
Macalester College
DigitalCommons@Macalester College
Mathematics, Statistics, and Computer Science
Honors Projects Mathematics, Statistics, and Computer Science

May 2006

Analysis of Defenses against Distributed Denial of
Service Attacks
D. Eric Chan-Tin
Macalester College, echantin@alumni.macalester.edu

Follow this and additional works at: https://digitalcommons.macalester.edu/mathcs_honors

This Honors Project - Open Access is brought to you for free and open access by the Mathematics, Statistics, and Computer Science at
DigitalCommons@Macalester College. It has been accepted for inclusion in Mathematics, Statistics, and Computer Science Honors Projects by an
authorized administrator of DigitalCommons@Macalester College. For more information, please contact scholarpub@macalester.edu.

Recommended Citation
Chan-Tin, D. Eric, "Analysis of Defenses against Distributed Denial of Service Attacks" (2006). Mathematics, Statistics, and Computer
Science Honors Projects. 4.
https://digitalcommons.macalester.edu/mathcs_honors/4

https://digitalcommons.macalester.edu?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.macalester.edu/mathcs_honors/4?utm_source=digitalcommons.macalester.edu%2Fmathcs_honors%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarpub@macalester.edu

Analysis of Defenses against
Distributed Denial of Service

Attacks

D. Eric Chan-Tin

Advisor: Dr. G. Michael Schneider
Department of Computer Science

May 1, 2006

Table of Contents
Abstract..1
1. Introduction..2

1.1 Analogy...2
1.2 Why?...2
1.3 Examples...5
1.4 DDoS Attacks..6
1.5 Defenses..13
1.6 Similar Work...18
1.7 This Paper..19

2. Network Simulation...21
2.1 Introduction...21
2.2 Example...22
2.3 Goals...30
2.4 Technical Details...30

2.4.1 Software Used...30
2.4.2 Time Units...31
2.4.3 Events..32
2.4.4 Distributions..34
2.4.5 Parameters...34

2.5 Sample Output...41
2.6 Useful Statistics...41

3. Simulation Runs...44
3.1 Test Runs...44
3.2 Goals...44
3.3 Base Case..45

3.3.1 What is a Base Case?...45
3.3.2 Base Case 1 – Number of Good Clients..45
3.3.3 Base Case 2 – Evil Clients come in!!..48
3.3.4. Message Queue always Empty?...50

3.4 Defenses..52
4 Experiment 1 – Using a Priority Queue..53

4.1 Goals...53
4.2 New Parameters..54
4.3 Runs...54
4.4 Conclusion...63

5 Experiment 2 – Limit Number of Connections...65
5.1 Goals...65
5.2 New Parameter..66
5.3 Runs...66
5.4 Conclusion...74

6 Experiment 3 – Server Reset...75
6.1 Goals...75
6.2 New Parameter..76
6.3 Runs...77

6.4 Conclusion...83
7 Conclusions...85
8 Future Work..88
9. Bibliography..90
10. Acknowledgments..93
Appendix A – Raw Data and Tables..94
Appendix B – Code..95

Abstract

Distributed Denial of Service (DDoS) attacks are attempts to overwhelm a

computer system in order to deny access by legitimate users. They are generally

unstoppable, but there is a good deal of on-going research on methods to reduce their

negative effects. This paper will deal with the design of a model that simulates such an

attack. The simulation model is then used to study possible ways to defend against these

attacks. Three experiments are run: 1) using a priority queue to sort messages from

clients based on how many connections they have open on the server; 2) limiting the

number of connections each client can create; and 3) having the server forcefully delete

the oldest established connection, whenever its connection table becomes full. Results

show that method 1 is totally ineffective while method 2 somewhat improves the overall

performance of the system. However, method 3, combined with method 2, produces

significantly improved performance against a DDoS attack.

1

1. Introduction

1.1 Analogy

Imagine a telephone system which can handle a certain number of calls at any one

time. A person, either intentionally (having many telephones at his* disposal and using all

of them at the same time) or unknowingly (placing a lot of legitimate calls at the same

time), could hog all the available slots, preventing any other person from being able to

place a call. This analogy is similar to a Denial of Service (DoS) attack. It tries to use up

all the resources of a server or client computer, preventing legitimate use of that system.

A DoS attacker is usually using only one computer for the attack. However, a Distributed

Denial of Service (DDoS) attack occurs when many computers attack a single one, and it

is much more common nowadays.

1.2 Why?

With the current popularity of the Internet, most computers are connected to the

Internet via a high speed connection. A DDoS attack could be happening at any time.

* Note that “his” and “he” is used. However, this does not indicate that the person is male. “he” is used
for simplicity.

