

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();
session.save(c);
tx.commit();
session.close();

Session and Transaction are Hibernate interfaces that manage persistence.
Specifically, they represent transactional units of database interaction. The
Session object is an inexpensive, lightweight unit that serves as the interface
for persistence operations. The Transaction API serves to abstract application
code from underlying transaction implementation. The ultimate effect of these
five lines of code is the execution of an INSERT statement against the Customer
table in the database. Similarly, one could retrieve customer data from the
database using code such as the following:

http://hibernate.org/

64 I Chapter 3. Examples of ORM systems

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();
List customers = newSession.find("from Customer");
tx.commit();
tx.close();

The string “from Customer” is actually not SQL code to be inserted directly into
the database query. Instead it is in Hibernate Query Language (HQL), which is
based on SQL; Hibernate parses this text and uses it to compose the query to
the database.

3.1.1 Architecture

In the Hibernate API architecture, the Session and Transaction classes, with
some others such as Query, form the persistence layer of the application. Classes
in the business layer, including the classes written by the application developer,
such as Customer in this example, achieve persistence via this persistence layer.
The database layer underlies the persistence layer; the Hibernate API interacts
with the database via database APIs such as JDBC. This sort of architecture
typifies many ORM solutions; developer-authored classes in the business layer
interact with ORM classes in the persistence layer, which in turn use standard
database-layer technology to achieve persistence. Of course, there are many
interesting differences in the way that business-layer classes interact with the
ORM technology in the persistence layer. In the case of Hibernate, for example,
the persistence layer is called upon to service the business layer using independent
metadata. In other ORM solutions, the business classes may be structurally
related to ORM-provided structures. For example, some ORM solutions require
business classes to implement interfaces provided by the ORM solution.

Objects in Hibernate follow a persistence lifecycle. The persistence lifecycle
describes the states an object goes through in the course of being persisted to
and retrieved from a data source. Objects begin their lives as transient, meaning
that they are not associated with any record in the database. Transient objects
are stored only in memory and become inaccessible (and available for garbage
collection) as soon as they go out of scope or are disposed. The transactional
architecture does not apply to transient objects; in particular, they do not receive
rollback functionality.

Objects become persistent when they become associated with a record in
the database—that is, when they have an identifier value that corresponds to a
primary key value in some table. This means that an object becomes persistent
when it is saved to the database or when it is created via a load operation on
the database. Persistent objects participate in transactions and support rollback
functionality.

Finally, when a transaction finishes, the persistent objects from the trans-
action that remain left over become detached from the database. This means
Hibernate no longer guarantees their state to be synchronized with the database;
the data may be stale. These instances can become persistent again if they are

3.1. Hibernate J 65

associated with a new persistence manager.

3.1.2 Metadata
Developers using Hibernate for persistence provide metadata in XML files
according to a format specified by Hibernate. The Hibernate metadata format
aims for readability and ease of use. It provides many default values and
reflects on the application to fill in details that metadata authors omit. The
following simple example exhibits the Hibernate metadata format while omitting
complexities such as foreign keys and inheritance.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="org.hibernate.shopping.model.Customer"

table="Customer">
<id name="id" column="CustomerId"

type="long">
<generator class="native"/>

</id>
<property name="name" column="Name" type="string"/>

</class>
</hibernate-mapping>

Unlike some ORM solutions, Hibernate furnishes a Document Type Definition
mandating the format of its XML metadata documents. This ensures that the
required metadata format is published in an unambiguous, machine-interpretable
way.

Every Hibernate mapping document has a root hibernate-mapping ele-
ment. Classes are specified by class elements, which are children of the
hibernate-mapping element. (As a matter of convention, each class usually gets
its own metadata document.) Metadata authors specify the qualified name of
the Java class and the name of the corresponding table. The class element has
property children, which specify the persistent data of the class and the names
of their corresponding database columns. As the example above illustrates, the
id element is used to mark primary keys.

Some of the attributes in this example can be omitted. For example, string
is the default type, so we could omit that attribute from the property element.
Also, if no column name is specified, Hibernate identifies the property with the
like-named (case notwithstanding) database column, so we could simply write

<property name="name" />

and let the Hibernate defaults handle the rest.
One interesting feature of Hibernate metadata is run-time metadata manipu-

lation. The Hibernate API provides methods that allow applications to change

66 I Chapter 3. Examples of ORM systems

metadata directly and programmatically. The following code dynamically adds
an address property to the metadata.

PersistentClass mapping = cfg.getClassMapping(Customer.class);

Column column = new Column();
column.setType(Hibernate.STRING);
column.setName("Address");
mapping.getTable().addColumn(column);

SimpleValue value = new SimpleValue();
value.setTable(mapping.getTable());
value.addColumn(column);
value.setType(Hibernate.STRING);

Property property = new Property();
property.setValue(value);
property.setName("Address");
mapping.addProperty(property);

// Build a new session factory that reflects this domain model change.
// After a session factory is created, its mappings cannot be changed.
SessionFactory factory = cfg.buildSessionFactory();

Of course, this is considerably more verbose than the equivalent element in an
XML metadata file, but the capability is useful for applications that need to
change their metadata dynamically.

3.1.3 Querying
Hibernate provides three ways to query: by HQL, by criteria, and by example.
(A fourth method is to drop down to raw, DBMS-specific SQL, but this is
only necessary in rare cases where the application must leverage some unusual
DBMS-specific feature that Hibernate does not support.)

HQL, for Hibernate Query Language, is an SQL-like language that Hibernate
defines to allow the application to make queries on its own terms, referring to
structures by their application names, not their database names. It is close
enough to SQL that developers who know SQL should be able to write HQL with
no problem. An application creates an HQL query by calling the createQuery
method of the session, which returns an instance of the Query class.

Query query = session.createQuery(hqlQueryString);

The simplest sort of HQL query is one that retrieves all records from a given
table. This sort of query would be created with code like

Query query = session.createQuery("from Customer");

Of course, HQL supports queries with restriction clauses, like

3.1. Hibernate J 67

from Customer c where c.firstName = 'Mary'

Unlike SQL (but like Java), this cannot be abbreviated to something like

from Customer where firstName = 'Mary'

HQL also supports the same comparison, string matching, and logical operators
as SQL, and it supports ordering result sets. Once it creates a query, the
application can execute it and retrieve its results as a List by calling its list()
method.

List result = query.list();

If the query is guaranteed to return only a single result, we can use the
uniqueResult() method instead of list() to obtain a single object.

HQL does support named parameters; one would seldom actually write a
Hibernate query with a condition like where c.firstName = 'Mary'. Instead,
one would use named parameters as in the following example

String queryString =
"from Customer c where c.firstName = :searchString";

Query query = session.createQuery(queryString)
.setString("searchString", "Mary");

List result = query.list();

(Obviously, Mary would likely be, say, user-supplied input, not just a literal in
the code as in this example.) In addition to protecting against SQL injection
attacks, named parameters can improve performance by allowing the database
to precompile the query. It is also possible to use positional parameters instead
of named parameters, as in

from Customer c where c.firstName = ? and c.creationDate >= ?

However, using named parameters makes the code more readable and more
resistant to change.

Hibernate queries can be placed in the metadata as named queries—for
example,

<query name="findRecentCustomersByFirstName"><![CDATA[
from Customer c
where c.firstName like :firstName
and c.creationDate >= :creationDate

]]></query>

The application can retrieve these queries by calling the getNamedQuery()
method of a session.

Query query = session
.getNamedQuery("findRecentCustomersByFirstName")
.setString("firstName", firstName)
.setDate("creationDate", creationDate);

68 I Chapter 3. Examples of ORM systems

This is considered better than scattering HQL queries throughout the application
code, because it places all the queries in one, convenient place, and it separates
the domain-level application concerns (performing particular persistence tasks)
from the details of the persistence operation.

The second method of querying in Hibernate is by criteria. To use this
method, the application creates a Criteria object based on a class and sets
constraints on it. The following example illustrates this:

Criteria criteria = session.createCriteria(Customer.class);
Criterion namedMary = Expression.eq("firstName", "Mary");
criteria.add(namedMary);
List result = criteria.list();

The first step is to create a “root entity” based on the appropriate class, in this
case Customer. Then we add Criterion instances to it; in this case the only
criterion is that the first name of the customer be Mary. Then, we execute the
query by calling list() or uniqueResult().

The final method of querying in Hibernate is by example. This is the least
powerful method, but it can be convenient for some applications. Here, to query
the database, the application exhibits an example of the sort of result it would
like to receive. That is, it provides an actual instance of the type it is querying
in order to receive results that match that type. The following example also
queries for customers with the first name Mary :

Customer exemplar = new Customer();
examplar.setFirstName("Mary");
Criteria criteria = session.createCriteria(Customer.class);
criteria.add(Example.create(exemplar));
List result = criteria.list();

Here again, we use the Criteria class.

3.1.4 Caching

Hibernate has a sophisticated, two-level cache architecture. The first-level cache
is essentially compulsory and can’t be deactivated; it is the Hibernate session.
A session has a lifetime that may span only a single database transaction,
or it may span several database transactions, effectively forming a coarser,
application-level transaction, but it is not generally longer-lived than this. It
provides the application with a cache at the scope of a (database or application)
transaction. This cache ensures that within the scope of a transaction, an object
is unique in referring to a particular database record. In particular, when an
application requests the same object twice via a single session, it gets back two
references to the same Java object, not two copies of it. This prevents conflicting
representations of a single record from arising in the context of a transaction,
ensuring that changes made to an object in a session are always and immediately
visible to other code that accesses the same record via that session.

3.2. iBATIS J 69

The second-level cache can be scoped to the process or cluster level (usually,
it has the scope of a Hibernate session factory) and can be configured per class
and per association. In particular, not only can it be turned on and off at
this level of granularity, but caching policy details can be configured, including
concurrency strategy, cache expiration policy, and cache format. These items can
be configured in the metadata documents. Persistent objects are not stored intact
as whole Java objects in the second-level cache; instead, they are “disassembled”
into a compact form that preserves state and returns it by value. The second-
level cache should be active only for read-mostly data, not data that is modified
frequently by the application.

Hibernate provides four concurrency strategies for the second-level cache,
which correspond roughly to the isolation levels described in Section 2.4.1.

Transactional Maintains repeatable-read isolation. This strategy is appropri-
ate when it is important to avoid stale data in case of an update.

Read-write Maintains read-committed isolation. This is appropriate when it
is important to avoid stale data in case of an update.

Nonstrict read-write Does not guarantee consistency between the cache and
database. This strategy is appropriate if data rarely changes (at least
hours or days between changes) and stale data will not cause catastrophic
problems.

Read-only This strategy is for use with data that never changes.

3.1.5 Transactions

The Transaction interface in Hibernate provides methods to declare the bound-
aries of a database transaction. An example of the use of the Transaction
interface appears on page 48, so we will not reproduce it here. The usage is
fairly clear: begin a database transaction with Session.beginTransaction(),
carry out some persistence tasks, and then call commit() on the transaction to
commit it, or rollback() if there is a problem.

Hibernate also provides some functionality to support application transactions,
namely managed versioning for optimistic locking. This functionality is described
in Section 2.4.2, with examples from Hibernate.

3.2 iBATIS

iBATIS (http://ibatis.apache.org/) is most notable for its approach to querying,
although it is otherwise a standard ORM solution cut from the same cloth as
Hibernate and other mappers. It consists of two components (which need not
necessarily be used in conjunction), the iBATIS Data Mapper and iBATIS Data
Access Objects (DAOs). The Data Mapper, also called SQL Maps, is responsible
for actually persisting data—shuffling data back and forth between applications

http://ibatis.apache.org/

70 I Chapter 3. Examples of ORM systems

and relational databases. DAOs is an abstraction layer that provides a data
access API to the application.

The iBATIS project was born in 2001, initiated by the software developer
Clinton Begin. Originally focused on the development of cryptographic software,
iBATIS soon changed direction to focus on Internet technologies. Initially iBATIS
was developed for Java, but it has since been ported to the Microsoft .NET
Framework and to Ruby.

3.2.1 Architecture

The designers of iBATIS do not think of it as a true object-relational mapper,
but instead as a data mapper. The term data mapper refers to the data mapper
pattern described in Fowler’s book on enterprise patterns [13, pp. 165–181]. Like
an object-relational mapper, a data mapper like iBATIS is a persistence layer
that mediates between an application and a database, but iBATIS allows a
looser coupling between application structure and database structure than a
strict object-relational mapper. (We adopt a broad definition of the term ORM
in this paper, so we consider iBATIS to be an object-relational mapper for our
purposes.) Instead of directly linking classes to tables and properties to columns,
iBATIS maps the input to and output from the database to application entities,
adding a layer of indirection between the application and the database. This
mapping is described by SQL queries provided by the application developer.
(Where traditional ORM solutions hide the SQL from the developers, iBATIS
places them in full control of it.) Because of this loose coupling, iBATIS
accommodates systems in which the application design and the database design
may be drastically mismatched, which is especially advantageous for dealing
with legacy and shared databases as well as handling databases whose designs
change over time.

3.2.2 Metadata

The most important metadata for iBATIS are SQL mapping descriptors, files
that contain SQL to realize the relationship between the application and the
database. The following example is a simple SQL mapping descriptor file.

