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Abstract

Distributed Denial of Service (DDoS) attacks are attempts to overwhelm a 

computer system in order to deny access by legitimate users. They are generally 

unstoppable, but there is a good deal of on-going research on methods to reduce their 

negative effects. This paper will deal with the design of a model that simulates such an 

attack. The simulation model is then used to study possible ways to defend against these 

attacks. Three experiments are run: 1) using a priority queue to sort messages from 

clients based on how many connections they have open on the server; 2) limiting the 

number of connections each client can create; and 3) having the server forcefully delete 

the oldest established connection, whenever its connection table becomes full. Results 

show that method 1 is totally ineffective while method 2 somewhat improves the overall 

performance of the system. However, method 3, combined with method 2, produces 

significantly improved performance against a DDoS attack.
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1. Introduction

1.1 Analogy

Imagine a telephone system which can handle a certain number of calls at any one 

time. A person, either intentionally (having many telephones at his* disposal and using all 

of them at the same time) or unknowingly (placing a lot of legitimate calls at the same 

time), could hog all the available slots, preventing any other person from being able to 

place a call. This analogy is similar to a Denial of Service (DoS) attack. It tries to use up 

all the resources of a server  or client computer, preventing legitimate use of that system. 

A DoS attacker is usually using only one computer for the attack. However, a Distributed 

Denial of Service (DDoS) attack occurs when many computers attack a single one, and it 

is much more common nowadays.

1.2 Why?

With the current popularity of the Internet, most computers are connected to the 

Internet via a high speed connection. A DDoS attack could be happening at any time. 

* Note that “his” and “he” is used. However, this does not indicate that the person is male. “he” is used 
for simplicity.
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Similar to the analogy of the telephone system, a DDoS attack could also be happening 

through legitimate use of the Internet. A special phrase is used to denote when this is 

happening – flash crowds. A DoS attack can thus be defined as an overload that causes 

resources to be fully utilized by the attack and thus prevent the use of a computer or 

application. A DDoS attack achieves the same result as a DoS attack but in a more 

distributed and coordinated way, requiring multiple “attackers” or computers. Thus it is 

much harder to defend against.

Although the real reasons behind a DDoS attack is rarely or never known because 

the attacker is very seldom caught. Some potential reasons are

● Fame

Fame within the hacker community is really important for attackers.

● Financial

Newspapers report that gambling websites have to pay a certain amount of money 

per month to blackmailers else their websites will be flooded and inaccessible. 

The amount paid is thought to be less than the amount they would lose should 

their websites go down. Competitive companies might also attack each other in an 

effort to bring down the other company's website. If a popular website is down for 

even only an hour, that company might lose hundreds of customers and 

potentially thousands of dollars.

● Political

Some country might want to cripple another country's servers for some reasons.

● Military
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It might be a good idea to overload a sensitive or critical military server during 

times of wars.

A DDoS attack comes in all flavors and shapes. Each specific attack and its 

corresponding defense, if any, will be explained later in this paper.

Distributed Denial of Service attacks have often been coined as unstoppable 

[Farrow, n.d.] [Lau et al, 2000]. The attacks are often classified or further divided into 

three categories: detection, prevention, and traceability. Detection is about knowing when 

a DDoS attack is happening, and alerting the appropriate individuals, such as the network 

administrator, system administrator, and the ISP (Internet Service Provider). To stop such 

an attack, manual intervention is required. Prevention is a mostly automatic intervention 

in trying to stop the attack. Both detection and prevention techniques suffer from false 

positives. Traceability is trying to trace back where the attack came from. The IP 

addresses of the attacking computers are very often spoofed or faked. The real attacker 

has to be traced back and this is often very hard to impossible due to the very nature of 

the Internet.

This thesis will focus more on the prevention aspects with a little bit of detection. 

Only the TCP connection will be simulated. The research will focus on trying to prevent 

evil clients from even establishing a connection and allowing availability for good 

clients. The very basic connection will be simulated, and then prevention features will be 

added to see whether they provide any help in abating the attack(s) and denying service 

and connectivity to the evil clients, while providing a constant and good service to the 

good clients.
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1.3 Examples

There are many Internet-related attacks going on every day. There is probably an 

attempted attack on one or more Macalester College systems right now. Denial of Service 

attacks probably represent a fair share of these attacks. DDoS attacks happened before 

and some examples are briefly listed below:

● A University of Minnesota computer was knocked off for more than two days 

in August 1999, when a DDoS tool called Trinoo was deployed in more than 

200 attacking computers.

● In February 2000, Yahoo!, Amazon.com, CNN.com, and other major Web 

sites were brought down due to a distributed attack [Lau et al, 2000].

● On October 21, 2002, the root Domain Name System (DNS) servers were 

“pinged to death” for an hour.

● Gibson Research Corporation (http://www.grc.com) was brought down in 

May 2001.

● On May, 22 2001, CERT (widely regarded as the “Fork Knox of computer 

security”) was knocked off the Internet.

● The Code Red worm in 2001 is also regarded as a DDoS attack.

● In March 2005, on the very first day of its public release, the Sun Grid was hit 

by a DDoS attack. 

Since 1998, there have probably been hundreds of DoS attacks around the world. 

In 2001, “a quantitative estimate of worldwide DoS attack frequency found 12,000 
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attacks over a three-week period” [Carl et al, 2006]. Moreover, the 2004 CSI/FBI 

Computer Crime and Security Survey “listed DoS attacks among the most financially 

expensive security incidents” [Carl et al, 2006].

A Distributed Denial of Service attack is very real and is a significant threat.

1.4 DDoS Attacks

A Distributed Denial of Service attack can occur in many ways. Some are known 

as 'brute force' attacks. Others exploit a specific weakness in the network protocol, while 

some exploit a weakness in a specific application program. A DoS attack does not always 

have to occur on a server, or be targeted at a server. Some attacks exploit weaknesses in 

an application run on clients or on the average user's computers, causing the latter to 

crash and stop functioning.

A list of some of the most well-known types of DoS attacks are described below.

1) Brute Force

A brute force attack usually just tries to eat up all resources by overloading a 

server with requests. One example would be a thousand computers trying to 

access the Macalester website repeatedly every millisecond. This would prevent 

any legitimate use of the website by any other users. There is no attempt at 

subtlety – just a flooding of requests to a single system. This is much like the 

attempt to overwhelm a plumbing system by turning on every tap on campus at 

the same time!
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2) TCP SYN

The Transmission Control Protocol (TCP) requires a three way handshake before 

a connection can be established. A client sends an initial connect request to a 

server. When the server  receives the request, it acknowledges (acks) back to the 

client. When the latter receives the ack, the connection has now been established 

for the client, but not for the server. The client thus sends an ack back to the 

server. When the latter receives the ack, the connection has been established for 

both the client and the server and transmission of data can begin. This three way 

handshake is shown in Figure 1.

The TCP SYN exploit is for a client to send an initial connect request to a server, 

and although the server acks back, the client never acks back to the server. This 

leaves the server waiting for an acknowledgment that will never arrive. However, 
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that initiated connection entry on the server will eventually time-out and be 

removed from the table, which will free up a port on the server for another 

connection to be created. The distributed attack is to have hundreds of malicious 

clients sending an initial connection request to the same server without sending 

any acknowledgments. Each connection created on the server takes up a port 

number and there are only 2^16 ports available on any computer nowadays. 

Eventually, the server will timeout those connections but for a brief amount of 

time, no other clients can access the server. In a sense, this attack succeeds by 

using up all connection table entries for a brief period of time.

3) LAND Attack

"A LAND attack is a DoS attack that consists of sending a special spoofed packet 

to a computer, causing it to lock up. The security flaw was first discovered in 

1997 by someone using the alias 'm3lt', and it has resurfaced many years later in 

operating systems such as Windows Server 2003 and Windows XP SP2." [Land 

Attacks Still Going Strong, 2005] The spoofed packet is an ICMP (Internet 

Control Message Protocol) echo packet that has the same source and destination 

address. The system that receives this packet will just stall and will not know 

what to do with that packet. After a timeout, that packet will usually be discarded. 

The word “LAND” is used because the first variant of this attack required the 

attacker to be on site, but nowadays this attack can be performed remotely.

4) Teardrop Attack

The maximum size of a packet over the Internet is 65536 bytes. Some messages 
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can be much larger than 65000 bytes and must be fragmented, that is broken 

down into smaller pieces and sent individually via different routes, when the 

separate pieces arrive at the destination they are reassembled back into a single 

logical message. This could be the source of a potential attack. The server holds 

all the fragments until they can be reassembled. This uses up space in the server's 

table. A malicious user could send a lot of packets which cannot be reassembled, 

causing the table to become full and the server rejecting all other packets. 

Timeouts do help, but just as for the TCP SYN exploit, this prevents legitimate 

use of resources for a certain period of time. This situation is illustrated in Figure 

2, in which three messages M, N, and P – each four fragments long, are all 

partially arrived but no single message is complete. No new fragments or 

messages can be processed by the system until the table (also known as a buffer) 

is freed.

5) Smurf Attack

Every computer on the Internet can be identified by its Internet Protocol (IP) 

address. The latter is unique for each computer, except for some reserved IP 

addresses which every router knows about. A malicious computer could spoof its 

IP address, so that its IP address appears to be the IP address of the victim 
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computer. The latter will then be overloaded with unrequested packets or 

messages which might cause it to crash. Figure 3 gives an example. The victim's 

computer IP address is 141.140.1.5 and the attacker's real IP address is 

141.140.121.111. However, the attacker masquerades its IP address as 

141.140.1.5 and sends a message to computer 64.236.24.12. The latter replies 

back to the spoofed IP address (141.140.1.5). This seems rather benign but if 

thousands of attacking computers perform such a smurf attack, the victim will be 

overloaded with messages from the same innocent computer (64.236.24.12). 