2

Similar to the analogy of the telephone system, a DDoS attack could also be happening

through legitimate use of the Internet. A special phrase is used to denote when this is

happening – flash crowds. A DoS attack can thus be defined as an overload that causes

resources to be fully utilized by the attack and thus prevent the use of a computer or

application. A DDoS attack achieves the same result as a DoS attack but in a more

distributed and coordinated way, requiring multiple “attackers” or computers. Thus it is

much harder to defend against.

Although the real reasons behind a DDoS attack is rarely or never known because

the attacker is very seldom caught. Some potential reasons are

● Fame

Fame within the hacker community is really important for attackers.

● Financial

Newspapers report that gambling websites have to pay a certain amount of money

per month to blackmailers else their websites will be flooded and inaccessible.

The amount paid is thought to be less than the amount they would lose should

their websites go down. Competitive companies might also attack each other in an

effort to bring down the other company's website. If a popular website is down for

even only an hour, that company might lose hundreds of customers and

potentially thousands of dollars.

● Political

Some country might want to cripple another country's servers for some reasons.

● Military

3

It might be a good idea to overload a sensitive or critical military server during

times of wars.

A DDoS attack comes in all flavors and shapes. Each specific attack and its

corresponding defense, if any, will be explained later in this paper.

Distributed Denial of Service attacks have often been coined as unstoppable

[Farrow, n.d.] [Lau et al, 2000]. The attacks are often classified or further divided into

three categories: detection, prevention, and traceability. Detection is about knowing when

a DDoS attack is happening, and alerting the appropriate individuals, such as the network

administrator, system administrator, and the ISP (Internet Service Provider). To stop such

an attack, manual intervention is required. Prevention is a mostly automatic intervention

in trying to stop the attack. Both detection and prevention techniques suffer from false

positives. Traceability is trying to trace back where the attack came from. The IP

addresses of the attacking computers are very often spoofed or faked. The real attacker

has to be traced back and this is often very hard to impossible due to the very nature of

the Internet.

This thesis will focus more on the prevention aspects with a little bit of detection.

Only the TCP connection will be simulated. The research will focus on trying to prevent

evil clients from even establishing a connection and allowing availability for good

clients. The very basic connection will be simulated, and then prevention features will be

added to see whether they provide any help in abating the attack(s) and denying service

and connectivity to the evil clients, while providing a constant and good service to the

good clients.

4

1.3 Examples

There are many Internet-related attacks going on every day. There is probably an

attempted attack on one or more Macalester College systems right now. Denial of Service

attacks probably represent a fair share of these attacks. DDoS attacks happened before

and some examples are briefly listed below:

● A University of Minnesota computer was knocked off for more than two days

in August 1999, when a DDoS tool called Trinoo was deployed in more than

200 attacking computers.

● In February 2000, Yahoo!, Amazon.com, CNN.com, and other major Web

sites were brought down due to a distributed attack [Lau et al, 2000].

● On October 21, 2002, the root Domain Name System (DNS) servers were

“pinged to death” for an hour.

● Gibson Research Corporation (http://www.grc.com) was brought down in

May 2001.

● On May, 22 2001, CERT (widely regarded as the “Fork Knox of computer

security”) was knocked off the Internet.

● The Code Red worm in 2001 is also regarded as a DDoS attack.

● In March 2005, on the very first day of its public release, the Sun Grid was hit

by a DDoS attack.

Since 1998, there have probably been hundreds of DoS attacks around the world.

In 2001, “a quantitative estimate of worldwide DoS attack frequency found 12,000

5

http://www.grc.com/

attacks over a three-week period” [Carl et al, 2006]. Moreover, the 2004 CSI/FBI

Computer Crime and Security Survey “listed DoS attacks among the most financially

expensive security incidents” [Carl et al, 2006].

A Distributed Denial of Service attack is very real and is a significant threat.

1.4 DDoS Attacks

A Distributed Denial of Service attack can occur in many ways. Some are known

as 'brute force' attacks. Others exploit a specific weakness in the network protocol, while

some exploit a weakness in a specific application program. A DoS attack does not always

have to occur on a server, or be targeted at a server. Some attacks exploit weaknesses in

an application run on clients or on the average user's computers, causing the latter to

crash and stop functioning.

A list of some of the most well-known types of DoS attacks are described below.

1) Brute Force

A brute force attack usually just tries to eat up all resources by overloading a

server with requests. One example would be a thousand computers trying to

access the Macalester website repeatedly every millisecond. This would prevent

any legitimate use of the website by any other users. There is no attempt at

subtlety – just a flooding of requests to a single system. This is much like the

attempt to overwhelm a plumbing system by turning on every tap on campus at

the same time!