<select id="getCustomer"
parameterClass="int"
resultClass="Customer">
SELECT

Id as id,
Name as name,
Address as address,
TelephoneNumber as telephoneNumber

FROM Customer
WHERE Id = #id#

</select>

3.2. iBATIS J 71

Note that this is real, valid SQL that would run against the database (once an
integer is substituted for the #id# placeholder, obviously), not some non-SQL
query language to be parsed by the mapper (like Hibernate Query Language).
iBATIS will actually run this SQL against the database in the course of persistence
operations. This reverses the traditional ORM idea that SQL should be generated
by the mapper and never seen by developers. Here, developer-authored SQL is
at the heart of the mapping.

With this metadata in place, it is trivial to retrieve a record from the
database:

Customer customer = (Customer) sqlMap.queryForObject(
"getCustomer", new Integer(2));

There are other mapped statement types for other types of command. Map-
ping descriptor files allow not only <select> elements, but also <insert>,
<update>, and <delete> elements (for INSERT, UPDATE, and DELETE SQL com-
mands, obviously). There is also a <procedure> element for calling stored
procedures and a seldom used <statement> element that supports arbitrary
statements.

Also of interest are the <sql> and <include> elements, which allow mapped
statement authors to build complex queries out of small, reusable building blocks
of SQL, as the following simple example illustrates

<sql id="select-min-price">
SELECT MIN(Price) AS value FROM Product

</sql>

<sql id="select-max-price">
SELECT MAX(Price) AS value FROM Product

</sql>

<sql id="where-product-recent">
<![CDATA[

WHERE creationDate > #value:DATE#
]]>

</sql>

<select id="getMinPriceOfRecentProducts"
resultClass="java.math.BigDecimal">
<include refid="select-min-price" />
<include refid="where-product-recent" />

</select>

<select id="getMaxPriceOfRecentProducts"
resultClass="java.math.BigDecimal">
<include refid="select-max-price" />
<include refid="where-product-recent" />

72 I Chapter 3. Examples of ORM systems

</select>

In this example, we define three “building blocks” and assemble them in two
different ways to obtain complete queries. (Here the gains in maintainability and
terseness are less than impressive, but this example should serve to demonstrate
the purpose and usage of the <sql> and <include> elements.)

3.2.3 Querying

Given the SQL-heavy approach that iBATIS takes to automated persistence,
it should not be surprising to learn that queries are very important to iBATIS
architecturally. As we saw in the previous section, retrievals in iBATIS are
defined by SELECT SQL queries enclosed in <select> elements in mapping
descriptor files. As a consequence, though, there is not much to say about the
querying capabilities of iBATIS. It suffices to say that iBATIS allows developers
to specify and execute essentially any SQL statement that the DBMS will accept.

It is worth making explicit what happens when the application makes a call
like

Customer customer = (Customer) sqlMap.queryForObject(
"getCustomer", id);

When this line is executed, the iBATIS API looks up the getCustomer mapped
statement and transforms the inline parameters into prepared statement param-
eters, producing SQL like

SELECT Id AS id, Name AS name, Address AS address,
TelephoneNumber AS telephoneNumber

FROM Customer WHERE Id = ?

iBATIS passes this prepared statement to the JDBC API and sets the value of
the parameter appropriately (in this case to the value of the id variable that was
passed to it). Finally, it executes the prepared statement, maps the resulting
row to an object, and returns it.

3.2.4 Caching

We have already seen that iBATIS takes a different approach to persistence
than traditional ORM frameworks like Hibernate. Instead of directly mapping
tables to classes, iBATIS maps SQL to objects. To accord with its distinctive
architecture, iBATIS also takes an exceptional approach to caching. Traditional
ORM caches are concerned with the issue of identity. Most systems avoid having
the same database record appear twice in the cache (or having two objects in the
cache representing the same database record), as this can lead to inconsistency
within the cache. (Also, the redundancy can consume memory needlessly.)
However, iBATIS challenges this idea, largely ignoring the issue of identity and
instead caching results returned by queries regardless of whether identical objects
exist elsewhere in the cache.

3.2. iBATIS J 73

From the application developer’s perspective, enabling caching for iBATIS
entails the creation of “cache models” (i.e., cache configurations) that are suited
to the purpose at hand. Once a cache model is defined, it may be associated at
will with queries in the mapping descriptor files, causing those queries to use the
cache model. That is, different queries can use different cache models. A cache
model is defined by placing a <cacheModel> element in a mapping descriptor
file. The <cacheModel> element has two required attributes: id, which specifies
a unique string by which query mapped statements can refer to the cache model,
and type, which specifies a cache implementation.

There are four cache types built into iBATIS:

MEMORY In this mode, the contents of the cache are stored in memory until
the garbage collector disposes of them. iBATIS uses reference objects to
manage garbage collection of the memory cache. In Java, reference objects,
described in detail in [35], are objects that effectively give applications
a greater degree of control over garbage collection policies. Without
reference objects, an object is either (strongly) reachable, meaning that it
is accessible via the object graph, or it is unreachable, meaning that it is
ready for garbage collection. Reference objects allow for three additional
states vis-à-vis garbage collection: softly reachable, weakly reachable, and
phantomly reachable. The details of these states are not worth describing
here. What is important is that the MEMORY cache model allows descriptor
file authors to specify WEAK, SOFT, or STRONG reference types, which affects
how readily cached objects are discarded. For example, if the descriptor file
specifies a STRONG cache reference type, the cache will always retain objects
until the next flush interval, regardless of memory constraints. Under the
WEAK type, the cache will discard objects quickly, freeing up memory but
requiring more database hits.

LRU This model uses a least-recently-used (LRU) management policy for the
cache. The cache keeps track of the order in which objects have been
most recently used and discards least recently used objects when the
cache exceeds its size constraint. (The cache size constraint in iBATIS
is expressed in number of objects instead of amount of memory, so an
application could run into problems when the cache is filled with large
objects.) LRU is a good strategy in situations with certain sets of data
that are used for extended periods of time and then neglected.

FIFO This model uses a first-in-first-out (FIFO) policy. The cache keeps track of
the order in which objects enter the cache. When the cache exceeds its size
constraint, it discards old objects. FIFO is a good strategy for situations
in which objects are most relevant for brief periods of time soon after they
are first used and then become less relevant as time passes.

OSCACHE This model uses the third-party product OSCache, a high-performance
Java caching framework [31].

It is also possible to create custom cache models [6, §9.5.5].

74 I Chapter 3. Examples of ORM systems

3.2.5 Transactions

All iBATIS persistence occurs within the scope of a transaction. There is no
direct support for the auto-commit mode of JDBC. However, transactions need
not be explicitly demarcated; statement executions are automatically wrapped in
transactions. Automatic transactions are transparent to iBATIS users but still
offer some measure of concurrency protection to the statements they enclose.

Of course, transactions can also be controlled by the application through
SqlMapClient:

// Precondition: We have obtained a SqlMapClient called sqlMapClient.
try {

sqlMapClient.startTransaction();
// Query some objects; persist some data.
sqlMapClient.commitTransaction();

} finally {
sqlMapClient.endTransaction();

}

iBATIS also provides impressive support for “global transactions,” trans-
actions which may involve multiple databases and even multiple applications.
There is also support for custom transaction handling, either by defining a new
transaction manager using the iBATIS interfaces or by assuming control of the
JDBC Connection object that iBATIS is using.

3.3 TopLink

Oracle TopLink (http://oracle.com/technology/products/ias/toplink/) differs
from many of the other ORM solutions discussed in this chapter in that it is
proprietary (and expensive—the current price of a production license is $5,000
per CPU, although a full-featured version of TopLink can be freely downloaded
for evaluation and development [34]). TopLink was born at an early Smalltalk
consulting firm, The Object People (hence the TOP in TopLink), in the early
1990s. In 1996, the TopLink team rebuilt TopLink from the ground up in Java
(instead of Smalltalk). In 2000, TopLink was acquired by WebGain. TopLink
has been an Oracle product since Oracle Corporation acquired it in 2002 [39].

In addition to the core TopLink ORM product, Oracle offers TopLink Es-
sentials, an open-source reference implementation of the Java Persistence API
intended to compete directly with open-source offerings such as Hibernate, and
TopLink Object-XML, a product for object-XML mapping. We will not discuss
either of these products further; TopLink Essentials is essentially a watered-down
version of TopLink, and object-XML mapping is, strictly speaking, beyond the
scope of this paper.

http://oracle.com/technology/products/ias/toplink/

3.3. TopLink J 75

3.3.1 Architecture

TopLink comprises a session front end and a data access back end, which
use mapping, querying, caching, and transaction components. Client applica-
tions access TopLink—in particular, the query framework and the transaction
functionality—via the session. The query and transaction components take
advantage of the cache to minimize communication with the data source. The
data access component on the back end accesses the data source using JDBC.

One feature of TopLink is that it accommodates a range of architectural
decision at the application level. That is, it is designed to work with many
application architectures. For example, the TopLink developer’s guide [33]
describes support for application architectures including the following:

Three-tier Probably the most common architecture for TopLink projects is a
three-tier architecture, in which clients connect to an application server,
which in turn connects to a database. A typical example is a Web applica-
tion, in which many end users interface remotely with a Web server that
uses a database for persistence. In a three-tier architecture, TopLink runs
on the application server.

EJB session bean façade This is an extension of the three-tier architecture,
with Enterprise JavaBeans session beans wrapping access to the application
tier. In this architecture, TopLink shares a server session between session
beans. When a session bean needs a TopLink session, it obtains a client
session from the shared server session. Transactions are thus encapsulated
in session beans.

EJB 3.0 with JPA The EJB 3.0 specification includes the Java Persistence
API, a standardized framework for Java persistence, which I describe
briefly in Section 4.2.2. TopLink provides supports developing applications
thorugh the JPA.

EJB entity beans with CMP Container-Managed Persistence is part of the
J2EE component model and provides an object persistence service for EJB
containers. TopLink CMP extends the TopLink framework to integrate
EJB containers of application servers.

EJB entity beans with BMP Bean-Managed Persistence is also part of the
J2EE component model, providing persistence for beans. TopLink BMP
extends the TopLink framework to combine the advantages of TopLink
with BMP.

Web services A Web services application is similar to a three-tier application
except that it encapsulates business logic in a Web service. Clients commu-
nicate with the application using SOAP (a protocol for exchanging XML
messages over networks). In the Web services architecture, TopLink can
map the object model to an XML schema for use with the Web service.

76 I Chapter 3. Examples of ORM systems

Two-tier Conceptually, the two-tier architecture is the simplest, but it is seldom
used due to scalability limitations. In the two-tier model, clients access
the database directly. Consequently, each client application requires its
own session.

3.3.2 Metadata

TopLink provides graphical mapping tools, called the TopLink Workbench,
that allow developers to establish object-relational mappings without writing
metadata documents or code to reference a persistence API. This carries a
number of advantages, including tempering the learning curve. Nonetheless,
some developers prefer the control that hand coding affords, so TopLink does
allow developers to bypass the graphical interface. We are more concerned with
the underlying mapping metadata documents, not because of any qualms with
the idea of graphical ORM tools (nor with these particular tools), but because
our purpose at the moment is not to achieve an object-relational mapping, but
to examine the architecture and structure of TopLink as a solution to the ORM
problem.

The most important TopLink metadata file is called (by default) project.xml
and describes all the mappings for the application, as well as named queries.
The format of the metadata file is not especially important, since few developers
ever see it. (The great majority of developers who use TopLink use the graphical
interface to manage the metadata. Many of those who do not generate it
programmatically. Editing project.xml manually is generally frowned upon,
because it compromises the synchronization of the file with the classes and the
data source, but it can be done.) However, it is worth pointing out that TopLink,
too, uses XML for metadata; the metadata format is defined by an XML Schema
Definition. Other XML documents contain other persistence-related metadata
such as metadata relating to sessions.

The TopLink metadata architecture emhasizes the independence of the object
model and database schema from the metadata, allowing metadata to adapt
to the object model and database schema rather than vice versa. TopLink
Workbench is flexible, supporting several approaches to establishing an ORM. It
allows:

• Importing classes and tables and establishing a mapping between them

• Importing classes and generating tables and mappings

• Importing tables and generating classes and mappings

• Defining and generating both classes and mappings

This effectively gives TopLink the flexibility to operate in any of the three
mapping paradigms we described in Section 2.1. However, it is most common
for the application developers to create both the classes and the tables and then
use TopLink Workbench only to establish a mapping between them.

3.3. TopLink J 77

At the core of the TopLink metadata architecture are mappings. A mapping
associates a single data member of a domain object with its data source represen-
tation and defines the conversion between the two. TopLink supports four kinds
of mappings, including XML mappings and EIS mappings (for non-relational
enterprise information systems), but we are primarily interested in relational
mappings. There are many types of relational mapping, including:

Direct to field Direct-to-field mappings map a primitive data members to
database fields.

One to one One-to-one mappings represent a single reference between two
objects.

One to many One-to-many mappings represent the relationship between a
source object and a collection of target objects that it references.

Many to many Many-to-many mapping represents the relationships between
a collection of source objects and a collection of target objects.