However, that computer could be a valid and legitimate system trying to surf the 

Internet peacefully, but it could be barred from connecting to 141.140.1.5 for no 

apparent reason.

6) Email overflow

One of the oldest types of DoS attack is to fill up an email server's disk space 

preventing any other emails from being received. A lot of emails can be sent to an 
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email server, which will store all of them until the user retrieves them. If a 

sufficient amount of email is sent, this will fill up all free disk space on the server, 

and all future emails will be discarded. However, this is easily countered 

nowadays with Spam blockers and cheap and easily available disk space. 

Moreover, when the server's disk is filled up to a certain percentage, it could alert 

the system administrator.

7) Broadcast

Many routers have a broadcast capability for testing and other purposes. This 

capability sends an ICMP packet to every computer connected to the router. A 

malicious user could send a broadcast message to a router, which will then 

broadcast it on end. This could potentially flood a network with packets. 

However, many routers have this 'feature' turned off. Also, there is software that 

can prioritize packets and give higher priority to TCP packets and lower priority 

to ICMP packets thus thwarting this type of attack (http://www.packeteer.com).

8) Flash Crowds

A non malicious example of an almost unstoppable distributed denial of service 

attack is flash crowds. As its name implies, flash crowds occur when numerous 

legitimate users try to connect to a particular server, eventually flooding it with 

more requests than it can manage, leaving other users unable to access the server. 

This often happens following an important news, sports, or entertainment event 

when millions of legitimate users attempt to access the same site. For example, 

this is what happened to all major news broadcast web sites right after 9/11. Flash 
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crowds also occur after what is commonly known as the Slashdot effect 

(http://slashdot.org is a popular news website).

9) Physical Attack

There is of course the possibility of a physical DoS attack, such as an attacker 

physically cutting an Ethernet cable, or setting fire to the server building. This 

paper will not elaborate more on these types of physical attack, nor with the 

possible defenses. Only DoS attacks based on software assaults will be dealt with.

10) Other exploits

Many other DoS attacks are possible which exploit certain weaknesses in some 

applications. Some of the most interesting ones are briefly listed below:

1. There have been numerous buffer overflow exploits in which applications 

crash because they cannot handle incoming messages/instructions.

2. A recent (December 2005) exploit in the newly released Mozilla Firefox 1.5 

could prevent further use of the web browser until its history.dat file was 

erased.

3. Viruses and worms can crash computers and deny their legitimate use by 

users. They also clog up network bandwidth.

There are many tools available that can exploit some of the weaknesses mentioned 

above and which can simulate an overload of requests. Some of those tools are Tribe, 

Tribe Floodnet, Trinoo, TFN2K, Stacheldraht, and Shaft, and they are all freely available 

on the Internet. These are all highly specialized tools aimed at creating a Distributed 

Denial of Service attack. Most of them work by first infecting a victim computer with 
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some sort of a Trojan, and then the attacker can remotely control those infected 

computers to launch a massive DDoS attack on unsuspecting systems. A Trojan is a type 

of virus that opens a back door in a computer to allow a malicious user to gain complete 

control of the computer at a later time. It is similar to the Trojan horse in Greek 

mythology.

There are also other packages that can test the performance of a server. Such 

examples include hping, fping, nmap, and nessus. Although those tools are meant for 

security purposes, they can also be used by malicious users to find weaknesses in or 

attack a system.

Moreover, you can buy a product from a company that will test your network and 

its performance and ensure that your system is secure. Examples include, but are not 

limited to, http://www.ixiacom.com, and http://dast.nlanr.net/projects/advisor/.

1.5 Defenses

Someone once said “All programs are buggy”. This means that no program ever 

written is perfect. Security holes, omitted tests or checks, and other weaknesses will 

eventually be found and exploited. Although one cannot rely on any programs, protocols, 

or systems to be completely secure from attacks, there are steps that can be taken to 

prevent a DoS or DDoS attack.

1) The simplest defense step is of course to patch software as manufacturers 

or developers make them available. However, some patches might be the 
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cause for an attack. Some patches, for example in the Sendmail program, 

would automatically reset settings back to default values without alerting 

the system administrator. These default settings could pose a security risk. 

Thus, patches should not be applied blindly.

2) Common and logical defenses also have to be applied such as not 

downloading any attachments or random programs, installing anti-

spyware, anti-virus, and firewall programs.

3) IP broadcasting on routers should to be disabled if this feature is not to be 

used. In some cases, for example a print server broadcasting a “I am 

printer A. Who wants to use me?” message regularly, this cannot be 

avoided.

4) Unused services on clients and especially servers should be disabled. 

Many Linux distributions come with services (SSH, FTP, Samba) turned 

on.

5) Filtering routers can be used. They could bolster security and help against 

IP spoofing. Ingress filtering means making sure that all outbound 

connections from behind the firewall have a valid IP address. Egress 

filtering means making sure that all inbound connections are coming from 

the correct place. This does not work if other routers don't use filtering.

6) Although firewalls are good at blocking and filtering packets, and even at 

protecting the operating system with the newer combined network and OS 

firewalls, they will only do what they are told and if a system is 
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compromised, they would not be able to detect or protect it anymore. This 

is where Intrusion Detection Systems (IDS) come in. They can use 

signature-based defenses (similar to what most anti-virus software use to 

detect viruses) to detect and prevent against any known attacks. They can 

also use heuristic scanning to monitor the processes and the regular usage 

of a system. If the usage on that system changes significantly, they can 

alert the system administrator.

7) Network connections are ephemeral and a network administrator has to 

keep track of what computer is connecting to where, which requests are 

being sent to the server, and many other network-related tracking. 

Network monitoring is thus very important for an administrator to detect a 

premature attack, detect port scanning which are usually a prelude to an 

attack (although [Vijayan, 2005] shows that this only happens for about 

5% of the time), and just to simply monitor network traffic. In some 

companies, email can be filtered so that important and classified 

information are not sent outside of the company's network.

8) Many servers are Linux. Since the latter is open source, there are dozens 

of available Linux distributions which vary from Fedora to EnGarde to 

Ubuntu to SuSE. Although they all use the same kernel, some distributions 

have been designed with security from bottom to top. One example is 

EnGarde (http://www.engardelinux.org) which has been designed with 

security in mind and geared towards the server end of the market.
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9) The honeynet project can be used to track down zombie networks. A 

zombie (or botnet) is a system that has been infected and is being used by 

attackers to potential launch massive attacks. A group of infected systems 

constitutes a zombie network. A honeypot acts like a bait to draw attacks 

to it so that security experts can analyze the attacks and apply the 

appropriate defenses.

10) Physical security is also of the utmost importance to protect against 

attacks.

Although many of the defenses described above are useful against general attacks, 

not all of them will work specifically for a denial of service attack, and they are even less 

likely to work against a distributed denial of service attack. A DoS attack against a server 

is quite easy to defend against. The network administrator can block the IP address of the 

offending computer, and it is much easier to track down one computer than to try to track 

down thousands. The simplest defense is of course to just buy more hard disk and 

memory and processing space and power, and that usually works for bigger companies. 

However, that approach does not work all the time, and this paper will investigate the 

inherent problems in a DDoS attack and try to come out with the best possible defense 

against it.

There are many problems in designing a good defense mechanism against a 

Distributed Denial of Service attack.

1) One of the most common types of DDoS attacks is to just overload a 

server with requests. However, that is the exact same definition of a flash 
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crowd event. It is difficult to distinguish a DDoS attack from a flash crowd 

event.

2) Although the attack is distributed, that is, many computers participate, 

defenses are usually solo and not distributed. A distributed defense, 

sharing the load and information with other servers/computers, might 

produce a better defense against this type of attack.

3) There is a lack of detailed information available when a DDoS attack 

occurs. More information would include how many computers were used, 

where they are found geographically, and what weaknesses, if any, were 

exploited.

4) Although there is a taxonomy available to classify DDoS attacks and 

defenses [Mirkovic et al, 2004], there is no current DDoS defense 

available, therefore there is no benchmark available to determine whether 

a new product for a DDoS defense is suitable or not.

5) It is very difficult to test software against a DDoS attack. A particular 

defense could be implemented and be successful when 1000 unique 

computers are used. However, it might fail if 1001 or 100,000 computers 

were used.

6) There are economic and social factors involved as to why there is 

currently no widely accepted DDoS defense mechanisms. Although DDoS 

attacks are common, many companies do not want to disclose the attacks 

to public knowledge for fear of bad publicity. Defenses against such 
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attacks are currently mostly of interest in academic research, not applied 

security. Morever, DoS attack techiniques are analogous to viruses. 

Attackers change their signature patterns and defense techniques have to 

be updated to reflect the latest types of attacks.

There are new defense tools to protect against a DDoS attack. However, there is 

no benchmark and although the developers claim the tool will help, there is no proof of 

concept so far. Some examples of those commercial tools are RAZOR 

(http://www.bindview.com/Services/Razor/), Mu Security (http://www.musecurity.com/), 

and Melior Inc. (http://www.ddos.com/).

Moreover, there are some freely available tools to detect and prevent the use of 

the “attacking” tools, such as gag – a stacheldraht scanner, and dds – a 

Trinoo/TFN/stacheldraht agent scanner. Other software are also available to track down 

the source IP, but none of those tools necessarily provide complete protection against a 

DDoS attack. In fact, there is currently no way to stop such an attack, but there are ways 

to try to mitigate it.

1.6 Similar Work

When a DDoS attack occurs, there are three main parts in the defense:

1) Detection: The attack has to be detected first. The simplest way to determine that 

an attack is under way is to check the bandwidth of the network and the usage of 

computers, as compared to a normal day.
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2) Prevention: After the attack has been detected, it has to be stopped or mitigated so 

that normal use of the services can continue. Although there are currently no 

known prevention techniques, some steps are to use a firewall and IDS, and also 

seek the help of the ISP to filter the “evil” packets. This paper will deal mainly in 

prevention methods.

3) Tracking: The attackers have to be tracked down so that necessary measures can 

be taken – block them, try to contact the users/owners, or trace them for judicial 

issues. The IP Source Tracker implemented in most Cisco routers can be useful. 

Although the attacking computers can be traced back, it does not mean that they 

can dealt with. International laws might apply and there might language and 

culture issues.

DDoSVax (http://www.tik.ee.ethz.ch/~ddosvax/) is a research project for 

developing detection and prevention techniques. The network simulator ns-2 

(http://www.isi.edu/nsnam/ns/) can also be used to simulate a real network and try to 

implement prevention methods.

1.7 This Paper

This paper will deal with simulating a computer network where various clients – 

both good and evil clients – connect to various servers. Ways in which the server can 

counteract against the evil clients while providing good service to the good clients will be 
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researched.

Chapter 2 will explain how the network simulator works and how it is 

implemented.

Chapter 3 will show the base case against which all experiments are compared.

Chapter 4 will describe the first experiment performed – using a priority queue.

Chapter 5 will detail the second experiment performed – limiting the number of 

connections per client.

Chapter 6 will describe the third experiment performed – using a server reset.

Chapter 7 will conclude and explain what worked and what did not and why.

Chapter 8 will provide some future research that could be undertaken related to 

this paper and also provide other guidelines related to Distributed Denial of Service 

attacks.

Chapter 9 and 10 will deal with references and acknowledgments.
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2. Network Simulation

2.1 Introduction

A complete connection-establishment network simulation is designed and built. 

Only the three way handshake connection establishment process is simulated. The four 

way handshake connection termination, data transfer, and other negotiations are not 

simulated. Only ways to prevent malicious clients from establishing a connection will be 

investigated in this paper.

The network simulation is a discrete event-driven model. It consists of virtual 

computers, which will make up the basis of the simulation. Each computer can be divided 

into two categories: server or client. Furthermore, a client can be either a good client or 

an evil client. The client's purpose is hidden from the server and is only used for 

statistical purposes.

Moreover, data packets are not actually simulated nor sent, so once a client 

establishes a connection, there is no actual sending of data or packets or messages, but it 

is assumed that the data is sent and received and processed, and after a certain amount of 

time t, whatever needed to be done (for example delivery of a web page, or transferring 

of a file) has been completed.

When a timeout occurs, the connection is just deleted. There is no retransmission 
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of messages, or trying to reestablish a connection.

2.2 Example

Each computer in the simulation can be either a client or a server. A client sends 

requests to the server to create connections. The server just accepts connections from 

clients. The server is the focus of this paper, as it will become under attack by clients.

Each computer contains a connection table, an inbound message queue, and an 

outbound message queue.

The connection table holds a list of all the connections – either “in progress” or 

“established”. The inbound message queue is a First In First Out (FIFO) queue, where the 

first message in will be the first message out to be processed. This queue is used for 

messages incoming to the computer only. The outbound message queue is also a FIFO 

queue, and is only used for outgoing messages from the computer. Both queues hold 

messages until the computer can process them. Queues are needed because it takes a 

finite amount of time to process a message to determine what it is, who the sender and 

receiver are, etc...
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There are two types of clients – evil and good. Evil clients act exactly like good 

clients except in two circumstances. Evil clients never tell the server that they are done 

with a connection, and thus when an evil client creates a new connection in the server's 

connection table, that connection stays in the table for the duration of the simulation. 

Good clients, on the other hand, reset or terminate every connection they establish. The 

other difference is that evil clients send more connection requests, and thus more 

messages, to the server than good clients do.

The following is an example of a simulation run:

● Client A wants to establish a connection with server S. Client A thus creates a 

new Initial Connect message, M1 and puts it in its outbound message queue.
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● That message is processed and sent to the server S. A new entry in the client's 

connection table is created for that new connection. That entry is “in progress”.

● After a certain amount of time (called the interval time), client A creates another 

Initial Connect message, M' to the server.

● After the message M1 has been processed and sent, the server S will eventually 

receive message M1 from client A after a delay time (transmission time).
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● Since the server's inbound message queue is empty and its inbound processor is 

idle, message M1 is processed right away. If the processor was busy, the message 

would have been put in the queue to be processed later. If the queue is full, the 

message is just dropped.

● After the processing time (which is needed to determine what message it is, and 

who the sender and receiver are), the server attempts to create a new entry in the 

its connection table. If the table is full, no new connection is created. The new 

connection is “in progress”. The latter is also marked to be from client A and from 

index 1 (client A might have multiple connections).

25

Figure 7: Receive Initial Connect Message



● If a new connection has been created, the server creates a new Ack Client 

message, M2 to acknowledge the receipt of the initial request from client A. The 

message is put in the outbound message queue, processed, and sent.

● After a delay time, the client receives the message from the server. The message 

is put in the inbound message queue of the client, and processed. The message has 
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now been determined to be an acknowledgment. The client's connection table is 

queried to find the corresponding connection for that message. If it is not found, 

an error is reported for that client. If the connection is found, it is updated so that 

the server is marked to be S and the index used on server S is 1. The connection is 

now “established” on the client's side.

● The client now creates an Ack Server message, M3 and adds it to its outbound 

message queue for processing.

● After processing, the message is sent to the server.

● After the reset time (reset time is the time it takes for the Ack Server message to 

travel from the client to the server, for the server to process the message, and send 

the appropriate data back. The data could be, for example, a web page), the client 

creates a Client Reset message M4, adds it to its outbound message queue, 

processes the message, and sends it to the server.

● After the delay time, the server receives the Ack Server message M3 from the 
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client. The message is put in the inbound message queue and processed.

● The server has now determined that the message is an acknowledgment to the 

acknowledgment it sent earlier. It thus tries to find the corresponding connection 

in its connection table. If the connection is not found, an error is reported for the 

server. If the connection is found, the latter is now “established”. The three-way 

handshake connection establishment procedure is now over.

● After the reset time and the delay time, the server receives the Client Reset 

message M4. The latter is queued in the inbound message queue and processed.
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● The server has now determined that the message is a reset to an earlier created 

connection. It thus queries its connection table for the corresponding connection. 

Once found, that connection is deleted. If not found, an error is reported for the 

server.

The four-way handshake connection termination procedure is not simulated 

because this paper is only interested in connection establishments. Thus, a reset without 

any acknowledgements is sufficient.

A timeout is also scheduled after a new connection is created. It is discarded if the 

connection is updated/established or removed. If the timeout does occur, the connection 

in the connection table is deleted. No reset or other message is sent to indicate to the 

other computer that the connection has timed out.
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2.3 Goals

The main goal of this simulation is to keep the server running even while under 

attack from a distributed network of malicious clients, and also being available to good 

clients. Evil clients can also be blocked or prevented from connecting to the server.

To achieve this goal, a set of parameters has to be well-defined. As mentioned in 

Chapter 2.2, there are a lot of variables. The real-world or at least a good approximation 

value of those variables need to be set, and if needed, tweaked to achieve a better result. 

Moreover, a number of good clients will be connecting to a server, so that the latter starts 

to get busy. Evil clients are then added into the simulation, and defense techniques 

developed to still try to achieve the same availability and dependability as when the 

simulation was without any evil clients. The result would be to try to maximize the 

number of good clients serviced, while trying to minimize the number of evil clients 

serviced. Since the server does not know which clients are good or evil, it will have to act 

upon what it knows already.

2.4 Technical Details

2.4.1 Software Used
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The whole network simulator was built from the ground up using Java. IntelliJ 

IDE (Integrated Development Environment) by JetBrains was used to improve efficiency, 

easier debugging, decrease development time, and make refactoring easy. Moreover, test-

first programming was applied, as unit tests were developed first before the actual code is 

written. JUnit was used for the unit tests. This is to ensure that each and every piece of 

code is working as it should. An automated end-to-end test was not implemented, but the 

simulation was assumed to be working correctly by going through each event one at a 

time and making sure that the simulator was doing what it was supposed to do.

2.4.2 Time Units

Since Java is very bad at dealing with decimals, the time is not represented as a 

double, but rather as an integer. Since the simulator produces a discrete event-driven 

simulation, each event happens at discrete time and is processed sequentially. Even if two 

events happen to occur at exactly the same time, the first one will be dealt with first, then 

the second one. Therefore, it is acceptable to use integers as time units instead of 

portraying real time in seconds or minutes. However, 10,000 time units is equal to 1 

second.
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2.4.3 Events

A heap is used to store all the different events, arranged in chronological order. 

The whole simulation is event-driven, not time-driven. Therefore, there must always be 

an event in the heap. All clients create new events to establish a connection with a server. 

The end of the simulation is indicated by a Terminate event. The seven main types of 

events are Initial Connect, Ack Client, Ack Server, Reset, Timeout, Terminate, and 

Measure events. Additionally, the first four are further divided into four events:

● Create – The event has just been created and added to the outbound message 

queue. When the message is to be processed, a Send event is scheduled on the 

heap.

● Send – The message related to the event is being processed, and a Receive event 

is scheduled on the heap.

● Receive – The message related to the event has just arrived at the destination and 

is added to the inbound message queue. When the message is ready to be 

processed, an End event is scheduled on the heap.

● End – The message related to the event is being processed at the receiver's side. 

Depending on what event that is, further events can be scheduled.

Therefore, all the events possible in the simulation are:

● Initial Connect – Create, Send, Receive, End

A client wants to establish a connection with a server, and sends an initial connect 
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request. This event can only be created by a client and sent to a server.