There are seven other types of relational mapping, including aggregate collection
mappings, direct collection mappings, direct map mappings, and aggregate object
mappings, but further detail would risk belaboring the point.

3.3.3 Querying
TopLink supports nine types of queries. The four most basic are:

Session queries A session query is constructed and executed by a session
object and is capable of performing the most basic persistence actions on
an object.

Database queries A database query is an isntance of class DatabaseQuery
constructed exclusively to represent a query. It can perform any persistence
action on objects or data.

Named queries A named query is an instance of DatabaseQuery stored by
name in a session object or descriptor. It is constructed and prepared once
and can be executed many times.

Call queries Call queries are used to execute custom SQL and stored proce-
dures.

Developers can build queries through the TopLink Workbench or the TopLink
API. Here, we describe the query API. (The TopLink Workbench does not support
all types of queries. For example, it does not support session or database queries.)

Session objects support simple query operations, namely reading, writing,
or deleting one or multiple objects. For example, to find all airplanes with a
wingspan greater than 30, one could write

Vector results = session.readAllObjects(Airplane.class,
new ExpressionBuilder.get("wingspan").greaterThan(30));

78 I Chapter 3. Examples of ORM systems

To create a new record, one could write

Airplane a = new Airplane();
a.setWingspan(30);
// Initialize other instance variables.
session.insertObject(a);

Database queries are more flexible but also more verbose. For example, using
a database query to find all airplanes with a wingspan greater than 30 would
require several lines of code.

ReadAllQuery query = new ReadAllQuery(Airplane.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("wingspan").greaterThan(30));
Vector results = (Vector) session.executeQuery(query);

However, database queries are necessary for more complex operations, such as
querying by example. In the following example, we find all cities in Jefferson
County, New York.

City city = new City();
city.setCountyName("Jefferson");
city.setState("New York");
ReadObjectQuery query = new ReadAllQuery(City.class);
query.setExampleObject(city);
Vector results = (Vector) session.executeQuery(query);

TopLink’s query-by-example system is much more flexible than most. For
example, it accommodates comparisons, string operations, and even keyword
searches. The following query by example finds all airplanes with a wingspan
over 30.

Airplane airplane = new Airplane();
airplane.setWingspan(30);
ReadObjectQuery query = new ReadAllQuery(Airplane.class);
query.setExampleObject(airplane);

QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(Integer.class, "greaterThan");
query.setQueryByExamplePolicy(policy);

Vector results = (Vector) session.executeQuery(query);

Of course, database queries have many features and options beyond the scope of
the present paper.

Named queries are like database queries except that they are associated with
a name and prepared in advance. The simplest syntax is

result = session.executeQuery("findLargeAirplanes");

3.3. TopLink J 79

Named queries can also accept arguments.
Finally, call queries are the most flexible means of querying. They allow

developers to run SQL statements against the database directly. To use a call
query, a developer creates an SQLCall, StoredProcedureCall, or StoredFunc-
tionCall object and passes it to the session.

3.3.4 Caching
In TopLink, there are two types of cache: session caches and unit-of-work caches.
The former keep track of objects retrieved from and written to the database;
the latter store objects participating in transactions. A unit-of-work cache is
not independent of the session cache. In the typical pattern, database reads
will enter the session cache. When the application registers an object with a
unit of work, that object enters the unit-of-work cache from the session cache.
When the application commits the transaction, TopLink writes data from the
unit-of-work cache to the database and the session cache.

Caching brings up a number of issues, one of which is object identity. TopLink
preserves object identity in the cache by comparing the primary keys of retrieved
and saved records. There are several choices for managing identity, which can
be configured on a class-by-class basis.

Full identity map This choice provides full caching. Objects remain in mem-
ory until deletion. This becomes problematically memory-intensive for
batch operations, which read many rows.

Weak identity map This option is like the full identity map, except the map
holds weak references to cached objects, allowing garbage collection but
still guaranteeing identity.

Soft-and-hard–cache weak identity map This option is like the weak iden-
tity map, except with a subcache that contains the most frequently used
items. The subcache manages soft and hard references to the items to
ensure that they are garbage-collected only if the system is low on memory.

No identity map This choice turns off caching. The system does not preserve
object identity.

Another problem of caching is stale data. The primary mechanism TopLink
provides to circumvent this problem is locking. By locking a cached object,
processes can momentarily limit the ability of competing processes to read or
write to the object.

A feature of TopLink is cache invalidation, which allows application developers
to specify when cache entries should become invalid. By default, items remain in
the cache until they are explicitly deleted, but developers can specify invalidation
policies. For example, one can specify that an object should be flagged invalid
at a particular time of day, or that an object should become invalid when
some length of time has elapsed since the last read. Developers can configure
invalidation policies at the project, class, or query level.

80 I Chapter 3. Examples of ORM systems

3.3.5 Transactions

Transactions are represented by UnitOfWork objects in TopLink. A unit of work
can be acquired by calling the acquireUnitOfWork() method of a session object.
The unit of work remains valid until and only until its commit() or release()
method is called. Internally, the unit of work makes changes to clones of objects
in a cache internal to the unit of work. Upon a successful commit, the changes to
the clone are integrated into the database (and the session cache). UnitOfWork
derives from Session and so supports the same methods as Session.

TopLink supports optimistic and pessimistic locking. With optimistic locking,
all processes have read access to data. When a process attempts to effect a
change, the persistence layer verifies that the data has not changed since that
process last read the data. With pessimistic locking, the first user who accesses
the data to update it locks it until the update is finished.

One exceptional feature that TopLink supports is external transaction control.
In an application architecture with many clients connecting to an application
server, the application server can provide a transaction service that manages
transactions globally.

3.4 Neo

Not suprisingly, the ORM playing field in the .NET world is not as mature as
that in the Java world. Indeed, many of the most popular ORM solutions for the
.NET Framework are ports of Java solution, such as NHibernate (the .NET port
of Hibernate) and iBATIS.NET. Nonetheless, many ORM solutions have been
developed exclusively for .NET, and some of them are widespread enough and
of sufficiently compelling theoretical interest that they merit discussion here.

One such solution is Neo (an acronym for .NET Entity Objects), an open-
source tool developed by the software consultant Erik Dörnenburg of Thought-
works (http://neo.codehaus.org/). Neo diverges dramatically from the classical
ORM solutions covered so far, and language is only a relatively superficial differ-
ence. One of the most important differences is that Neo manages the domain
model. In Hibernate and TopLink, application developers create plain objects
to suit the domain; then, the persistence layer takes these objects and operates
on them to persist their state. In Neo, software architects define the domain
model in an abstract format (in an XML model file), and Neo generates the
classes. This approach carries both advantages and disadvantages. On the one
hand, it seems to deprive developers of a degree of freedom, preventing them
from enlivening domain objects with structure and behavior that cannot be
expressed via the metadata. However, this problem is largely invalidated by the
fact that developers can create subclasses of these Neo-generated base classes
with whatever additional functionality they want. The application can then
treat these hand-crafted derived classes as the domain objects, ignoring the
automatically generated base classes that underlie them. Of course, problems
can occur when architects change the metadata in a way that introduces breaking

http://neo.codehaus.org/

3.4. Neo J 81

changes into the generated base classes, but these breaks can almost always be
detected by the compiler rather than in run-time testing. The great advantage
of the Neo approach is that it solves problems such as maintaining consistency
in object graphs. To clarify this, consider a domain in which each customer may
have a number of orders, each of which is uniquely associated to that single
customer. For convenience, we want to be able to ask of each customer object
what its orders are, and we want to be able to ask of each order object who
its customer is. That is, the customer-order link in the object graph should
be bidirectionally navigable. Now, suppose we have a customer c and we have
created a new order o which we want to associate to c. In a hand-coded system,
we would likely have to write code like the following to associate the two:

o.Customer = c;
c.Orders.Add(o);

If a developer carelessly omitted either of these lines (or perhaps worse, mistyped
a line so that exactly one of the properties held an incorrect value), the link
between the objects would become asymmetrical, likely precipitating hard-to-
predict and hard-to-explain failures at run time. There is no easy way to solve
this. One could add logic to the classes to ensure that the two directions of the
relationship remain symmetrical, but this would require the customer and order
classes to know a lot about one another, compromising encapsulation. (This is
an abstract problem, but one with real consequences.) If the order and customer
classes have been generated by Neo, though, one can simply write

c.Orders.Add(o);

and the generated code will ensure that that Customer property of o remains
correct. Of course, the generated customer and order classes will know a lot
about one another, but since developers (ideally) never need to read, let alone
maintain, the generated code, this is not a problem.

3.4.1 Architecture

Figure 3.1 depicts the architecture of a typical Neo project. An ObjectContext
object is a transactional package that may essentially encompass the entire
Neo system (although it is certainly possible to have operate multiple Object-
Context simultaneously, provided that they have independent data sources).
The EntityObject class is the base class for all persistent objects in the domain.
This class is provided by the Neo API and includes basic, abstract persistence
functionality. Each EntityObject corresponds to a record in the database, and
in fact is associated with an ADO.NET DataRow, a .NET object that represents
a row of data in a relational database. The ObjectContext object, incidentally,
is explicitly associated with an ADO.NET DataSet, which is a collection of
DataTables.

The classes that Neo generates to accommodate domain objects all derive from
EntityObject, adding a layer of specificity to refine the abstract functionality
provided by the EntityObject class. In the figure, these classes are called

82 I Chapter 3. Examples of ORM systems

ObjectContextDataSet

DataTable

DataRow EntityObject

CustomerBase

Customer

OrderBase

Order

ProductBase

Product

0..1

0..*

0..1

0..*

0..1

0..*

1..1 0..1

1..1 0..1

ADO.NET classes Neo API

Neo-generated
classes

User-authored
classes

Figure 3.1: The architecture of a typical Neo project. Adapted from Dörnenburg
[12], p. 2.

CustomerBase and OrderBase. Typically, application developers create one
subclass for each of these generated classes, so that they can add their own
functionality to that provided automatically. In the figure, these are called
Customer and Order.

To put it more concisely, the classes that the application uses inherit from
tool-generated base classes, which in turn inherit from a single EntityObject
class, which uses ADO.NET for persistence, and all these EntityObject objects
are collected into one ObjectContext object corresponding to an ADO.NET
DataSet.

It is actually the ObjectContext itself that handles persistence to the data-
base; the methods provided by the EntityObject class and its subclasses are
façades. The ObjectContext does not persist data changes to the database as
they happen; instead, it tracks changes via the ADO.NET architecture that
backs it (i.e., via its associated DataSet) and provides methods for synchronizing
with the database explicitly (ObjectContext.SaveChanges and ObjectContext.
GetChanges). In fact, as we will note in Section 3.4.4, ObjectContexts can even
work in disconnected mode, without a database, using the DataSet alone for
temporary data storage and manipulation.

3.4. Neo J 83

Domain objects are created in a specific ObjectContext by factories asso-
ciated to that context. For example, to create new customer objects in an
ObjectContext called oc, one would write

f = new CustomerFactory(oc);

3.4.2 Metadata

In the classification of ORM solutions given in Section 2.1, Neo is a metadata-
oriented mapper. This lends metadata especial importance for Neo, relative to
the mappers we have studied so far in this chapter. Nonetheless, the metadata
documents themselves do not look so different from those in other systems. The
metadata format of Neo borrows heavily from Apache Torque, an earlier (and
still extant—http://db.apache.org/torque/) ORM tool for Java, although it is
relatively easy to extend Neo to accommodate other metadata formats.

In Neo, a single XML file represents the domain model of the system. Neo
uses this model to generate code (and a database schema); it is not part of the
compiled system and is not used at run time. The format for the domain model is
based on the entity-relationship paradigm (see Section 1.2.2); entities are defined
in terms of their attributive structure, and relationships are defined between
them. In the database, entities are tables and relationships are represented via
foreign keys. In the application, classes represent entities and properties represent
attributes (if they are value types) or relationships (if they are references to
other classes). The following XML file is a Neo domain model.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE database SYSTEM "norque.dtd">
<?neo path="..\..\build"?>
<database name="Customers" package="Example.Shopping"

defaultIdMethod="native">
<table name="customer">

<column name="customer_id" primaryKey="true"
hidden="true" type="INTEGER"/>

<column name="name" required="true"
type="VARCHAR" size="50"/>

<iforeign-key foreignTable="Order" name="Orders"
onDelete="cascade">
<ireference local="order_id" foreign="CustomerId"/>

</iforeign-key>
</table>
<table name="order">

<column name="order_id" primaryKey="true"
hidden="true" type="INTEGER"/>

<!-- Other order attributes -->
</table>

</database>

http://db.apache.org/torque/

84 I Chapter 3. Examples of ORM systems

This short example avoids complexities such as inheritance, revealing only
the basics of the domain model syntax. Note that enough information is available
to generate both the code and the database schema. For example, the domain
model author specifies the lengths of string fields in the database.