● Ack Client – Create, Send, Receive, End

A server has received an initial connect request from a client and sends an 

acknowledgment. This event can only be created by a server and sent to a client.

● Ack Server – Create, Send, Receive, End

A client has received the acknowledgment from the server and sends back its own 

acknowledgment. This event can only be created by a client and sent to a server.

● Reset – Create, Send, Receive, End

A reset event can be created by either a client or a server and sent to the opposite 

computer (client to server or server to client). Its function is to delete the 

connection from the sender and indicate that it wants the connection deleted at the 

receiver.

● Timeout

A connection has timed out in a connection table. The latter could belong to either 

a server or a client, the connection is just deleted from the connection table.

● Terminate

The end of the simulation.

● Measure

Regular events that take a snapshot of the simulation. It is used for statistics 

gathering.
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2.4.4 Distributions

In the simulation, just like the real world, it must be really a coincidence for two 

things to happen at exactly the same time. For example, a message sent from a client to a 

server at time t would take f seconds, but a second message sent from a client to a server 

at the same time t might take g seconds, where f is not equal to g.

Most time variables follow an exponential random distribution, given by

( - log (r) * mean ), where mean is the mean time provided, and r is a random 

number and 0 <= r < 1

This returns a double (or a decimal number). The extra decimals can be truncated 

to return just an integer.

2.4.5 Parameters

As mentioned before, the simulator requires a lot of variables. All the different 

parameters that can be changed in the simulator is given below.

General Configuration

measurementInterval 100,000 The Measurement Interval (10 seconds)

terminate 18,000,000 The Termination Time (30 minutes)

verbose false Whether to go into verbose/debugging 
mode

delayTime 20,000 The mean delay/transmission time (2 
seconds)
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Server Configuration

numServers 1 The number of servers

computeSendTimeServer 10 The time to process an outgoing message

computeReceiveTimeServer 10 The time to process an incoming 
message

connectionTableSizeServer 250 The size of the connection table

timeoutServer 300,000 The timeout value (30 seconds)

inQueueSizeServer 500 The size of the inbound message queue

outQueueSizeServer 500 The size of the outbound message queue

Good Clients Configuration

numClientsGood 1 The number of good clients

computeSendTimeClientGood 10 The time to process an outgoing message

computeReceiveTimeClientGood 10 The time to process an incoming 
message

connectionTableSizeClientGood 50 The size of the connection table

timeoutClientGood 300,000 The timeout value (30 seconds)

inQueueSizeClientGood 100 The size of the inbound message queue

outQueueSizeClientGood 100 The size of the outbound message queue

intervalTimeClientGood 200,000 The interval time between initial connect 
requests (20 seconds)

resetTimeClientGood 600,000 The time after which a client reset 
message is sent (60 seconds)

Evil Clients Configuration

numClientsEvil 0 The number of evil clients

computeSendTimeClientEvil 10 The time to process an outgoing message

computeReceiveTimeClientEvil 10 The time to process an incoming 
message

connectionTableSizeClientEvil 5,000 The size of the connection table

timeoutClientEvil 300,000 The timeout value (30 seconds)

inQueueSizeClientEvil 100 The size of the inbound message queue

outQueueSizeClientEvil 100 The size of the outbound message queue

intervalTimeClientEvil 40,000 The interval time between initial connect 
requests (4 seconds)
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resetTimeClientEvil -1 No client reset is sent

Table 1: Parameters

Even though all the variables can be changed for every simulation run, most of 

them are fixed because they are the real values used in the different servers currently in 

use around the world. Macalester College's (http://www.macalester.edu) web and email 

server's settings were obtained from the current network administrator, and those values 

are used. A more detailed description of each parameter and what the default or set-in 

value is is given below.

● measurementInterval = 100000

Every 100,000 time units (10 seconds), a measure event is scheduled which takes 

a snapshot of the current state of the message queues and connection table of the 

servers. Since each simulation is run for 18,000,000, a total of 180 measurements 

are taken which are deemed sufficient.

● terminate = 18000000

18,000,000 equals to 30 minutes and that time is neither too short when nothing 

exciting happens nor too long when the simulation will take too long and not yield 

any further interesting results.

● verbose = false

If verbose is true, then each event's occurrence will be displayed along with its 

information. Unless the simulation has to be debugged, only the output of the 

results is needed, which is the statistics gathered during the simulation run.
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● delayTime = 20000

This is the mean time it takes a message to travel from a computer (either client or 

server) to another computer (either client or server). This is 2 seconds in real time 

and it follows the exponential random distribution aforementioned. A mean time 

of two seconds is thought to be about analogous to the time it would take in the 

real world.

● numServers = 1

Although the simulation could have been run using more servers, only one is 

needed because the results would have been the same for the different servers. If a 

more real-world model has been simulated, then more servers would have been 

needed, but for the simple simulation for this thesis, one server is sufficient.

● ComputeSendTimeServer = 10

The compute send time is the time it takes the server to process an outgoing 

message and send it on its way to the client. 10 time units is 1 millisecond. 

Although no information could be obtained about how fast a computer or router 

takes to process a message, 1 millisecond has been correct for the simulation. The 

compute send time is the same for all clients and all servers.

● ComputeReceiveTimeServer = 10

The compute receive time is the time it takes a server to process an incoming 

message and determine what to do next with it. The compute receive time is the 

same for all clients and all servers.

● connectionTableSizeServer = 250
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The Macalester College's email and web server both use a maximum number of 

connections of 250.

● timeoutServer = 300000

The timeout value for a connection is 30 seconds. If an ack is received, then the 

timeout event is removed from the events heap. Else, the timed-out connection is 

removed from the connection table. Once a connection has been established, it 

cannot be timed out. The Macalester College's email server has a timeout value of 

30 seconds.

● inQueueSizeServer = 500

500 messages can be received at one time. Since the size of the connection table is 

250 and it takes only 1 millisecond to process a message, a message queue of size 

500 is deemed to be more than enough. Moreover, in a real server, each data 

message (for example a web page hit) usually takes only one buffer space in the 

queue.

● outQueueSizeServer = 500

The outbound message queue is the same as the inbound message queue. Usually, 

the inbound message queue is the one that receives the most messages, especially 

during an attack, while the outbound message queue will usually not get full 

because if the server can process a message and create a new connection, the 

outbound message queue should not be too overloaded.

● numClientsGood = Variable

This is a variable and indicates the number of good clients in the simulation.

38



● computeSendTimeClientGood = 10

● computeReceiveTimeClientGood = 10

● connectionTableSizeClientGood = 50

A good client can create a maximum number of 50 connections at any one time. 

This should be more than enough for this simulator.

● timeoutClientGood = 300000

The timeouts for connections for the clients are also the same as for the server.

● inQueueSizeClientGood = 100

Since the maximum number of connections is 50, a queue size of 100 is deemed 

to be plentiful.

● outQueueSizeClientGood = 100

The outbound message queue is the same as the inbound message queue.

● intervalTimeClientGood = 200000

A good client tries to establish a new connection with the same server on a mean 

time of 20 seconds. This time is arbitrary and was chosen because the average 

user on an average computer will be trying to establish a new connection on an 

average of 20 seconds. Moreover, since the simulation is run for 30 minutes, this 

will give a total of about 90 connections per good client. This time follows the 

exponential random distribution mentioned above.

● resetTimeClientGood = 600000

Since a good client send an initial connect request about every 20 seconds, after a 

mean time of 60 seconds, it will send the reset. This will give on average 3 
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connections per client in the server's connection table. The reset is always sent 60 

seconds (mean time) after the acknowledgment back to the server from the client 

is sent.

● numClientsEvil = Variable

The number of evil clients in the simulation. This can be varied as needed.

● computeSendTimeClientEvil = 10

● computeReceiveTimeClientEvil = 10

● connectionTableSizeClientEvil = 5000

Since an evil client tries to establish a lot of connections and those are never reset, 

a table size of 5000 is chosen. Although this might be on the extreme side, it is to 

be sure that the evil client's connection table is never full (else what's the point of 

it being evil?).

● timeoutClientEvil = 300000

The timeout is still set to 30 seconds.

● inQueueSizeClientEvil = 100

Although a big connection table is needed, a message queue size of 100 is 

sufficient since each message takes about 1 millisecond to process.

● outQueueSizeClientEvil = 100

● intervalTimeClientEvil = 40000

As will be discussed later in chapter 3, the optimal1 value is 4 seconds.

1 Optimal means a value such that it is not extreme on either the high side or the low side. In this case, 
optimal means that the evil clients will send an initial connect request at a rate that will not completely 
overwhelm a server nor at a rate too low that the evil clients do not send enough messages to overload a 
server.
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● resetTimeClientEvil = -1

An evil client never sends a reset message. Therefore, once an evil connection has 

been established in the server's connection table, it will never be removed.

Although there are a lot of parameters, only two of them are variables – number of 

evil clients and number of good clients.

The times that follow an exponential random distribution are delayTime, 

intervalTime, and resetTime.

2.5 Sample Output

A sample output given the parameters from Chapter 2.4.5, for both verbose and 

non-verbose mode, is given in Appendix A.

2.6 Useful Statistics

A total of 39 types of statistics are gathered for each simulation run. However, not 

all 39 are really useful, depending on the runs and test cases. A complete list of all the 

measurements collected is given in Table 2. Most of them are self-explanatory. A 

description is given for any ambiguous ones.
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Time Independent Data Data collected each 
time such an event 
occurs

Total number of inbound total messages

Total number of inbound good messages

Total number of inbound evil messages

Total number of inbound dropped total messages

Total number of inbound dropped good messages

Total number of inbound dropped evil messages

Total number of outbound total messages

Total number of outbound good messages

Total number of outbound evil messages

Total number of oubtound dropped total messages

Total number of outbound dropped good messages

Total number of outbound dropped evil messages

Total number of connections This reprensents the 
total number of 
connections attempted 
(whether they are 
created or not)

Total number of good connections

Total number of evil connections

Total number of dropped connections

Total number of dropped good connections

Total number of dropped evil connections

Total number of established connections

Total number of established good connections

Total number of estbalished evil connections

Total number of reset connections

Total number of reset good connections

Total number of reset evil connections

Total number of timeouts

Total number of good timeouts
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Total number of evil timeouts

Total number of errors

Total number of good errors

Total number of evil errors

Time Dependent Data Data collected at every 
measurement interval

Average size of inbound message queue with all messages

Average size of inbound message queue with good messages

Average size of inbound message queue with evil messages

Average size of outbound message queue with all messages

Average size of outbound message queue with good messages

Average size of outbound message queue with evil messages

Average size of connection table with all connections

Average size of connection table with good connections

Average size of connection table with evil connections

Table 2: Measurements

Measurements are collected only at the server side since we are only interested in 

analyzing the performance of the server.
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3. Simulation Runs

3.1 Test Runs

All the runs are performed using the parameters given in Chapter 2.4.5. When the 

parameters are not the same as shown in that chapter, the parameters used will be shown. 

The statistics are gathered as in Chapter 2.6.

Each simulation test case is run ten times to avoid any statistical fluctuations. Two 

outliers are removed, and the average of the remaining runs are taken. That average is 

used as the final measurement for that particular run.

3.2 Goals

The main goals of this thesis' simulation are to maximize the availability and 

serviceability of the server with regards to the good clients, while blocking or limiting the 

attack from the evil clients.

The total number of established good connections, total number of dropped evil 

connections, average number of connections (to maximize usage of the server), and 

average number of good connections will all be maximized, while the total number of 

evil connections, total number of dropped good connections, and average number of evil 
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connections will all be minimized. The total number of good timeouts, the total number 

of good errors, and the total number of reset good connections should not vary too much 

from the base case.

3.3 Base Case

3.3.1 What is a Base Case?

There will be two base cases, but they both have the same definition. A base case 

in this paper means the very basic statistics gathered using a set configuration of 

parameters. The base case will be used for comparison to determine if any 

features/improvements/new defense techniques/changes in parameters help the goals 

mentioned in Chapter 3.2.

3.3.2 Base Case 1 – Number of Good Clients

In this case, there are no evil clients, and the parameters are as shown in Chapter 

2. The number of good clients is varied, until the load on the server is right. “Right” 

meaning that the server is busy enough and is neither swamped nor has nothing to do for 

periods of time (this can be deduced by the amount of free space in the connection table). 
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It is possible that the server will not be able to service all requests even if there are only 

good clients. This is acceptable.
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Table 3: Base Case 1 - No evil clients

Number of Good Clients 1 4 16 32 64 80 96 128
# of Inbound Messages 267 1051 4146 8577 17031 20233 22193 25221
# of Good Inbound Messages 267 1051 4146 8577 17031 20233 22193 25221
# of Evil Inbound Messages 0 0 0 0 0 0 0 0
# of Dropped Inbound Messages 0 0 0 0 0 0 0 0
# of Dropped Good Inbound Messages 0 0 0 0 0 0 0 0
# of Dropped Evil Inbound Messages 0 0 0 0 0 0 0 0
# of Outbound Messages 91 355 1399 2898 5751 6691 6974 7059
# of Good Outbound Messages 91 355 1399 2898 5751 6691 6974 7059
# of Evil Outbound Messages 0 0 0 0 0 0 0 0
# of Dropped Outbound Messages 0 0 0 0 0 0 0 0
# of Dropped Good Outbound Messages 0 0 0 0 0 0 0 0
# of Dropped Evil Outbound Messages 0 0 0 0 0 0 0 0
# of Attempted Connections 91 355 1399 2898 5752 7104 8508 11367
# of Good Attempted Connections 91 355 1399 2898 5752 7104 8508 11367
# of Evil Attempted Connections 0 0 0 0 0 0 0 0
# of Dropped Connections 0 0 0 0 1 413 1534 4308
# of Dropped Good Connections 0 0 0 0 1 413 1534 4308
# of Dropped Evil Connections 0 0 0 0 0 0 0 0
# of Established Connections 89 349 1377 2864 5697 6626 6902 6990
# of Established Good Connections 89 349 1377 2864 5697 6626 6902 6990
# of Established Evil Connections 0 0 0 0 0 0 0 0
# of Reset Connections 86 342 1351 2788 5542 6452 6727 6809
# of Reset Good Connections 86 342 1351 2788 5542 6452 6727 6809
# of Reset Evil Connections 0 0 0 0 0 0 0 0
# of Timeouts 0 0 0 0 1 1 1 1
# of Good Timeouts 0 0 0 0 1 1 1 1
# of Evil Timeouts 0 0 0 0 0 0 0 0
Number of Errors 1 5 18 28 41 51 57 54
Number of Good Errors 1 5 18 28 41 51 57 54
Number of Evil Errors 0 0 0 0 0 0 0 0
Average Size of Inbound Queue 0 0 0 0 0 0 0 0
Average Size of Inbound Queue (Good) 0 0 0 0 0 0 0 0
Average Size of Inbound Queue (Evil) 0 0 0 0 0 0 0 0
Average Size of Outbound Queue 0 0 0 0 0 0 0 0
Average Size of Outbound Queue (Good) 0 0 0 0 0 0 0 0
Average Size of Outbound Queue (Evil) 0 0 0 0 0 0 0 0
Average Size of Connection Table 2 12 48 99 199 233 240 245
Average Size of Connection Table (Good) 2 12 48 99 199 233 240 245
Average Size of Connection Table (Evil) 0 0 0 0 0 0 0 0



As shown in Table 3 and Figure 13, there are no dropped connections until there 

are 64 good clients. Moreover, there are no dropped messages. The errors are due to a 

reset from a client to the server arriving before the acknowledgment. The number of 

errors increases as the number of good clients increases because if one good client causes 

one error to occur, two good clients should cause two errors to occur. It is not exactly 

linear due to statistical fluctuations. Moreover, the number of reset connections plus the 

number of errors is approximately equal to the number of established connections, which 

by the definition of an error, is correct. The number of incoming messages does not 

increase linearly when there are dropped connections because an acknowledgment or 

reset message counts towards the number of inbound messages. It is also interesting to 

note that the number of dropped connections plus the number of outbound messages is 

equal to the number of connections. Each connection that was not dropped should create 

one and only one outbound message – the acknowledgment back to the client.
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The optimal value for the number of good clients is 80. With 80 good clients and 

no evil clients, the server will be busy with requests, as shown by almost full connection 

table on average (233/250 = 93.2%), but not so busy that everything grinds to a halt 

because only 5.8% (413/7104) of the total number of connections are dropped.

3.3.3 Base Case 2 – Evil Clients come in!!

80 good clients is a base case, but evil clients need to come in the picture. The 
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Figure 13: Number of Dropped Connections vs Number of Good Clients
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second base case is where there is only one evil client. Only one evil client is used 

because you need to start somewhere. As will be seen later, more evil clients are added. 

The optimal value of the mean interval time of initial connect requests for evil clients will 

now be determined using 80 good clients and one evil client. The optimal value with 

regards to the evil clients would of course be the lowest value possible, with clients 

bombarding a server with messages as often as possible, and the optimal with regards to 

the server would be the highest value possible so that the server receives very few 

requests and is thus available for other requests as long as possible. Thus the optimal 

value would be one to strike the balance between those two extremes.

As shown in Figure 14 and Appendix A, the optimal value chosen for the mean 

interval time for evil clients is 40,000 time units, which is 4 seconds. Therefore, on 

average, an evil client will send an initial connect request every four seconds to the 

server. Four seconds was chosen because out of 7124 good connections, 3943 (55.3%) 

good connections were dropped. The average size of the connection table is also 243 

(97.2%), with about half of them good and half evil. From Figure 14, it can be seen why 

the mean time of four seconds was chosen – the server is neither too busy that nothing 

can really help nor too idle that no noticeable improvements can be performed.

The number of established good connections decreases exponentially and the 

number of dropped good connections increases logarithmically as the mean interval time 

decreases. This is due to the exponential distribution. This causes a lot of good clients 

being denied service, while the single evil client hogs up all the resources. Moreover, evil 

clients do not reset their connections, thus the evil connections stay in the server's 
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connection table for the whole duration of the simulation. The number of errors does 

decrease because as fewer clients can create new connections, the probability of a reset 

message arriving before an acknowledgment message decreases.

3.3.4. Message Queue always Empty?

For all the runs completed so far, the average size of the message queues (both 

inbound and outbound) has always been empty, and there have not been any dropped 

messages whatsoever.
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Figure 14: Number of Good Connections vs Mean Evil Interval Time
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A reset time of 6 seconds (60000 time units) was used for this run, with no evil 

clients, and it can be seen from Figure 15 that as the number of good clients increases, the 

server becomes so overloaded that messages start getting dropped and chaos occurs. The 

outbound message queue never gets full because it can never happen that there are more 

outbound messages at any time than the size of the connection table.

The number of dropped incoming messages and the average size of the inbound 

message queue increases exponentially when there are more than 16,000 clients, and 

everything grinds to a halt. The number of established connections drops from 21311 to 

654. The number of timeouts also increases because as messages get dropped, sometimes 

an acknowledgment would get lost as well.
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Figure 15: Number of Dropped Messages vs Number of Clients
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3.4 Defenses

The parameters provided for the simulation are held constant since these are the 

real values that some servers in the real world use. The only way to try to improve the 

serviceability of the server while under attack is to introduce new features in the 

simulation. The three defense features to be implemented are

● Priority Queue

Instead of using a first in first out (FIFO) message queue, a priority queue is used 

instead, to give higher priority to the messages from clients which do not have too 

many connections in the table at the time.