The doctype specified here, norque.dtd, is for Norque, the Neo adaptation of
the Torque format, as described above. The <?neo processing directive directs
Neo to the template files. The root database element indicates the namespace
in which the generated classes should be placed, in this case Example.Shopping,
and the method used to create primary keys (“native” means that an identity
column will be used). The database element has several table children, each
of which represents an entity. The name attribute of the table and column
entities defines the names of the objects in the database. In this case, the
names of the constructs in the generated code are determined automatically by
converting underscore-delimited names like customer_id to camel-case names
like CustomerId. (Metadata authors can override this convention by explicitly
specifying a javaName for the table or column.) The rest of the metadata is
largely self-explanatory, except for the hidden="true" attribute on the identifier
columns. This excludes the identifier columns from the generated code and hence
the object model; hidden columns are not of interest to the application, but are
instead of use only in persistence.

Once the metadata file is constructed, the next step is to use it to generate a
database schema. To do this, the metadata author runs the neo command-line
tool against the metadata document with the appropriate parameters. This
generates a data definition script that, when run against the database, creates
the desired objects.

Next, Neo can generate the code files. Usually, developers use a Visual
Studio plug-in to generate the classes, but it is also possible to use the command
line. For each table in the metadata, Neo generates two classes: a base class,
which developers are not to modify (because it will overwritten in subsequent
generations) and a concrete subclass into which developers may insert custom
functionality, as discussed above. The concrete subclass, which is essentially
empty initially, is never overwritten; it is generated only the first time Neo
encounters a new table, not on subsequent runs. In addition, Neo generates
several other utility classes such as factories. Usually, the concrete subclass is
the only class the application developers ever look at, let alone modify. The base
classes and the utility classes are all stored together in a single, very large code
file.

3.4.3 Querying

Queries are generally made through factories. The simplest query is to fetch all
objects of a given type, which is accomplished by calling the FindAllObjects()
method of the relevant factory. There is also a Find() method that takes
parameters to perform a more refined query.

Internally, the Find() and FindAllObjects() methods create a FetchSpec-
ification tailored to the requested operation and pass it to an overload of the

3.4. Neo J 85

Find() method that accepts a FetchSpecification as its single parameter. To
construct complex queries, developers can create FetchSpecification objects
directly.

Creating fetch specifications explicitly can also benefit performance. For
example, suppose we want to find information on all cities, including their
mayors. (Mayors are stored in a separate PoliticalFigure table to which City
has a foreign key relation.) The most straightforward approach is to call the
FindAllObjects() method of the city factory and iterate over the result set,
relying on lazy fetching to retrieve information on the mayors. However, this
causes a serious performance problem, as it requires one SQL query to retrieve
each mayor. It would be better to retrieve all this information at once, with
a single join. Fortunately, the FetchSpecification class provides a Spans
property, which specifies related objects to fetch. In this example, we could
write

FetchSpecification spec = new FetchSpecification();
spec.Spans = new string[] {"Mayor"};
CityList results = cityFactory.Find(spec);

Now, instead of many SQL statements, only two are executed, one to fetch the
cities and one to fetch the mayors.

3.4.4 Caching

Caching is intrinsic to the architecture of Neo. Rather than being an afterthought
added for performance, the cache (although it is not called a cache in practice)
takes center stage in all data manipulation carried out via the persistence
mechanism. Recall from Section 3.4.1 that persistent (generated) classes use
ADO.NET data tables for all data manipulation—selections, insertions, updates,
and deletions. ADO.NET data tables are data structures (in memory) that
replicate much of the functionality of DBMS relations, allowing for the storage,
retrieval, and organization of data in an RDBMS-like way, without the expense
of a database connection. For Neo, this is essentially a powerful cache.

Of course, data must be saved to and retrieved from the database eventually.
For this, Neo provides explicit synchronization commands, most importantly
the SaveChanges method of the ObjectContext object. Data is persisted to the
permanent store only when such explicit synchronization commands are given.
In the absence of explicit persistence, the data remains in memory.

The cache-focused architecture of Neo opens up an interesting (albeit ap-
plicable only in special situations) possibility: treating memory as the primary
memory store of an application, and going to the persistent store only when
necessary—perhaps not even at all. Indeed, the ability to operate in “discon-
nected mode” is a prized feature of Neo. It may not be immediately obvious
why this is desirable. In fact, there are many contexts in which it is impractical
to persist changes frequently. For example, consider a mobile device that runs
continuously but is in only sporadic contact with the remote database server
to which it saves data. Unlike ORM tools that rely heavily on the querying

86 I Chapter 3. Examples of ORM systems

capabilities of the database server itself, Neo would be well suited to such a
situation. The mobile device could use the disconnected mode of Neo to carry
out all its normal database operations—loading, saving, querying—as if it were
actually connected to the database server, but in reality these changes would
be occurring in memory, using the ADO.NET architecture. It could persist its
changes to the database server whenever it is able to make contact with it. (Of
course, for this plan to work, the mobile device had better have a considerable
amount of memory.)

When would it be useful for Neo not to persist its data at all, not even
infrequently—to work in disconnected mode 100 percent of the time? Surely
this defeats the purpose of ORM, which is to achieve long-term persistence of
data. However, there are many situations in which applications may want to
have the power of database queries and temporary, relational-style storage in
which it is unnecessary to persist data across sessions and impractical to use
an actual DBMS. Good examples are consumer applications that run locally
on consumer machines, which seldom run DBMSs and often lack the resources
to support them. Nonetheless, consumer applications may want transparent,
relational-style querying for certain types of data. Neo would be perfect for such
an application.

The cache-heavy architecture of Neo would seem to carry a heavy memory
cost alongside the improved time performance that it yields. This is true to
a certain extent, but there are mitigating factors. For example, there is little
duplication of data. Persistent do not keep their own copies of their member
data as variables; instead, they provide accessors that reference the underlying
ADO.NET data tables. Thus, persistent data is stored only once, in the data
set, not in every persistent object or collection in which it occurs.

A disadvantage of this architecture is that it does not play nice with other
users of the permanent data store. Legacy or other applications that must share
the database with Neo will have a very hard time defending their data from
being overwritten inadvertently by Neo, let alone knowing whether the data they
use is up to date. Developers who use Neo and expect to share their data store
with another application must be extremely careful to avoid problems. Neo is
unlikely to be the best tool for the job if the job involves multiple simultaneous
database users.

3.4.5 Transactions

You will find little mention of either caching or transactions in the Neo docu-
mentation, but their absences are for entirely different reasons. Caching is not
discussed as such because what I call the cache is such an integral part of the
Neo architecture that it is no longer merely a volatile data repository whose
purpose is to aid performance, but instead the most important data store in
the architecture, more important even then the database itself. As such, the
Neo documentation seldom refers to these ADO.NET data sets as caches. By
contrast, transactions go unmentioned because they are genuinely unimportant
to the Neo model.

3.5. Gentle J 87

PersistenceBroker
interface

IGentleProvider

GentleProvider

interface

IBrokerLock

BrokerLock

GentleSqlFactory

GentleAnalyzer

TableMap

Persistent

Transaction

SqlStatement

SqlResult

Figure 3.2: An architectural diagram of the most important classes and interfaces
of the Gentle API. The abstract classes GentleProvider, GentleSqlFactory,
and GentleAnalyzer concretize on a per-DBMS basis, yielding inheritors like
OracleProvider and SQLServerAnalyzer. Liu [20] presents an alternative
depiction of the Gentle architecture.

From the point of view of a developer authoring an application that uses
Neo, the concept of a transaction is more or less absent.

3.5 Gentle

Gentle (http://www.mertner.com/confluence/x/Ag) is another persistence tool
designed specifically for the .NET Framework. It exhibits several important
architectural differences from the mappers we have discussed so far.

3.5.1 Architecture

At the heart of Gentle is the PersistenceBroker, which manages all access to
a particular data source. (Applications that need to connect to only a single
database may use the static Broker class instead of PersistenceBroker.) To
carry out a persistence task on an object to be persisted, an application developer
passes the object to the appropriate method of the PersistenceBroker, such
as Insert or Update. Data retrievals also occur via the PersistenceBroker,

http://www.mertner.com/confluence/x/Ag

88 I Chapter 3. Examples of ORM systems

namely via methods such as Retrieve.
Each persistence broker is uniquely associated to one provider, which im-

plements the IGentleProvider interface. A provider provides services asso-
ciated with a specific DBMS. Gentle comes with several providers, such as
SQLServerProvider and OracleProvider, which all inherit from a common
abstract class GentleProvider. A provider relies on a number of helper classes
to assist it in providing services. One such class is GentleSqlFactory, which
generates DBMS-appropriate SQL for the factory. (Actually GentleSqlFactory
is an abstract class with subclasses SQLServerFactory, OracleFactory, etc.)
Another is GentleAnalyzer (once again an abstract class concretized on a per-
DBMS basis), which obtains metadata by directly examining the structure of the
database, obviating the need to replicate this information in the code. A final
example is TableMap (a concrete class), a utility class for maintaining metadata.
There is a ProviderFactory class for dynamically instantiating providers.

A PersistenceBroker may have a number of BrokerLocks attached to it.
BrokerLock is an abstract base class for all classes that are to be locked to
a PersistenceBroker instance. The subclasses are quite varied. In fact, we
have already met one: TableMap. (A TableMap may be associated with either
a provider or a broker.) The most important subclasses of BrokerLock are
Persistent, Transaction, SqlStatement, and SqlResult. Persistent is a
base class from which persistent classes in the application may optionally derive;
it provides some useful persistence-related logic and interfaces. Transaction
provides transaction protection and will be discussed in Section 3.5.5. SqlState-
ment models a database-specific SQL statement, and SqlResult holds query
results.

3.5.2 Metadata

Unlike all the mappers we have discussed so far, which use XML mapping
documents to describe application-specific metadata, Gentle uses attribute-based
programming to record metadata. This programming language feature was
discussed in detail in Section 2.6. Briefly, though, an attribute is a language
construct that allows developers to impart metadata to classes and other types
via a purpose-designed syntax. In Gentle, instead of storing the metadata in an
isolated document in a different language from either the code or the database
queries, developers insert the metadata directly into the code. The following
customer class is tagged with metadata so that Gentle can persist it.

[TableName("Customer")]
public class Customer
{

private int id;
private string name;

[TableColumn, PrimaryKey]
public int Id

3.5. Gentle J 89

{
get { return id; }
set { id = value; }

}

[TableColumn(NotNull=true)]
public string Name
{

get { return name; }
set { name = value; }

}

// Methods (including constructors) would go here.
}

To be clear, the bracketed attributes are not preprocessor directives to be
parsed and stripped before the code is compiled, nor are they some sort of add-on
to the ordinary syntax; they are a bona fide feature of the C# language.

All classes that are to be persisted via Gentle must be tagged with the
TableName attribute, which designates the database table to which the class
corresponds. (Gentle presumes a one-to-one class-to-table mapping.) The prop-
erties of the class that are to be persisted must be tagged with the TableColumn
attribute, which has a number of properties that can be set to provide more
specific metadata. For example, the NotNull property illustrated in the attribute
of the Name property above indicates whether null values are permissible. There
is also a Name property that indicates the name of the corresponding column
in the database (by default, the column name matches the property name in
the class), a Size property that indicates the length of the database field, an
IsReadOnly property for properties that should not be set on insert and update
(intended for use on columns set by the database itself), and several others.
The code sample above also illustrates the PrimaryKey attribute; there is also a
ForeignKey attribute and many others.

For application developers, attribute-based metadata has the advantage
all the information about a class is contained in a single place: in the code
of the class itself. This can make it easier for developers to understand the
relationship between the application and the database. Of course, this can be
a disadvantage too; it can be nice to separate the structure and behavior of a
class from information about the way it persists its state, since the persistence
mechanism is largely irrelevant to the way a class conducts its business.

Relatedly, attribute-based metadata destroys the transparency of an ORM
solution. No longer can arbitrary, unadorned classes be persisted to a database at
will; instead, classes must be decorated appropriately with attributes in order to
become persistent. To put it differently, classes need to know they are persistent
in order for Gentle to accommodate them, while in transparent solutions such as
Hibernate classes can be ignorant of this, concerning themselves only with their
domain behavior.

90 I Chapter 3. Examples of ORM systems

Optionally, persistent classes can inherit from the Persistent class or imple-
ment the IPersistent interface, which provide standard methods for persisting
and retrieving objects. However, this compromises the transparency of the
solution even further, forcing application architects to decide whether to trade
off transparency for functionality or vice versa. Inheriting from the Persistent
class provides the greatest functionality, but is especially invasive because it
precludes persistent classes from inheriting from other classes that might other-
wise be appropriate. Implementing the IPersistent interface is less invasive,
because .NET supports multiple interface implementation, but still compromises
transparency.

3.5.3 Querying

As described in Section 3.5.1, a PersistenceBroker manages all access to a data
source; it often serves as a single point of access for the application to persist
its objects. (This is not always the case. For example, persistent objects that
implement IPersistent can be asked to persist themselves to a database. How-
ever, under the hood the IPersistent object just calls the PersistenceBroker
to persist it.) Among the tasks that the PersistenceBroker administers is
data retrieval, including querying. For example, to query for a single object
of a given type, one uses the PersistenceBroker.RetrieveInstance method,
whose signature is

public object RetrieveInstance(Type type, Key key);

The caller specifies the type of object to retrieve and the value of its primary
key, and RetrieveInstance returns the requested object. RetrieveInstance
throws an exception if no such object exists, a TryRetrieveInstance method
with the same signature is available in case the caller is not sure that the object
exists. For retrieving a list of objects, there is a RetrieveList method

public IList RetrieveList(Type type, Key key);

Here key is not (necessarily) a primary key, but simply a list of constraints. (The
Key class, which is defined by the Gentle API, represents a hash table whose
keys are column names—not, incidentally, property names—and whose values
impose equality constraints on the fields.) By omitting the key argument the
caller obtains a list of all members of a given persistent type.