● Limit the number of Connections

Each client can only create a certain amount of connections at any time.

● Server Reset

The server performs a reset when its connection table gets full.
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4 Experiment 1 – Using a Priority Queue

4.1 Goals

In the first experiment, a priority queue is used instead of a First In First Out 

queue for the inbound message queue for the server. Only the inbound message queue is 

changed since this is the bottleneck as described in the Base Case. All messages will be 

given a priority based on how many connections they currently have on the server. It does 

not matter whether a client has 10 in progress connections or 10 established connections 

– in both cases, the client will be counted as having 10 connections.

A cutoff point (call it x) is used. Clients that have more than x connections will be 

given a low priority, while clients that have at most x connections in the server's 

connection table will be given a high priority. Only two priorities are used since there are 

only two types of clients – good and evil. The priority queue will function as a heap, with 

highest priority messages at the top and lowest priority messages at the bottom.

The main reason behind using a priority queue instead of a FIFO queue is that evil 

clients will generally have a lot of connections in the connection table, as compared to the 

good clients. Thus, all messages from evil clients will end up at the end of the queue. 

Therefore, good clients are expected to receive better performance and evil clients' 

messages are blocked or slowed down at the inbound queue. The expectation is that the 
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number of established good connections would go up, and the number of dropped good 

connections and established evil connections would go down.

The optimal value of that cutoff point x will be determined to see if any 

improvements have been made.

4.2 New Parameters

Two new parameters are introduced for this new feature. They are shown in Table 

4.

useFIFOQueue false Whether or not to use the FIFO queue

NumCutOffPriority 0 The priority cutoff point x to be used. Of 
course, a negative value does not make sense

Table 4: New Parameters for Experiment 1

4.3 Runs

The simulator was run using the same parameters as mentioned before, except that 

a priority queue is now used instead. The cutoff point is varied to determine if there is an 

optimum value.
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The most important statistics collected for the priority queue are shown in Table 

5. The average connection size remains constant throughout all the runs, and the same 

observation can be made for other test cases (as shown in Appendix A).

In the graphs to follow, the point below the 0 priority cutoff means that no priority 

queue is used and represents the base case.

From Figure 16, the number of created total connections and the number of 

created good connections remain more or less constant. Thus, the number of created evil 

connections also remains constant. The slight decrease at priority cutoff = 5 is due to 

statistical fluctuations since both the number of created total connections and the number 

of created good connections decrease.
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Table 5: Using a Priority Queue - 80 Good and 1 Evil Clients

Cutoff 8 7 6 5 4 3 2 1 0 Base Case
Total Connections 7637 7604 7623 7555 7619 7583 7600 7591 7592 7574
Good Connections 7177 7157 7184 7102 7164 7138 7149 7146 7143 7112
Evil Connections 460 447 439 453 455 445 451 445 450 462
Drop Connections 4284 4258 4186 4209 4220 4104 4193 4206 4210 4237
Drop Good Connections 4029 4015 3947 3960 3970 3860 3944 3961 3965 3983
Drop Evil Connections 254 243 239 249 251 244 249 244 245 254
Total Established Connections 3318 3305 3400 3312 3359 3445 3368 3349 3347 3302
Established Good Connections 3112 3101 3199 3108 3155 3244 3167 3148 3143 3093
Established Evil Connections 206 204 200 204 204 201 201 201 204 209
Total Reset Connections 3103 3096 3187 3096 3149 3229 3157 3135 3132 3087
Reset Good Conns 3103 3096 3187 3096 3149 3229 3157 3135 3132 3087
Average Total Connections 243 243 243 243 243 243 243 243 243 243
Average Good Connections 111 111 115 110 111 114 112 112 111 110
Average Evil Connections 132 132 128 132 131 128 130 130 131 133
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Figure 16: 80 Good Clients and 1 Evil Client (-1 is the base case)
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Figure 17: 80 Good Clients and 1 Evil Client (-1 is the base case)
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From Figures 17 and 18, it would seem that the optimal cutoff point is at 3 

connections. The number of dropped good connections is at the lowest, while the average 

number of good connections and the number of established connections are at their 

highest.

However, only an improvement of 2% in the number of dropped good 

connections is achieved (3983/7112 = 56% to 3860/7138 = 54%), and an improvement of 

0.5% in the number of established good connections (3093/3302 = 93.7% to 3244/3445 = 

94.2%), and an improvement of 1.6% in the average number of good connections 

(110/243 = 45.3% to 114/243 = 46.9%).

Statistically, those percentages are not very significant, therefore more evil clients 
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Figure 18: 80 Good Clients and 1 Evil Client (-1 is the base case)
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are added.

80 good clients and 3 evil clients are used in the next test case.
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Figure 19: 80 Good Clients and 3 Evil Clients (-1 is the base case)
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Figure 20: 80 Good Clients and 3 Evil Clients (-1 is the base case)

-1 0 1 2 3 4 5
0

25

50

75

100

125

150

175

200

225

250

Average Table Size vs Priority Cutoff

Average Good 
Connection

Average Evil 
Connection

Priority Cutoff

A
ve

ra
ge

 C
o

nn
e

ct
io

n 
T

a
bl

e
 S

iz
e

Figure 21: 80 Good Clients and 3 Evil Clients (-1 is the base case)
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From Figures 19, 20, 21, and 22, the addition of a priority queue does not seem to 

help, as shown by the almost horizontal lines in all four graphs.

To prove that a priority queue does not help improve performance of the system, 

more good clients are added with only 1 evil client. The results are as shown in Figures 

23, 24, and 25.

1024 good clients and one evil client interact with one server. The percentage of 

dropped connections is very high, as expected, since the server just gets overloaded by 

connection requests. Although there is one evil client, it only has 19 connections on 

average in the server's connection table. This is because the good clients greatly 
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Figure 22: 80 Good Clients and 3 Evil Clients (-1 is the base case)
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outnumber the lonely evil client.

Similar to the previous test case, Figures 25 and 26 show a graph of horizontal 

lines, indicating that the priority queue does not help improve the performance of the 

server. On the other hand, Figure 23 shows a display of “zig zag” lines, but these are due 

to statistical fluctuations.
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Figure 23: 1024 Good Clients and 1 Evil Client (-1 is the base case)
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Figure 24: 1024 Good Clients and 1 Evil Client (-1 is the base case)
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4.4 Conclusion

As discussed in Chapter 4.3, the priority queue feature did not significantly 

improve the performance of the server with regards to the good clients. Although 

intuitively a priority queue should help since all the evil messages are being sent at the 

back of the queue, the experiment did not work because the evil messages will eventually 

get to the front of the line and get processed by the server. Processing time of incoming 

messages is only one millisecond, and even if good clients keep sending messages to the 
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Figure 25: 1024 Good Clients and 1 Evil Client (-1 is the base case)
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server, the latter only needs one millisecond to process an evil message, and once a 

connection from an evil client has been created in the server's connection table, it stays 

there forever because the evil clients do not send any resets and these connections are 

never removed. Even though all the evil messages are being pushed back at the end of the 

queue, once they get to the front, they will get processed by the server and a new entry 

created in the table. This new entry will never be removed from the connection table, thus 

the good clients are still being denied access to the server.

Moreover, a message priority queue is not known to be used on any 

configurations for any servers in the real world, giving further evidence that a priority 

queue might not work.

We will have to do more rigorous processing to prevent evil clients from getting 

into the table in the first place.

Next, experiment 2 is going to be implemented and discussed.
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5 Experiment 2 – Limit Number of Connections

5.1 Goals

The base case allows a client to create as many connections as needed. This can 

be harmful and impact performance when an evil client creates dozens of connections, 

preventing other clients from obtaining a connection space in the table.

Thus, in this second experiment, the number of connections any client can have in 

the server's table is limited to the limiting value x. Whenever a client tries to create a new 

connection, the connection table for the server is checked to determine how many 

connections that client currently has open – both in progress connections and established 

connections. If the limit x is exceeded, that new connection is dropped. Else, a new entry 

is created in the server's table for that connection. Only the server uses the limit since it is 

the object under study.

Since evil clients never reset or remove the connections they create, they could 

potentially create lots of connections in the server's table, thus denying access by the 

good clients. Limiting the number of connections each client can create will hamper the 

negative impacts of the evil clients. However, if the limit is too low, that would impact 

the good clients in a negative way too since they won't be allowed to create more 

legitimate connections. On the other hand, if the limit is too high, it would not matter that 
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the limit is being used since no client will ever have that high number of connections in 

the table.

The optimal value of the limit x will be determined to see if any improvements 

have been made.

5.2 New Parameter

For this new feature to work, one new parameter is needed. This is shown in 

Table 6.

limitNumConnPerClient 0 The limit to be used (0 means no limit), and of course, a 
negative limit does not make sense

Table 6: New Parameter for Limit

5.3 Runs

The simulator was run using the same parameters as mentioned before, but with 

the new parameter in Chapter 5.2 introduced. The limit is varied to determine if there is 

an optimal value.

The priority queue is not used since it was shown in Chapter 4 that adding a 

priority queue instead of a FIFO queue did not help improve performance on the server.

Table 7 shows the runs with 80 good clients and 1 evil client, with the most 

important statistics.
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In the graphs to follow, a limit of 0 represents the base case scenario.

Figure 26 shows the attempted number of connections. Both curves are similar, as 

they both have a peak at the same limit and follow the same general pattern. Although 

there are some fluctuations, those are due to statistical errors. Therefore, the line can be 

considered to be horizontal, which is what is expected since the number of connections 

should stay approximately the same, regardless of the limiting value used.