This approach to querying is relatively simple, but it works only for the
simplest queries—namely, those whose only constraints are equality constraints.
It cannot support queries such as “Find everyone born after 1980” or “Find
everyone whose name starts with B.” The Gentle API provides a SqlStatement
class to accommodate more complex queries. In general, though, application
developers do not directly state queries in SQL or another query language; instead,
they construct SqlStatements using the SqlBuilder class. A SqlBuilder may
be associated with a provider or a persistence broker. One of its constructors
has the signature

3.5. Gentle J 91

public SqlBuilder(PersistenceBroker broker, StatementType stmtType,
Type type, LogicalOperator logicalOperator);

StatementType is an enumeration with members including Select, Count,
Insert, Update, and so on. The type argument indicates the class (and hence
table) being queried. LogicalOperator is an enumeration with members And
and Or, which selects the logical operator to be used with the SqlBuilder’s
constraints.

After a SqlBuilder is created, a SQL statement can be assembled. Sql-
Builder includes many methods for constructing complex queries, but the most
important is the AddConstraint() method, one of whose overloads has the
signature

public void AddConstraint(Operator op, string field, object value);

This adds a constraint on the field specified by the field parameter (which may
be the name of either a property or a column). The op parameter indicates the
type of constraint (Equals, LessThan, etc.). The value parameter indicates the
value to which the field will be compared.

Finally, after the statement is assembled by adding constraints and using
the other construction facilities that SqlBuilder provides, the user asks the
SqlBuilder to convert itself into an SqlStatement, which may then be executed.
The following example queries a Person table to find each person who was born
after after 1980 or whose name starts with B.

// Assume we are using a PersistenceBroker called persistenceBroker.
SqlBuilder builder = new SqlBuilder(persistenceBroker,

StatementType.Select, typeof(Person), LogicalOperator.Or);
builder.AddConstraint(Operator.GreaterThan, "BirthYear", 1980);
builder.AddConstraint(Operator.Like, "Name", "B%");
SqlStatement statement = builder.GetStatement();
persistenceBroker.Execute(statement);

Even SqlBuilder has its limits. It is not able to express every query that
an application developer might want to execute. Consequently, developers
sometimes have to express constraints or even entire queries directly in SQL.
Gentle provides API functions that accept SQL statements, such as an overload
of the SqlBuilder.AddConstraint method that takes a single string, an SQL
constraint clause. (This can be used for complex constraints such as subselects
that SqlBuilder does not otherwise accommodate.)

The Gentle querying system has a number of weaknesses. First, it is verbose.
The snippet of code above could be expressed in SQL very succinctly:

SELECT ∗ FROM Person
WHERE BirthYear > 1980 AND Name LIKE 'B%'

With Gentle, assembling this query requires the creation of a SqlBuilder instance
associated with the correct persistence broker and type; the population of the
SqlBuilder with constraints, one at a time; the conversion of the SqlBuilder to

92 I Chapter 3. Examples of ORM systems

an SqlStatement; and the execution of the SqlStatement. For complex queries
with sophisticated constraints, this can become tedious.

Gentle querying also suffers from a transparency problem. Several methods
in the Gentle API require table and column names from the database—not class
and property names. This means that developers must think about not only
the application structure, but also the database architecture, in order to use
the API. In a way, the attributive metadata placement mitigates this problem,
because it makes it trivial for developers to find out the name of the database
object that corresponds to an application abstraction; they just have to look at
its attributes. However, it does force developers to think about the underlying
database, when really they would prefer to think about the application objects it
persists. A more substantial problem is that it is not always easy to tell, without
looking at the documentation, whether a given API function expects a string
naming a class or property or one naming a database object, or whether it will
accept either. This makes life problematic for developers.

Despite these problems, Gentle handles simple queries relatively elegantly.

3.5.4 Caching

Gentle provides transparent caching to improve performance (although some of
its caching capability is turned off by default). Gentle caches three categories
of information: metadata, statements, and objects. Metadata is always cached,
but statement caching and object caching are configurable.

Statement caching is active by default, unless turned off in the configuration
file. Once a SQL statement is created by the SqlBuilder class, Gentle caches it
for future use. Besides yielding a performance improvement in itself, this also
allows Gentle to use prepared queries, storying a query plan in the database
back end. This can result in a substantial performance gain, equivalent to the
performance gain that results from using stored procedures instead of ad hoc
SQL.

Object caching, on the other hand, is turned off by default and must be
switched on manually in the configuration file in order to become active. When
object caching is turned on, objects are cached as soon as they are retrieved from
the database (in fact, as they are constructed). Each cache entry is identified by
type and primary key. This caching policy does not result in duplication of data;
caching an object does not copy it to a new location, but instead merely keeps a
reference to it. This not only saves memory, but also ensures that the cached
version of an object will reflect changes made by the application to the object
itself.

When both statement caching and object caching are enabled in the configu-
ration file, Gentle can also be instructed to use query skipping. When this option
is enabled, Gentle caches associations between executed queries and their result
sets. When a previously executed query is executed again, Gentle reconstructs
the result using the cached data (as long as it remains available). This bypasses
the database entirely, resulting in substantial gains.

3.5. Gentle J 93

A feature closely related to the cache is “object uniqing,” which ensures that
there are not multiple objects in memory representing the same database row.
This feature uses the object cache, so object caching must be enabled for uniqing
to work. (In fact, object caching affords no performance benefit on its own; it
is useful only in conjunction with query skipping or object uniqing.) The most
important function of object uniqing is to prevent data inconsistency, but of
course it also reduces the memory footprint of the application.

A final configuration setting worth noting is the DefaultStrategy setting.
Gentle provides three caching strategies: Never, Temporary, and Permanent.
Temporary is the default setting; it allows garbage collection of cached objects.
Permanent protects cached objects from garbage collection, but this setting
is problematic because objects will pile up in the cache indefinitely (until the
application explicitly directs the cache manager to clear them). Never turns off
caching.

3.5.5 Transactions

The vehicle for transaction control in Gentle is the Transaction class provided in
the API. There is nothing too incredible about this class; it is primarily a vehicle
for accessing the transaction control mechanism provided by SQL. Transaction
inherits from BrokerLock, and consequently a transaction is attached to a
persistence broker at construction. In fact, the persistence methods that the
Transaction class provides are really just calls to the PersistenceBroker under
the hood.

When it is initialized, Transaction begins a database transaction (using
ADO.NET, which in turn uses the transaction functionality of the underlying
database). Subsequently, the application calls the persistence methods of the
Transaction, which mirror the persistence methods of the PersistenceBroker
class: Transaction.Insert, Transaction.Update, Transaction.Remove, and
so on. (As implied above, these methods actually just call the persistence broker.)
Finally, Transaction includes Commit and Rollback methods for ending the
transaction. (These just call the Commit and Rollback methods of the underlying
ADO.NET IDbTransaction.) A simple transaction might look something like
the following outline:

Transaction t = new Transaction(persistenceBroker);
try {

t.Insert(something);
t.Update(somethingElse);
t.Remove(anotherThing);
t.Commit();

}
catch {

t.Rollback();
throw;

}

94 I Chapter 3. Examples of ORM systems

finally {
t.Dispose();

}

Besides transactions, Gentle provides another means of concurrency control:
automated revision numbering [23, §3.7]. To support this, the application devel-
oper adds an integer field to a persistent class and tags it with the Concurrency
attribute.

[TableColumn, Concurrency]
private int revisionNumber;

This is a concurrency control field for Gentle use. Since it is not part of the
domain model, we can leave it as a private field rather than creating a public
accessor. This field keeps track of a revision number for the current instance.
When the object is first persisted to the database, it is assigned a revision number
of 0. Every time an update occurs, the revision number is incremented by 1.
The revision counter is then used as an equality criterion in every single-row
update or delete against the database. That is, with concurrency control enabled,
instead of executing SQL such as

UPDATE TableName SET Column1 = 'value1', Column2 = 'value2'
WHERE IdentityColumn = 5

Gentle executes SQL like

UPDATE TableName SET Column1 = 'value1', Column2 = 'value2'
WHERE Identity Column = 5 AND ConcurrencyControl = 8

(if the current revision number is 8). Consequently, if the application tries
to persist out-of-date data to the database, the update will fail. In fact, not
only does no update occur, but Gentle also throws an exception to alert the
application that its state is out of date. At that point the application can call the
Refresh method of the persistence broker to update its state and then reapply
the changes and try again to persist.

Transactions and revision numbering can be used in conjunction. They are
both solutions to concurrency problems, but they fill different roles. For example,
consider a situation in which a thread wants to atomically update a couple of
objects that it has been using, a and b. The requirement of atomicity means
that the thread should use a transaction to make its updates.

Now suppose that just before the thread starts its transaction, some other
thread updates the database copy of b. The sequence of events would look like
this:

1. Thread 1 loads a and b from the database and manipulates them in memory.

2. Thread 2 updates b in the database.

3. Thread 1 begins a transaction.

4. Thread 1 updates a.

3.6. Active Record J 95

5. Thread 1 updates b.

6. Thread 1 commits the transaction.

The changes that thread 1 makes to b overwrite those made by thread 2, although
neither thread is ever made aware of the other. This is a concurrency problem
that transactions do not solve. However, revision numbering can solve this
problem. If b has a revision number field, the sequence of events will look like
this:

1. Thread 1 loads a and b from the database and manipulates them in memory.

2. Thread 2 updates b in the database.

3. Thread 1 begins a transaction.

4. Thread 1 updates a.

5. Thread 1 tries to update b, but the revision numbers do not match. Gentle
throws an exception.

6. Thread 1 receives the exception and can handle it as it deems appropriate.
It will probably roll back the transaction, refresh its copy of b, and decide
whether to reapply its changes to b or let the changes made by thread 2
stand.

The conflict is an inconvenience, but at least now thread 1 is made aware of the
conflict so that it can resolve it as best it can under the circumstances.

Gentle concurrency controls can also help the application share the database
with other users—even if those users do not employ the same persistence layer.
Gentle transactions are effective at the level of the database, not just at the
level of the persistence layer, so reliability, atomicity, isolation, and consistency
are guaranteed for Gentle transactions even if other applications are sharing the
database.

Revision numbering takes a little more work to function with other appli-
cations. In particular, other database users must respect the rules for revision
numbering; they must initialize new rows with the correct initial revision number,
increment the revision number when they update data, and check that they do
not persist out-of-date data to the database. This is OK if the competing data-
base users are developed concurrently with or subsequent to the Gentle-powered
application, although it can create difficulties if Gentle needs to share a database
with a legacy application. In such a case, the legacy application would need
to be updated to incorporate revision numbering, or the application architects
would have to decide that a certain amount of overwriting is acceptable.

3.6 Active Record

This Ruby ORM tool is named after the active record design pattern described
by Fowler [13], pp. 160–164. It is therefore worth briefly describing this design

96 I Chapter 3. Examples of ORM systems

pattern here. The active record pattern is used by many developers who architect
non-automated persistence solutions—by many developers, in fact, who are
unaware that they are following what Fowler calls the active record pattern. An
active record, according to Fowler, is a domain model responsible for its own
persistence logic. Structurally, it is closely tied to one particular table in the
database, and it contains all the logic necessary to save itself to and load itself
from the database. The following Java snippet shows some functionality we
might expect of an active record Customer.

Customer c = new Customer();
c.set_FirstName("Jane");
// ...
c.save();

c = Customer.Load(5);
c.set_LastName("Dennis");
c.save();

c.reportHistory(); // Suppose this to be a piece of business
// logic that does not use the database.

In this example, we see that we can create an active record from scratch, initialize
its values, and insert it into the database. We can load an existing record from
the database, modify it, and update the database with our modifications. An
active record may also include business logic unrelated to its persistence functions,
such as reportHistory in this example.

Some of the ORM systems we have already seen effectively simulate the
active record pattern. In Gentle, for example, the application developer can ask
a persistent object to persist itself, provided the class of that object inherits
from Persistent. (In Gentle, the persistence methods of the Persistent class
are just calls to the persistence broker under the hood. The persistence broker
performs all actual persistence.)

Ruby’s Active Record aims to solve two problems of the active record pattern:
associations and inheritance. The former is solved by meta-programming macros,
and the latter is solved by integrating the single table inheritance pattern, also
described by Fowler [13], pp. 278–284. We will examine these solutions shortly.
First, some background on Ruby and Rails is appropriate for readers unfamiliar
with these technologies.