The number of dropped connections is shown in Figure 27. The number of 

established connections and the average size of the connection table are graphed in 

Figures 28 and 29 respectively.
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Table 7: Limit Number of Connections - 80 Good Clients and 1 Evil Client

Limit 10 9 7 6 5 4 3 2 1 Base Case
Total Inbound Messages 20407 20475 20320 20548 19756 18620 16618 14094 11032 14134
Good Inbound Messages 19955 20010 19866 20094 19298 18173 16160 13635 10596 13486
Evil Inbound Messages 452 465 454 455 458 447 457 459 437 648
Total Outbound Messages 6542 6572 6520 6548 6235 5604 4583 3303 1742 3414
Good Outbound Messages 6532 6563 6513 6542 6230 5600 4580 3301 1741 3210
Evil Outbound Messages 10 9 7 6 5 4 3 2 1 204
Total Connections 7581 7588 7531 7701 7526 7622 7626 7612 7615 7559
Good Connections 7139 7132 7084 7253 7073 7179 7172 7155 7179 7115
Evil Connections 442 456 447 449 453 443 454 457 436 444
Total Dropped Connections 1039 1016 1010 1154 1291 2018 3043 4309 5873 4145
Dropped Good Connections 607 569 570 711 843 1580 2592 3854 5439 3905
Dropped Evil Connections 432 447 440 443 448 439 451 455 435 240
Total Established Connections 6478 6512 6453 6486 6166 5549 4535 3265 1714 3386
Established Good Connections 6468 6503 6446 6480 6161 5545 4532 3263 1713 3182
Established Evil Connections 10 9 7 6 5 4 3 2 1 204
Total Reset Connections 6299 6328 6283 6311 6008 5405 4418 3186 1680 3164
Reset Good Connections 6299 6328 6283 6311 6008 5405 4418 3186 1680 3164
Total Errors 49 48 54 50 56 45 38 31 23 25
Good Errors 49 48 54 50 56 45 38 31 23 25
Evil Errors 0 0 0 0 0 0 0 0 0 0
Average Total Connections 236 236 234 233 219 197 162 115 61 243
Average Good Connections 226 227 227 227 214 193 159 113 60 112
Average Evil Connections 9 8 6 5 4 3 2 2 1 130
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Figure 26: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figure 27: 80 Good Clients and 1 Evil Client (0 is the base case)
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When the limit is really low (limit = 1, 2), there are a lot of dropped connections. 

This is because, each good client would have, on average, about 3 to 4 connections at any 

time in the connection table of the server since every 20 seconds, it sends a new initial 

request, and every 60 seconds, it sends a reset message. As mirrored in Figures 28 and 

29, there are very few established connections and the connection table is pretty much 

empty on average for those low limits. This is an extreme case. Figure 28 is a mirror of 

Figure 27.

However, as the limit increases, the number of dropped connections drops 

significantly. The number of established connections and the average size of the 

connection table also increase dramatically. As can be seen in Figure 28, the total number 

of established connections and the total number of established good connections are on 
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Figure 28: 80 Good Clients and 1 Evil Client (0 is the base case)
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the same line. This is because the single evil client is being hampered by the introduction 

of the limit. The client is limited to the number of connections it can create, and from 

Figure 29, the good clients “hog up” the whole connection table.

As the limit increases, the performance converges back to the base case. This is 

because as more evil connections can be created, the limit does not help anymore, as the 

evil client creates as many connections as possible and the good clients suffer from that.

The optimal value of the limit is 6. This is about the average number of 

connections a good client will have at any time in the server's connection table.

More evil clients are added to the simulation to determine if the limit really helps 

or not. The next test case contains 80 good clients and 16 evil clients.
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Figure 29: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figure 30 shows that the number of connections is constant, so there are no side-

effects to be considered.

Figures 31, 32, and 33 show the total number of dropped connections, the total 

number of established connections, and the average size of the connection table. They are 

all very much similar to Figures 27, 28, and 29.

The base case was not very successful in diminishing the impact of the evil clients 

because they were able to create so many connections, thereby reducing the effective size 

of the server's connection table. As shown in Figure 33, the evil clients were taking up 

most of the connection space in the table.

Therefore, the introduction of the limit helped right away, even with a low limit 

since evil clients are effectively being denied.
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Figure 30: 80 Good Clients and 16 Evil Clients (0 is the base case)
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Figure 31: 80 Good Clients and 16 Evil Clients (0 is the base case)
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Figure 32: 80 Good Clients and 16 Evil Clients (0 is the base case)
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However, with a low limit, the connection table was not being used to its full 

capacity, but as the limit is increased, the average size of the connection table increases to 

its maximum. As the limit is increased beyond 5, the evil clients are again allowed to 

hamper the server's availability. 

In Figure 28, both lines overlap each other. However, in Figure 32, the “good 

established connections” line is a bit below the “total established connections” line. This 

is due to more evil connections being established since there are more evil clients.

With only 1 evil client, the optimal value for the limit is around 6 connections. 

With 16 evil clients, the optimal value for the limit decreases to 4 connections. The same 

trend can be seen as the number of evil clients increases.

73

Figure 33: 80 Good Clients and 16 Evil Clients (0 is the base case)
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5.4 Conclusion

Limiting the number of connections a client can have in the server's connection 

table does help in reducing the impact of an attack by evil clients. Moreover, the good 

clients receive a boost in their ability to create new connections in the table. However, as 

was shown with the two different cases in Chapter 5.3, it is very hard to determine what 

the optimal value of the limit should be since there is no way of knowing who the evil 

clients are.

Decreasing the limit as the number of clients increases might work if the number 

of clients is increased. But a lot more tests have to be run to determine what the optimal 

value should be for each number of clients. Moreover, if there are no evil clients, the 

limit should not be decreased because good clients do not connect that often to the server.

Since there is no way for the server to determine whether a client is good or evil, 

another method has to be found to improve the performance of the server.

74



6 Experiment 3 – Server Reset

6.1 Goals

As was discussed in Chapter 4, a priority queue did not help hinder evil clients' 

attack. In Chapter 5, using a limiting value to limit the number of connections a client can 

create did help improve the performance of the server but it was difficult to determine 

what the optimal value of the limit should be since the server does not know how many 

good and evil clients there are.

The third and last experiment to be implemented is the server reset. Whenever its 

connection table becomes full and a new connection needs to be created, the server will 

forcefully remove the oldest established connection in its connection table, regardless of 

which client created that connection. In-progress connections are not removed. If an evil 

client does not acknowledge back to the server, that in-progress connection will 

eventually time out.

Since evil clients never reset any of their established connections, the latter stay in 

the server's connection table for the duration of the simulation. Therefore, the server will 

try to shoulder the responsibility of flushing out the evil connections. The oldest 

established connection is removed since this is the most likely connection to be evil. 

Good clients will eventually reset their connections after about 60 seconds. The oldest 
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connection is just deleted and no reset message is sent from the server to the client whose 

connection is being removed. The server reset is performed only when the server's table 

is full, which implies that it is busy, under attack, or under a big load of requests. 

Therefore, having the server create a new message and send it will just create more 

overhead for the server.

It is expected that the evil connections will get reset which will allow more good 

connections to be created. However, it is also expected that some good connections will 

be reset prematurely as well. If this happens, when the real reset from the client reaches 

the server, this will be reported as an error.

The priority queue will still not be used in this experiment but the limit will be 

implemented as well as the server reset. The limiting value will be varied to determine 

whether the server reset helps in all cases, including the base case.

6.2 New Parameter

One parameter needs to be added to the parameter list to implement the server 

reset. It is shown in Table 8.

useServerReset true Whether or not to use the server reset

Table 8: New Parameter for Server Reset
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6.3 Runs

The same parameters are used as before, except that both the limit and the server 

reset are used. It will be determined whether the addition of the server reset helps 

improve the performance of the server or not.

Table 9 shows a sample of the important statistics measured.

As shown in Appendix A, the total number of connections for both cases – 

without server reset and with server reset – for all the limit values is constant. The small 

changes are only due to statistical fluctuations.

As shown in Figure 34, there are no dropped good connections for the base case 

when the server reset is used. This is not quite surprising although it was expected that at 

least a couple of connections would get dropped, because the server deletes the oldest 

established connection when its connection table gets full.
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Table 9: Server Reset

Limit 10 w/ Reset 10 6 w/ Reset 6 1 w/ Reset 1 Base Case w/ Reset Base Case
Total Connections 7633 7581 7627 7701 7745 7615 7564 7559
Good Connections 7179 7139 7184 7253 7282 7179 7116 7115
Evil Connections 454 442 443 449 463 436 448 444
Total Dropped Connections 348 1039 760 1154 5971 5873 0 4145
Dropped Good Connections 4 607 365 711 5509 5439 0 3905
Dropped Evil Connections 344 432 396 443 462 435 0 240
Total Established Connections 7211 6478 6781 6486 1745 1714 7483 3386
Established Good Connections 7101 6468 6733 6480 1744 1713 7036 3182
Established Evil Connections 109 10 48 6 1 1 447 204
Total Reset Connections 7038 6299 6632 6311 1710 1680 7317 3164
Reset Good Connections 6938 6299 6590 6311 1710 1680 6897 3164
Reset Evil Connections 100 0 42 0 0 0 420 0
Total Errors 687 49 312 50 25 23 972 25
Good Errors 687 49 312 50 25 23 972 25
Average Total Connections 237 236 229 233 62 61 240 243
Average Good Connections 227 226 223 227 61 60 211 112
Average Evil Connections 9 9 5 5 1 1 29 130



For low limit values, the server reset does not help at all, but for higher values, it 

helps to reduce the number of dropped connections significantly, even more than the limit 

without the server reset does. However, without using the server reset, as the limit is 

increased, the number of dropped connections increases, whereas with the server reset, 

the number of dropped connections stays at zero. However, this is not the only measure 

that is to be considered as shown later.