Ruby is an object-oriented programming language prized for its expressive
power and ease of use. Currently, Ruby is interpreted, which makes its perfor-
mance inferior to that of most compiled languages [40], but Ruby is to become
bytecode-compiled (like Java and .NET) in version 1.9.1, due for release at the
end of 2007 [27]. Ruby is well known for its reflection and meta-programming
features, and it also includes other modern language features such as excep-
tion handling, operator overloading, garbage collection, and portability. Rails
(http://rubyonrails.org/) is a Web application framework for Ruby. Released
in 2004, Rails has become quite popular in a relatively short time. For con-

http://rubyonrails.org/

3.6. Active Record J 97

text, Ruby on Rails competes with other Web application frameworks such
as ASP.NET and PHP. Rails follows Ruby’s goal of expressivity and succinct-
ness. Active Record is available as a stand-alone ORM solution for Ruby
(http://rubyforge.org/projects/activerecord/), but it is most commonly used
with Rails, as it forms part of the Rails standard library.

Active Record makes heavy use of both reflection and database analysis, to
a much greater extent than the other ORM solutions examined in this paper.
This is in line with Ruby’s pro-reflection design philosophies. For example, if a
database already exists for the application, creating a class corresponding to a
particular table takes two lines of Ruby code.

class Customer < ActiveRecord::Base
end

Using behavior inherited from the ActiveRecord::Base class, this Customer
class reflects on itself to find its own name, queries the database to see that it
contains a table of the same name, analyzes the structure of that table, and
modifies its own structure and behavior to match the database. All of this
happens at run time.

Now, a customer object can be created, populated with data, and persisted
very easily:

customer = Customer.new
customer.name = "Mary Smith"
customer.street_address = "123 Main St."
customer.postal_code = "12345"
customer.save

3.6.1 Architecture
From the preceding example, it should be clear that Ruby Active Record operates
in a database-oriented paradigm (see Section 2.1.3), in contrast to the application-
oriented and metadata-oriented systems we have seen heretofore. Application
architects create the database first, and then the objects corresponding to the
database tables are created to match it. Note that although Active Record for
Ruby is very dynamic, reflective, and execution-oriented, it is worth observing
incidentally these traits are by no means inherent (nor exclusive) to the database-
oriented paradigm. On the contrary, a database-oriented mapper could carry
out the mapping before compile time.

In Active Record, on the other hand, the mapping is accomplished almost
entirely at run time. All that the software architects must specify in the applica-
tion code is the existence of the classes corresponding to the database tables,
as in the example above. (Of course, they may specify additional functionality
for these classes beyond what is provided by the default mapping infrastructure,
but anything beyond the class definition is optional.)

All persistent objects in Active Record inherit from ActiveRecord::Base,
which provides powerful persistence functionality for its inheritors. This Base

http://rubyforge.org/projects/activerecord/

98 I Chapter 3. Examples of ORM systems

class is by far the most important (and complex) part of the Active Record
infrastructure. It includes the logic necessary to establish and destroy connections
to the database, query for data, persist new objects and update existing ones,
and address complex mapping problems such as inheritance and associations.
The internal operations of the Base class are largely irrelevant to the present
section; what is important is that the core persistence functionality of Active
Record is consolidated into a single abstract class that serves as the base for all
persistent objects.

Base is by no means the only component in the ActiveRecord framework,
though. Also of architectural importance is the ConnectionAdapters module.
For each DBMS that Active Record supports there is a connection adapter. For
example, there are MysqlAdapter and PostgreSQLAdapter classes. All these
adapters inherit from a common base class, AbstractAdapter. These adapters
accommodate DBMS-specific peculiarities. For example, since the syntax to
rename a table differs from DBMS to DBMS, each adapter has a rename_table
method. In the MySqlAdapter class, it is defined by

def rename_table(name, new_name)
execute "RENAME TABLE #{name} TO #{new_name}"

end

since MySQL includes a RENAME TABLE command. However, in PostgreSQL
tables are renamed via the ALTER TABLE command, so in the PostgreSQLAdapter
class the rename_table method is defined by

def rename_table(name, new_name)
execute "ALTER TABLE #{name} RENAME TO #{new_name}"

end

Besides the Base class and the connection adapters, the Active Record
framework includes a number of other classes and modules, but these provide
peripheral functionalities that, though important, are not part of core persistence
operations. Among them are modules such as ActiveRecord::Validations,
which provides validation for active records, and ActiveRecord::Locking, which
allows for optimistic or pessimistic locking.

3.6.2 Metadata

Active Record’s extensive analysis of the database obviates much of the need for
metadata. It can see for itself the names of the database tables and columns and it
assumes that the application classes and properties should have related names. In
particular, Active Record makes certain assumptions about table, field, and class
names and translates freely between the two. For example, it assumes that tables
are named in lowercase with plural nouns, with words delimited by underscores
(customers, system_operators, etc.). It translates these names into camel-case
class names like Customer and SystemOperator. It is fairly clever about this,
translating sentries into Sentry and even people into Person. There is a
similar operation for field names. Some of the assumptions that Active Record

3.6. Active Record J 99

makes are configurable. For example, to reverse the assumption that table names
are plural, one would set

ActiveRecord::Base.pluralize_table_names = false

Of course, even a fairly clever system such as this must accommodate exceptions
to its rules. In Ruby, this is not done through some external metadata file,
but instead directly in the code of the relevant class. For example, if we are
architecting a biological database that includes a classes table to accommodate
taxonomic classes, but we are concerned about conflicts with the reflective
Class class built into Ruby, we can name our corresponding persistent class
TaxonomicClass as follows.

class TaxonomicClass < ActiveRecord::Base
set_table_name "classes"

end

(Of course, in this case we might want to consider renaming the database table to
taxonomic_classes to avoid confusion caused by a class-table naming mismatch,
but this is just an example.)

3.6.3 Querying

Querying in Active Record is relatively simple. Persistent classes that inherit
from ActiveRecord::Base have a find method, which provides three retrieval
approaches. First, we can find by ID.

Customer.find(1)

returns the customer whose identifier is 1. We can also pass several IDs into
find to retrieve several records at a time:

Customer.find(1,2,3)

Second, we can find all.

Customer.find(:all)

returns an array of all customers. We can refine our query to match only certain
conditions, as in

Customer.find(:all, :conditions => "first_name = 'Mary'")

which finds all customers with the first name Mary. Besides :conditions:, the
find method accommodates many other option hashes, such as :group: for
GROUP BY clauses, :include: to produce outer joins, and :order: to specify
result orderings.

The third retrieval approach is to find first, which returns the first result
only.

Customer.find(:first)

100 I Chapter 3. Examples of ORM systems

Of course, this can be refined by option hashes too.
To make querying even nicer, Active Record provides dynamic attribute-based

finders, which automatically provide new methods like find_by_first_name
and find_all_by_first_name, which return the first record or all records that
match the first name provided. Thus

Customer.find(:all, :conditions => "first_name = 'Mary'")

could be abbreviated to

Customer.find_all_by_first_name("Mary")

In some of the other mappers we have seen, one problem with querying is
that it is sometimes unclear when clients should use the name of a database field
and when they should instead supply the name of the class property. In Active
Record, this is not a problem, as property names are identical to field names.
(Of course, this is a limitation in itself, but in everyday situations it is not a
problematic one.)

Like any querying framework, the Active Record infrastructure has limits to
the queries it can accept. For queries that stray from these bounds, persistent
objects provide the find_by_sql method, which takes an SQL command as
its parameter. This command is run directly against the database, unedited.
This means that it must use the names of the tables in the database, not the
names of the corresponding classes. However, this is less problematic in a
database-oriented solution like Active Record than in an application-oriented
solution.

3.6.4 Caching
Active Record does not include any caching to speak of. This, of course, hampers
performance, but it is not without any advantage. The lack of object caching is
in line with Active Record’s database-oriented philosophy. With object caching,
Active Record could hardly be as dynamic as it is in fact. Active Record
can respond to changes in the database—even changes to the structure of the
database—instantaneously at run time. If it relied on its cache, it would not
notice such changes immediately, and even once it did, it would be hard-pressed
to reconcile its cache with the new information from the database. Indeed,
none of the other ORM tools we have seen are nearly so responsive to database
changes.

A second and related advantage is that Active Record is good at sharing
databases with other applications. Without an object cache, Active Record
has no problem with changes that other applications make to the database.
Of course, this assumes that the other database users share politely, too. For
example, they should not use caching either, and they should use transactions
to ensure that the database is never visible to Active Record in an inconsistent
state.

The performance benefit that caching affords, however, is not negligible. For
stable applications that have sole control over a database and that have heavy

3.6. Active Record J 101

performance requirements, Active Record’s refusal to cache can be frustrating.
There is at least one tool that overcomes this limitation, a plug-in that adds
caching to Ruby [44].

3.6.5 Transactions
Active Record does include support for transactions, and the syntax is simple.
For example, if we wanted to transfer money from one bank account to another
by withdrawing it from one account and depositing it in another, we might write

transaction do
account1.withdraw(100)
account2.deposit(100)

end

The persistence framework commits the transaction at the end of the block.
If an exception occurs in the block, the framework rolls back the transaction.
The framework still propagates the exception outward after rolling back the
transaction so that the application can catch it.

Chapter 4

ORM: Present and future

4.1 Obstacles to the adoption of ORM

Despite a vast number of increasingly advanced and readily available ORM
solutions and the maturity of ORM technology, ORM has yet to see widespread
adoption in everyday industrial operations. One consultant called ORM “the
Vietnam of Computer Science” [30], articulating the skepticism that many
developers feel toward ORM. In this section, we present a number of architectural,
technical, and cultural factors that seem to have undermined wider acceptance
and use of ORM. In a later section, we make suggestions for abating these
barriers.

4.1.1 The learning curve and other up-front costs

Every developer who has ever written a database application in .NET knows
what ADO.NET is and how to use it; likewise for Java and JDBC, or Visual Basic
and ActiveX Data Objects. Not every developer knows how to use Hibernate,
iBATIS, or TopLink. From the perspective of a software development company
or team, this presents a serious obstacle to ORM adoption. Regardless of which
ORM solution the project manager or team leader settles on, it is unlikely that
more than a small fraction of the software development staff will have more
than, at best, a passing familiarity with it. Consequently, the organization will
incur a substantial cost in training its developers to use the ORM solution in
question (or, for that matter, even to gain an appreciation of the fundamentals
of ORM, since many entry-level and mid-level developers scarcely know what
ORM is). Unfortunately, this is not just a one-time cost. New developers hired
subsequently to the adoption of ORM technology will likewise have to receive
training (or otherwise the company will have to seek out developers who already
have ORM experience, a search likely to be difficult and expensive).

In addition to these developer training costs, there may also be bureaucratic
obstacles to the adoption of new technologies, including ORM, from the ranks

102

4.1. Obstacles to the adoption of ORM J 103

of managers and executive officers who have an “if it isn’t broke, don’t fix it”
mentality.

Finally, besides personnel costs, there are technological costs to implementing
an ORM solution. Just as every .NET developer knows ADO.NET, every .NET
installation comes with the ADO.NET architecture; likewise for Java and JDBC.
By contrast, setting up and installing ORM software on all the development,
testing, staging, and production machines in an organization can be a substantial
undertaking.

In many contexts, the long-term benefits afforded by ORM can outweigh
these one-time personnel and technological costs. However, it is not always easy
to see in advance that this is the case, and it may be even more difficult to
convince management that it is so.

4.1.2 Actual and perceived performance limitations

Many developers and managers have a perception that ORM is slower than
hand-crafted persistence code that directly interacts with a database API such as
JDBC or ADO.NET. This perception has a kernel of truth. A naïvely architected
ORM solution will indeed be slower than hand-crafted persistence code that
does the same thing, because it introduces overhead: the overhead of reading
metadata, reflecting on classes (if necessary), generating queries, and so on. In a
hand-crafted solution, these tasks would normally be completed at design time
by the developer and would not affect application performance. Indeed, the early
ORM systems did suffer from poor performance, as do casually jerry-built ORM
systems today.

However, modern, popular ORM systems like Hibernate and iBATIS are not
naïvely architected. Instead, they introduce performance innovations like lazy
checking and automatic caching that tend to far outweigh the relatively modest
overhead that automated persistence layers incur by nature. Of course, features
like caching and lazy checking can be implemented by a hand-crafted solution in
principle, but this is a laborious process that developers must carry out on a
class-by-class basis, so in applications with hand-crafted persistence code these
niceties seldom appear.

Regardless of the relative performance merits of ORM and hand-crafted
solutions, the perception of ORM solutions as slow persists. This perception has
a chilling effect on adoption of ORM.

4.1.3 Sensitivity to architectural revisions

ORM would work best if, once the mapping was completed, no architectural
changes were made to the application, database, or metadata ever again. Un-
fortunately, this is an unrealistic assumption. In reality, application developers,
database administrators, and project managers frequently want to make archi-
tectural changes late in the development cycle. Sometimes these changes are
modest in scope—adding a field (attribute) to an existing table (object)—and
sometimes they are grand—reforming a collection of previously structurally

104 I Chapter 4. ORM: Present and future

unrelated objects into an elaborate inheritance hierarchy. To accommodate such
a change, all three components of the persistence system—application, database,
and metadata—must change. The application and database must be restructured
in parallel, and the metadata must be rewritten to reflect the new relationships
between the objects and the tables, but in addition any existing data in the
database must be shuffled around to fit into the new structure.

These operations are very difficult to automate. Consequently, most ORM
systems have unsatisfactory support for revisions to the architecture of a system
after a system has been mapped. In fairness to ORM, these operations are
painful in a hand-mapped solution as well. However, ORM arguably exacerbates
the problem, because in a system that uses ORM, architectural revisions require
developers to think carefully about details that had previously been largely
hidden from them.

4.1.4 Accommodation of legacy systems

A related problem involves the use of legacy databases. Often, new applications
need to use data from an existing data source—a database lying around from a
previous incarnation of the application, or a data source provided by a client
or third party. In this case, neither the application developers nor the ORM
solution have any say into the architecture of the data source; they have to
work with what is available. In hand-coded persistence layers, this is merely an
inconvenience; developers have to write their code to persist data to the legacy
data source, even if the legacy data source has a questionable structure (e.g.,
poor normalization). In insufficiently flexible, automated persistence layers, this
can be problematic. If the metadata language is not especially inexpressive,
it may be difficult or even impossible to represent the mapping to the legacy
database.

A similar problem occurs when a second application uses a database that
is managed by an ORM system for an object-oriented application—in other
words, when two applications, one using a persistence layer provided by an ORM
product and one using a different persistence solution, need to use the same
database. This is problematic regardless of whether the database was originally
created for use with the application that uses the ORM solution, the application
that does not, or even if it was created with both in mind. The reason is that
many ORM products expect to have full ownership of the database to which they
persist. In particular, they may implement caching, transactional, and delayed
persistence strategies that make this assumption. To take a concrete example,
suppose the ORM-enabled application retrieves some data and, unaware that
it shares the database with another user, caches it. Then the other application
incidentally changes this data. Later, when the persistence layer of the ORM-
enabled application is summoned to retrieve this data, it will draw upon its
cache, not realizing that another database user has inadvertently made its cache
obsolete.

4.1. Obstacles to the adoption of ORM J 105

4.1.5 Limitations in expressing queries

ORM does a good job of accounting for the structural relationship between
objects and tables and of shuffling data between objects and the database. It is
not so good at capturing the behavioral aspects of data. In particular, many
ORM systems fail to provide an elegant method for querying databases, beyond
elementary operations. Neward [30] calls this “the data retrieval mechanism
concern” and identifies three major approaches that ORM solutions can take to
supporting queries: query by example, query by API, and query by language.

To query by example, an application creates an object of the type it wants to
query to exemplify the sort of results it wants. For example, to find all persons
named Smith, we might use code such as the following C# snippet:

Person p = new Person();
p.Surname = "Smith";
IList results = PersistenceManager.Execute(p);

This approach has serious defects. Most significantly, it does not readily accom-
modate queries of any complexity, even simple queries like “Find all cities whose
population is less than 100,000” or “Find all persons not named Smith.” That
is, it doesn’t support comparisons other than equality. Second, it requires all
persistent classes to support both default constructors and null values in all
fields, which may be a violation of business domain rules to which the classes
would otherwise adhere. This compromises transparency.

In the query-by-API model, the ORM solution provides an API to allow
applications to construct and execute query objects. The following C# snippet
exemplifies this approach.

Query q = new Query(typeof(Person));
q.Filters.Add(new PropertyStringEqualityFilter("Surname", "Smith"));
IList results = PersistenceManager.Execute(q);

In this imaginary API, there is a Query object whose constructor takes an
argument indicating which class or table is being queried. Here, the argument is
of type System.Type; that is, the caller specifies the actual object-oriented class
that is being queried. Presumably the Query object will then use metadata or
reflection to learn what it needs to know about this class and its corresponding
database table. A reasonable alternative approach would be to instead pass a
string identifying the table in the database—as in new Query("Person").

The Query class in this example includes a Filters property, which accesses
a collection of filters that are to be conjoined and will ultimately appear in the
WHERE clause of a SELECT statement against the database. Here we add a filter of
type PropertyStringEqualityFilter, which compares the Surname property
and the string “Smith” for equality. Finally, the persistence manager is called to
execute the query. An alternative architecture would allow the query to execute
itself: q.Execute(PersistenceManager) or something similar.

The obvious disadvantage of this approach is that it requires application
developers to learn a new API, an API that may be quite elaborate, as the

106 I Chapter 4. ORM: Present and future

above example suggests. The PropertyStringEqualityFilter class for ex-
ample, hints at a great family of other, related filter classes that must exist:
PropertyPropertyEqualityFilter classes (and other equality filter classes
along these lines), inequality filter classes, less-than filter classes, less-than-or-
equal-to filter classes, and so on. Furthermore, queries expressed through an
API like this tend to be far more verbose than queries expressed in a query
language like SQL, and complex queries such as those involving sophisticated
joins may be difficult if not impossible to express through the API. Finally,
this approach requires the developer to have a degree of familiarity with the
underlying mapping—enough to know, for instance, that there is a Surname
column in the person table that corresponds to the Surname property of the
Person class. We can take advantage of the type system’s reflection framework
to overcome this to some degree. For example, by having the Query constructor
in the example above accept a class instead of a string identifying a table, we
eliminate the need for the developer to remember details about the mapping.
However, this precipitates a performance penalty and exacerbates the problem
of verbosity.

The final querying approach is for the ORM system to define a new query
language similar to (the data retrieval portion of) SQL but better suited to
the ORM context. This approach affords both expressive power and brevity.
Query languages can easily be constructed to support the same sorts of complex
operations that SQL supports (aggregates, joins, etc.). The following C# snippet
makes the same query as the previous two examples. The ORM API and query
language in this example are NHibernate and the Hibernate Query Language
(HQL), respectively.

IQuery q = session.CreateQuery(
"FROM Person p WHERE p.Surname = :surname");

q.SetString("surname", "Smith");
IList results = q.List();

Note that in HQL, names like Person and Surname actually refer to structures
in the application code (here, the Person class and its Surname property), not
to database structures such as tables and their columns. One complaint about
this approach is that query languages provided by ORM systems are sometimes
less expressive than true SQL. This objection held water in the past, but the
query languages provided by the most mature ORM systems are increasingly
capable. HQL, for example, supports subqueries, joins, aggregate functions, and
even polymorphic queries [17, §11].

A more abstract objection is that using an SQL-style language to query the
database compromises one of the central supposed benefits of ORM: that it
enables application developers to understand data from a purely object-oriented
perspective. A query language, it is said, compromises the purity of this notion
by forcing developers to write RDBMS-style query code.

None of the three approaches to querying present here is perfect. Querying
by example is inadequate for all but the most basic of queries. Querying by API
is verbose and tedious. Querying by language is generally the best solution, but

4.2. The state of the art J 107

arguably compromises the promise of ORM to enable to developers to think only
in terms of objects.

4.2 The state of the art

ORM is not a very old technology, but it has been around for long enough for
substantial innovations to have been made. The earliest automated persistence
technologies were clumsy and slow. The popular ORM solutions of today, by
contrast, provide impressive arrays of features that save time for application
developers and improve performance and normalization. We discussed many of
these features in depth and from a theoretical standpoint in Chapter 2. Here,
we take a higher-level view of a few of the most important recent developments
in ORM technology, both technical and conceptual.

4.2.1 Performance enhancements

Some of the most significant and impressive improvements to ORM systems have
been in the area of performance. An early, and initially justified, criticism of
ORM was that it could not match the performance of hand-tailored solutions that
directly called a database API. This was generally true, because, in the absence
of performance-enhancing features, ORM systems add overhead (extra layers of
abstraction) to code and have no way of mitigating the resulting performance
deterioration.

This concern is seldom valid anymore. Modern ORM systems use a variety
of tricks to improve performance: caching, lazy fetching, dirty checking, and
so on. These tricks reduce the frequency with which the application has to
connect to and communicate with the database. Since database transactions are
often the most expensive operations in an application (especially when executed
across a network, as they often are), these performance improvements tend to far
outweigh the overhead of the persistence layer (even if it uses expensive language
features like reflection).

4.2.2 Standardization

The Java community has recently witnessed a powerful movement in the direction
of standardization of persistence solutions. Version 5 of the Java Platform,
Enterprise Edition [43, JSR 244], released in 2006, includes the totally new Java
Persistence API, an ORM specification based on existing persistence technologies
like Hibernate, TopLink, and Java Data Objects (JDO). (JDO itself was also a
specification developed under the Java Community Process [43, JSR 12].) The
Java Persistence API was developed as part of the Enterprise JavaBeans 3.0
standard [43, JSR 220], but its use is no longer limited to Enterprise JavaBeans
components, nor even to the Enterprise Edition of the Java Platform. The
Java Persistence API standard includes the definition of the API, which is the

108 I Chapter 4. ORM: Present and future

javax.persistence package; the definition of the Java Persistence Query Language;
and provision for metadata.

The Java Persistence API was developed not in competition with existing
persistence solution vendors, but on the contrary with their cooperation and
participation. Consequently, Hibernate and TopLink are moving into conformity
with the standard, giving them the status of implementations of the standard.
New products are also emerging to implement the standard, including Apache
OpenJPA (http://incubator.apache.org/openjpa/).

Currently this standardization activity is largely limited to the Java commu-
nity, but it is possible that persistence APIs will appear for other platforms in
the future. A distinct but related topic is the integration of persistence tools
into languages and enterprise platforms. For example, in the past there has
been speculation that future versions of the .NET Framework will support ORM
natively, although there has been no indication from Microsoft in this direction.
A less speculative example is Ruby on Rails. Although Active Record is a
stand-alone ORM package for Ruby, it is incorporated into the Rails platform.
It seems likely that better examples of languages with integrated persistence will
appear in the future.

4.2.3 Multi-platform tools

Different programming languages and enterprise platforms often have profound
differences between them, presenting a formidable obstacle to porting tools from
language to language. One would think that this would be particularly true
of ORM tools, which are not only syntactically but architecturally tied to the
language or platform in which they operate. Nonetheless, some cross-platform
ports of ORM tools have been surprisingly successful. The two most notable
cases are Hibernate, a Java persistence solution ported to the .NET Framework,
and iBATIS, also a Java persistence solution, which has been ported not only to
.NET, but also to Ruby. (Indeed, the iBATIS team has considered additional
ports, including PHP and Python [6, §2.6.4].)

It is not surprising that the most successful ports have been between Java and
.NET; Java and .NET bear important conceptual and architectural similarities,
so it makes sense that successful solutions to a Java problem would also be
successful when applied to the same problem in .NET. The port of iBATIS to
Ruby is rather more impressive.

4.3 Future directions

Here we consider what the future of ORM might look like. The comments in this
section are intended primarily as recommendations of what future ORM systems
ought to look like (either to improve developer productivity, system performance,
or the popularity of ORM), but they may also be regarded as predictions. Since
the areas in which ORM tools might best improve are those areas in wihch it is
weakest, and since future development is likely to follow the course suggested

http://incubator.apache.org/openjpa/

4.3. Future directions J 109

by present development, the items below parallel several of the subsections in
Sections 4.1 and 4.2.

Improve awareness of ORM and ORM tools. Unfamiliarity with and
distrust of ORM is a major problem. Despite the great number of persistent
applications being produced, many entry-level and mid-level developers, as well
as project managers and executive officers, remain unaware of even the existence
of automated persistence. Even among those engineers who are familiar with
ORM, many do not know the scope of its application or the features that modern
ORM solutions provide. In particular, some developers have outdated notions
of the capabilities of ORM, believing it to be slow and incapable of supporting
sophisticated database operations. Consequently, improving awareness of ORM
and the facilities that modern ORM tools provide is an important, non-technical
step to more widespread adoption of the technology.

Continue to improve performance. Despite advances in ORM technology
that can make it perform better than naïvely hand-authored solutions that
directly call database APIs, some developers continue to identify performance
as an important weakness of ORM. It is certainly true that there is room for
improvement in this area. The largest improvements are likely to be attained
by reducing the frequency of communications with the DBMS (e.g., by making
caching plans smarter) and by improving the performance of expensive procedures
such as navigating object graphs.

Standardize persistence solutions. It is still too early to see the results of
the standardization of Java persistence APIs, but it promises a number of benefits.
Once the community comes to embrace the standard, developers of persistent
Java applications will no longer need to worry about different ORM solutions
with different persistence APIs. Instead, Java developers can learn a single
persistence API and apply this knowledge to all persistent Java applications
that use it—which should before long be a solid majority of applications that
use automated persistence technology. As the standard API gains popularity,
developers have an increasing incentive to learn it (since it will have increasingly
broad applicability), so eventually many persistent-application developers will be
familiar with the API. Software development teams then have a greater incentive
to adopt ORM solutions, since (regardless of which implementation of the Java
Persistence API they choose) more developers will be available to support it.
This creates a sort of virtuous circle reinforcing the proliferation of the Java
Persistence API. Another consequence of standardization is that software projects
will be able to more easily switch between competing ORM solutions (e.g., to
migrate from TopLink to Hibernate), because standard API calls should remain
largely unchanged and because developers need not be retrained. Other language
communities might do well to follow the example that the Java Persistence API
provides.