Figure 35 shows the number of dropped evil connections. It is analogous to Figure 

34 with fewer dropped evil connections as the limit is increased, but evil connections are 

still being dropped, unless the limit is really big, then it converges back to the base case.
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Figure 34: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figures 36 and 37 show the number of established connections. Compared to the 

base case, the limit helps decrease the number of established evil connections while the 

number of established good connections increases. Using the server reset, the number of 

established good connections is increased even more with the optimal value of limit. 

Although the number of established evil connections also increases, the increase in the 

established good connections is more significant than the increase in the established evil 

connections.
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Figure 35: 80 Good Clients and 1 Evil Client
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Figure 36: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figure 37: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figure 38: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figure 39: 80 Good Clients and 1 Evil Client (0 is the base case)
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Figures 38 and 39 show the number of reset connections. With the server reset, 

the number of reset good connections goes up. The extra reset good connections are due 

to the server prematurely removing connections when its connection table gets full. It just 

so happened that a good client's connection was the oldest established connection at that 

time. The extra reset connections match the extra errors reported by the server, as shown 

in Figure 40. On the other hand, evil connections, which were never reset before, are now 

being removed from the server's connection table. This is the main reason why there are 

more established and fewer dropped connections overall.

Figure 41 shows the average number of good connections in the server's table. 

The average number of good connections is about the same with or without the server 
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Figure 40: 80 Good Clients and 1 Evil Client (0 is the base case)
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reset, except in the base case. In the latter, evil clients are effectively being removed from 

the connection table all the time. However, the number of errors also goes up 

dramatically.

The same results are observed when the number of evil clients is increased. The 

data is shown in Appendix A.

6.4 Conclusion

Using the server reset with no limit is a bit drastic, since good connections are 

ended prematurely. Although there is no way of knowing in the current simulation 
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Figure 41: 80 Good Clients and 1 Evil Client (0 is the base case)
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whether that had any effect or whether the reset from the client was on its way already 

when the server removed the connection, the big increase in the number of errors is 

something to be analyzed deeper.

When limits are used, an even better improvement is seen when the server reset is 

used, which was expected. As mentioned above, there is no way of knowing whether the 

increase in errors caused any problems such as a connection ending prematurely and the 

client having to reestablish the connection.

Moreover, the optimal value for the limit cannot be effectively determined for the 

same reasons mentioned in Chapter 5.4.
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7 Conclusions

Distributed Denial of Service attacks are a real threat as described in Chapter 1. 

They are currently generally unstoppable, and there are a lot of academic research and 

government-funded research going on in this area. This thesis only analyzed a very small 

portion of the whole field of DDoS attacks.

The simulation performed consisted of a lot of parameters or input values but 

most of them were fixed and were obtained from the real world (Macalester College's 

servers). Although a lot of statistics were taken, not all of them are applicable or mean 

anything for every test case. The simulation also focuses mainly on brute force attack and 

varying the number of clients – good and evil.

The base case was carefully chosen after numerous tests and analysis and was 

such that the server is not completely overloaded that any defense techniques 

implemented would not really help or not busy at all that any improvements by 

implementing some defenses would not be noticeable. 80 good clients and variable evil 

clients with an interval time of initial connect requests of 4 seconds were chosen as the 

base case.

The first experiment performed was implementing an inbound message priority 

queue for the server instead of an inbound first in first out message queue. As shown in 

Chapter 4, the addition of a priority queue did not help improve the performance of the 
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server. This was due to the fact that evil messages will eventually get to the front of the 

line and once an evil connection has been created, it is never reset.

In light of the failures of the first experiment, the second experiment performed 

implemented a limit. The limit value limits the number of connections each client can 

have in the server's connection table at any time. As described in Chapter 5, the limit did 

improve the performance of the server, but sometimes it was too extreme, such as if the 

limit value is too low, there are no improvements, but in fact there are deteriorations in 

the availability of the server. Moreover, if the limit value is too large, the limit is not 

really used as the test case resembles the base case without the limit. Finding the optimal 

value of the limit is hard because it depends on the number of clients, the number of good 

clients, and the number of evil clients. However, if somehow it could be predicted in 

advance how many good and evil clients there will be in the simulation, then the limit 

does help a lot. The same results are observed for increasing number of evil clients.

Since evil connections stay in the connection table for the duration of the 

simulation because evil clients never reset their own connections, a forced server reset is 

implemented in experiment 3. Whenever its connection table becomes full and a new 

connection needs to be created, the server will forcefully remove the oldest established 

connection, regardless of how old it is and what client created that connection. Chapter 6 

describes in more details the effects of the server reset. The main aspects of this 

implementation are that the server reset along with the limit further improves the 

availability of the server. Also, the limit is not as important as it was when it was used 

alone as in experiment 2. Although the number of established evil connections increases, 
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the increase in the number of established good connections more than offsets it. Even 

with an increase in the number of evil clients, the same results are observed. The 

downside to using the server reset is that the number of errors also increases. An error 

means that a message arrived at the server and the latter does not know what to do with it. 

In the server reset case, the increase in errors is due to a good connection being 

prematurely removed, and when the reset from the client comes in, the connection has 

already been deleted and the server does not know what to do with the message. With the 

way the simulator has been implemented, it cannot be determined whether the connection 

has been terminated prematurely or whether the client reset was already on its way when 

the server deleted the connection.

The limit experiment is in fact implemented in real life: The macalester SMTP 

(outgoing email) server uses a limit of 10. The server reset is also used in the real world. 

It probably happened to everyone when their connection gets timed out, when logged in 

to a bank's website, or when idling in an FTP session. Since no data transfer is simulated, 

there is no way to set the “idle” time value, but just the oldest established connection 

being removed.

In both experiments 2 and 3, the limit and the server reset were performed 

regardless of who the client is. They don't try to differentiate between a good and an evil 

client. Thus, there are a lot of other defense techniques that could have been implemented 

and those are discussed in the next chapter.
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8 Future Work

A lot of other work could build from the simulator to examine other aspects. 

Detection techniques could be implemented. There are currently a lot of ways to try to 

detect when a DDoS attack is happening and also who the attacker(s) are. When that is 

known, the limit could be tuned to the optimal value for each set of parameters. Also, the 

server can reset only the evil connections.

A firewall could also be implemented to act like a proxy between the server and 

the clients. It will thus only pass in completely established connections to the server, 

thereby reducing the load on the latter. The processing time would probably be lower for 

the firewall and it can have in-built mechanisms to detect and mitigate DDoS attacks. 

That would be its single task which could then be optimized, in contrast with the server, 

which has to be more of a general purpose service.

Multiple servers could be used to allow for greater connection space, higher 

bandwidth, and the ability to cope with a larger attack force. A load balancer thus has to 

be implemented which then distributes messages to all the servers in a fair way, such as 

using round robin or determining which server is the least busy and giving it the message 

to process.

Other attacks could also be implemented or analyzed such as the TCP SYN 

exploit, LAND attack, smurf attacks, and all those other types of attacks outlined in 

Chapter 1. The current simulation uses only brute force attack which might be the hardest 

type of attack to defend against, but the other types of attacks are also interesting.
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Least but not last, the simulator could be extended to allow for virtual data 

transfer, the four-way handshake connection termination, and other real aspects of a 

network. A current simulator that possesses all those abilities will be the ns-2 simulator, 

but other features can easily be added to the current simulator so that it simulates a real 

traffic network.
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Appendix A – Raw Data and Tables

In an effort to save paper, the raw data and tables are not printed. They are 

available in electronic format at the Macalester College library. You can also contact the 

author at echantin@alumni.macalester.edu
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Appendix B – Code

Similar to the reason mentioned in Appendix A, the code is not printed but is 

available in electronic format at Macalester College. It can also be obtained from the 

author by contacting him via email at echantin@alumni.macalester.edu

95


	Macalester College
	DigitalCommons@Macalester College
	May 2006

	Analysis of Defenses against Distributed Denial of Service Attacks
	D. Eric Chan-Tin
	Recommended Citation


	Abstract
	1. Introduction
	1.1 Analogy
	1.2 Why?
	1.3 Examples
	1.4 DDoS Attacks
	1.5 Defenses
	1.6 Similar Work
	1.7 This Paper

	2. Network Simulation
	2.1 Introduction
	2.2 Example
	2.3 Goals
	2.4 Technical Details
	2.4.1 Software Used
	2.4.2 Time Units
	2.4.3 Events
	2.4.4 Distributions
	2.4.5 Parameters

	2.5 Sample Output
	2.6 Useful Statistics

	3. Simulation Runs
	3.1 Test Runs
	3.2 Goals
	3.3 Base Case
	3.3.1 What is a Base Case?
	3.3.2 Base Case 1 – Number of Good Clients
	3.3.3 Base Case 2 – Evil Clients come in!!
	3.3.4. Message Queue always Empty?

	3.4 Defenses

	4 Experiment 1 – Using a Priority Queue
	4.1 Goals
	4.2 New Parameters
	4.3 Runs
	4.4 Conclusion

	5 Experiment 2 – Limit Number of Connections
	5.1 Goals
	5.2 New Parameter
	5.3 Runs
	5.4 Conclusion

	6 Experiment 3 – Server Reset
	6.1 Goals
	6.2 New Parameter
	6.3 Runs
	6.4 Conclusion

	7 Conclusions
	8 Future Work
	9. Bibliography
	10. Acknowledgments
	Appendix A – Raw Data and Tables
	Appendix B – Code