110 I Chapter 4. ORM: Present and future

Integrate transparent persistence into object-oriented languages. Re-
latedly, future languages and enterprise platforms may integrate ORM into their
class libraries. This would be especially appropriate in platforms, such as the
.NET Framework, which are based on large, capable class libraries supporting di-
verse application demands. Currently, no mainstream, object-oriented language
supports ORM natively, but ActiveRecord, an ORM utility, is built into Ruby
on Rails.

Improve automated support for architectural revisions. Application
developers often have to restructure their objects and the relationships between
them and make corresponding changes to the database, and in practice these
changes can often occur unplanned very late in the development cycle (or in
post-release maintenance). Automating these changes is a difficult task, and
current persistence solutions provide little support to the developers who have
to make them. Future ORM solutions should work to provide better support for
automating architectural revisions.

Better accommodate legacy systems. It would be nice (for ORM) if every
application used exactly one database, but in fact there are many situations in
which multiple applications must share the same database simultaneously. For
example, often new projects must work alongside legacy applications, sharing a
database that already exists. This requires developers to think it some depth
about the operation of the persistence layer, since sharing a database precludes
the use of certain ORM features such as caching. It should be easier to configure
future object-relational mappers to work alongside legacy and other applications
that must share the database.

Support expressive, powerful queries. Queries are a technical and con-
ceptual problem for many ORM solutions, which must balance the need to
present solution users with the full expressive power and concision of SQL with
a theoretically motivated desire to uphold the objects-only pattern in ORM.
Future ORM technology must work to reconcile these goals. Additionally, future
querying solutions should hide the database structure from the application de-
veloper as much as possible. Even if the ORM API provides a query language
that resembles SQL syntactically, it should reference objects and classes, not
records and tables. Since they reference the application code instead of the
database, ORM query languages should also support object-oriented notions
such as inheritance and polymorphism. Current query languages support these
concepts to some extent, but more work can be done in this direction.

Bibliography

[1] Scott W. Ambler. Mapping objects to relational databases: O/R mapping
in detail, 2006. URL http://agiledata.org/essays/mappingObjects.html.

[2] iBATIS.NET: DataMapper Application Framework (v1.5.1). Apache, For-
est Hill, MD, July 2006. URL http://ibatis.apache.org/docs/dotnet/
datamapper/.

[3] EOModeler User Guide. Apple, Cupertino, CA, May 2006. URL http:
//developer.apple.com/documentation/WebObjects/UsingEOModeler/.

[4] Deborah J. Armstrong. The quarks of object-oriented development. Com-
munications of the ACM, 49:123–128, 2006.

[5] Christian Bauer and Gavin King. Hibernate in Action. Manning, Greenwich,
CT, 2005.

[6] Clinton Begin, Brandon Goodin, and Larry Meadors. iBATIS in Action.
Manning, Greenwich, CT, 2007.

[7] John Carlis and Joseph Maguire. Mastering Data Modeling: A User-Driven
Approach. Addison-Wesley, Boston, 2000.

[8] Per Cederqvist. CVS—Concurrent Version Systems v1.11.22, June 2006.
URL http://ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html.

[9] Peter Pin-Shan Chen. The entity-relationship model: Toward a unified view
of data. ACM Transactions on Database Systems, 1:9–36, 1976.

[10] E. F. Codd. Is your DBMS really relational? Computerworld, October 14,
2006.

[11] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13:377–387, 1970.

[12] Erik Dörnenburg. .NET Entity Objects: Architecture and Implementation,
2004. URL http://neo.codehaus.org/docs/Neo_Architecture.ppt.

[13] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, Boston, 2003.

111

http://agiledata.org/essays/mappingObjects.html
http://ibatis.apache.org/docs/dotnet/datamapper/
http://ibatis.apache.org/docs/dotnet/datamapper/
http://developer.apple.com/documentation/WebObjects/UsingEOModeler/
http://developer.apple.com/documentation/WebObjects/UsingEOModeler/
http://ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html
http://neo.codehaus.org/docs/Neo_Architecture.ppt

112 I Bibliography

[14] Michael M. Gorman. Is SQL a real standard anymore? The Data Administra-
tion Newsletter, 16, April 2001. URL http://www.tdan.com/i016hy01.htm.

[15] Jim Gray. A transaction model. In Automata, Languages, and Pro-
gramming: Seventh Colloquium (Noordwijkerhout, the Netherlands, July
14–18, 1980), volume 85 of Lecture Notes in Computer Science, Berlin,
1980. Springer. URL http://research.microsoft.com/~gray/papers/A%
20Transaction%20Model%20RJ%202895.pdf.

[16] Peter Gulutzan. Standard SQL. DBAzine, May 3, 2005. URL http:
//dbazine.com/db2/db2-disarticles/gulutzan3.

[17] NHibernate: Relational Persistence for Idiomatic .NET (v1.0.2). JBoss,
Raleigh, 2006. URL http://hibernate.org/hib_docs/nhibernate/html/.

[18] Alan Kay. Re: Clarification of “object-oriented”. E-mail to Stefan Ram,
2003. URL http://www.purl.org/stefan_ram/pub/doc_kay_oop_en.

[19] Kevin Kline and Daniel Kline. SQL in a Nutshell. O’Reilly, Sebastopol,
CA, 2001.

[20] Robin Liu. Gentle.Net’s architecture, 2004. URL http://www.mertner.com/
confluence/x/6AE.

[21] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.
Object-Oriented Programming in the BETA Programming Language.
Addison-Wesley, Wokingham, England, 1993.

[22] Jim Melton. Advanced SQL:1999: Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann, San Francisco, 2002.

[23] Morten Mertner and Clayton Harbour. Gentle.NET Users Guide, 2006.
URL http://www.mertner.com/confluence/x/Pg.

[24] What’s New in the .NET Framework Version 2.0. Microsoft, Redmond,
WA, 2005. URL http://msdn2.microsoft.com/en-us/library/t357fb32.aspx.

[25] Transact-SQL Reference. Microsoft, Redmond, WA, 2005. URL http:
//msdn2.microsoft.com/en-us/library/ms189826.aspx.

[26] What’s New and Enhanced in Transact-SQL. Microsoft, Redmond, WA,
2005. URL http://msdn2.microsoft.com/en-us/library/ms189465.aspx.

[27] Daigo Moriwaki. Day one of RubyKaigi2006. RedHanded, June 10, 2006.
URL http://redhanded.hobix.com/cult/rubyKaigi2006.html.

[28] Craig S. Mullins. Database Administration: The Complete Guide to Practices
and Procedures. Addison-Wesley, Boston, 2002.

[29] MySQL 5.1 Reference Manual. MySQL AB, 2007. URL http://mysql.com/
doc/refman/5.1/en/.

http://www.tdan.com/i016hy01.htm
http://research.microsoft.com/~gray/papers/A%20Transaction%20Model%20RJ%202895.pdf
http://research.microsoft.com/~gray/papers/A%20Transaction%20Model%20RJ%202895.pdf
http://dbazine.com/db2/db2-disarticles/gulutzan3
http://dbazine.com/db2/db2-disarticles/gulutzan3
http://hibernate.org/hib_docs/nhibernate/html/
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.mertner.com/confluence/x/6AE
http://www.mertner.com/confluence/x/6AE
http://www.mertner.com/confluence/x/Pg
http://msdn2.microsoft.com/en-us/library/t357fb32.aspx
http://msdn2.microsoft.com/en-us/library/ms189826.aspx
http://msdn2.microsoft.com/en-us/library/ms189826.aspx
http://msdn2.microsoft.com/en-us/library/ms189465.aspx
http://redhanded.hobix.com/cult/rubyKaigi2006.html
http://mysql.com/doc/refman/5.1/en/
http://mysql.com/doc/refman/5.1/en/

Bibliography J 113

[30] Ted Neward. The Vietnam of Computer Science. The Blog Ride, June 26,
2006. URL http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+
Computer+Science.aspx.

[31] OSCache. OpenSymphony, 2005. URL http://www.opensymphony.com/
oscache/.

[32] PL/SQL User’s Guide and Reference (10g Release 1). Oracle Corporation,
Redwood Shores, CA, 2003. URL http://download-east.oracle.com/docs/
cd/B14117_01/appdev.101/b10807/toc.htm.

[33] Oracle TopLink Developer’s Guide 10g. Oracle Corporation, Redwood
Shores, CA, 2006. URL http://oracle.com/technology/products/ias/toplink/
doc/10131/main/_html/toc.htm.

[34] Oracle TopLink Frequently Asked Questions. Oracle Corporation, Redwood
Shores, CA, 2006. URL http://oracle.com/technology/products/ias/toplink/
technical/tl10g_faq.htm.

[35] Monica Pawlan. Reference objects and garbage collection, 1998. URL
http://java.sun.com/developer/technicalArticles/ALT/RefObj/.

[36] Hamid Pirahesh. Object-oriented features of DB2 Client/Server. In Proceed-
ings of the 1994 ACM SIGMOD International Conference on Management
of Data, page 483, 1994.

[37] PostgreSQL 8.2.3 Documentation. The PostgreSQL Global Development
Group, 2006. URL http://postgresql.org/docs/8.2/.

[38] Jonathan Rees. JAR on object-oriented. E-mail to Paul Graham. URL
http://mumble.net/~jar/articles/oo.html.

[39] Donald Smith. A brief history of TopLink, 2004. URL http://oracle.com/
technology/tech/java/newsletter/articles/toplink/history_of_toplink.html.

[40] Joel Spolsky. Ruby performance revisited. Joel on Software, September 12,
2006. URL http://joelonsoftware.com/items/2006/09/12.html.

[41] Potter Stewart. Concurring opinion, Jacobellis v. Ohio, 378 U.S. 184, 1964.

[42] Sun Microsystems. Sun ships JDK 1.1: JavaBeans included. Press release,
February 1997. URL http://www.sun.com/smi/Press/sunflash/1997-02/
sunflash.970219.0001.xml.

[43] Java Specification Requests. Sun Microsystems, Santa Clara, 2007. URL
http://jcp.org/en/jsr/all.

[44] Chris Wanstrath. Scaling Rails with memcached. Presentation originally
given at the San Francisco Ruby Meetup, September 12, 2006. URL http:
//errtheblog.com/static/pdfs/memcached.pdf.

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://www.opensymphony.com/oscache/
http://www.opensymphony.com/oscache/
http://download-east.oracle.com/docs/cd/B14117_01/appdev.101/b10807/toc.htm
http://download-east.oracle.com/docs/cd/B14117_01/appdev.101/b10807/toc.htm
http://oracle.com/technology/products/ias/toplink/doc/10131/main/_html/toc.htm
http://oracle.com/technology/products/ias/toplink/doc/10131/main/_html/toc.htm
http://oracle.com/technology/products/ias/toplink/technical/tl10g_faq.htm
http://oracle.com/technology/products/ias/toplink/technical/tl10g_faq.htm
http://java.sun.com/developer/technicalArticles/ALT/RefObj/
http://postgresql.org/docs/8.2/
http://mumble.net/~jar/articles/oo.html
http://oracle.com/technology/tech/java/newsletter/articles/toplink/history_of_toplink.html
http://oracle.com/technology/tech/java/newsletter/articles/toplink/history_of_toplink.html
http://joelonsoftware.com/items/2006/09/12.html
http://www.sun.com/smi/Press/sunflash/1997-02/sunflash.970219.0001.xml
http://www.sun.com/smi/Press/sunflash/1997-02/sunflash.970219.0001.xml
http://jcp.org/en/jsr/all
http://errtheblog.com/static/pdfs/memcached.pdf
http://errtheblog.com/static/pdfs/memcached.pdf

	Macalester College
	DigitalCommons@Macalester College
	4-28-2007

	Object-Relational Mapping as a Persistence Mechanism for Object-Oriented Applications
	Jeffrey M. Barnes
	Recommended Citation

	Introduction
	The object-oriented paradigm
	Inheritance
	Encapsulation
	Polymorphism
	Competing definitions of OOP

	Relational databases
	The relational model
	The entity-relationship model
	SQL
	Object-relational and other advanced features of modern DBMSs

	The use of relational databases in object-oriented programs
	Database drivers and APIs

	The impedance mismatch
	Inheritance and polymorphism
	Associations
	Data types
	Granularity
	Identity
	The database query explosion

	The need for ORM

	Issues in ORM system architecture
	Mapping paradigms
	Metadata-oriented
	Application-oriented
	Database-oriented
	Problems with this classification

	Transparency
	Inheritance mapping
	Single table per hierarchy
	Table for each class
	Table for each concrete class
	Existing support for inheritance mapping methods

	Transaction processing
	Isolation levels and locking
	Application transactions

	Caching
	Metadata
	Dirty checking
	Inheritance from a base class that monitors state change
	Manipulation of source code
	Manipulation of bytecode
	Reflection at run time

	Examples of ORM systems
	Hibernate
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	iBATIS
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	TopLink
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	Neo
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	Gentle
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	Active Record
	Architecture
	Metadata
	Querying
	Caching
	Transactions

	ORM: Present and future
	Obstacles to the adoption of ORM
	The learning curve and other up-front costs
	Actual and perceived performance limitations
	Sensitivity to architectural revisions
	Accommodation of legacy systems
	Limitations in expressing queries

	The state of the art
	Performance enhancements
	Standardization
	Multi-platform tools

	Future directions

	Bibliography