6

2) TCP SYN

The Transmission Control Protocol (TCP) requires a three way handshake before

a connection can be established. A client sends an initial connect request to a

server. When the server receives the request, it acknowledges (acks) back to the

client. When the latter receives the ack, the connection has now been established

for the client, but not for the server. The client thus sends an ack back to the

server. When the latter receives the ack, the connection has been established for

both the client and the server and transmission of data can begin. This three way

handshake is shown in Figure 1.

The TCP SYN exploit is for a client to send an initial connect request to a server,

and although the server acks back, the client never acks back to the server. This

leaves the server waiting for an acknowledgment that will never arrive. However,

7

Figure 1: Three way handshake of TCP

that initiated connection entry on the server will eventually time-out and be

removed from the table, which will free up a port on the server for another

connection to be created. The distributed attack is to have hundreds of malicious

clients sending an initial connection request to the same server without sending

any acknowledgments. Each connection created on the server takes up a port

number and there are only 2^16 ports available on any computer nowadays.

Eventually, the server will timeout those connections but for a brief amount of

time, no other clients can access the server. In a sense, this attack succeeds by

using up all connection table entries for a brief period of time.

3) LAND Attack

"A LAND attack is a DoS attack that consists of sending a special spoofed packet

to a computer, causing it to lock up. The security flaw was first discovered in

1997 by someone using the alias 'm3lt', and it has resurfaced many years later in

operating systems such as Windows Server 2003 and Windows XP SP2." [Land

Attacks Still Going Strong, 2005] The spoofed packet is an ICMP (Internet

Control Message Protocol) echo packet that has the same source and destination

address. The system that receives this packet will just stall and will not know

what to do with that packet. After a timeout, that packet will usually be discarded.

The word “LAND” is used because the first variant of this attack required the

attacker to be on site, but nowadays this attack can be performed remotely.

4) Teardrop Attack

The maximum size of a packet over the Internet is 65536 bytes. Some messages

8

can be much larger than 65000 bytes and must be fragmented, that is broken

down into smaller pieces and sent individually via different routes, when the

separate pieces arrive at the destination they are reassembled back into a single

logical message. This could be the source of a potential attack. The server holds

all the fragments until they can be reassembled. This uses up space in the server's

table. A malicious user could send a lot of packets which cannot be reassembled,

causing the table to become full and the server rejecting all other packets.

Timeouts do help, but just as for the TCP SYN exploit, this prevents legitimate

use of resources for a certain period of time. This situation is illustrated in Figure

2, in which three messages M, N, and P – each four fragments long, are all

partially arrived but no single message is complete. No new fragments or

messages can be processed by the system until the table (also known as a buffer)

is freed.

5) Smurf Attack

Every computer on the Internet can be identified by its Internet Protocol (IP)

address. The latter is unique for each computer, except for some reserved IP

addresses which every router knows about. A malicious computer could spoof its

IP address, so that its IP address appears to be the IP address of the victim

9

Figure 2: Full Message Buffer

N3P1

P3 N2

M1

N1

M3M2

P2

computer. The latter will then be overloaded with unrequested packets or

messages which might cause it to crash. Figure 3 gives an example. The victim's

computer IP address is 141.140.1.5 and the attacker's real IP address is

141.140.121.111. However, the attacker masquerades its IP address as

141.140.1.5 and sends a message to computer 64.236.24.12. The latter replies

back to the spoofed IP address (141.140.1.5). This seems rather benign but if

thousands of attacking computers perform such a smurf attack, the victim will be

overloaded with messages from the same innocent computer (64.236.24.12).

However, that computer could be a valid and legitimate system trying to surf the

Internet peacefully, but it could be barred from connecting to 141.140.1.5 for no

apparent reason.

6) Email overflow

One of the oldest types of DoS attack is to fill up an email server's disk space

preventing any other emails from being received. A lot of emails can be sent to an

10

Figure 3: Smurf Attack

email server, which will store all of them until the user retrieves them. If a

sufficient amount of email is sent, this will fill up all free disk space on the server,

and all future emails will be discarded. However, this is easily countered

nowadays with Spam blockers and cheap and easily available disk space.

Moreover, when the server's disk is filled up to a certain percentage, it could alert

the system administrator.

7) Broadcast

Many routers have a broadcast capability for testing and other purposes. This

capability sends an ICMP packet to every computer connected to the router. A

malicious user could send a broadcast message to a router, which will then

broadcast it on end. This could potentially flood a network with packets.

However, many routers have this 'feature' turned off. Also, there is software that

can prioritize packets and give higher priority to TCP packets and lower priority

to ICMP packets thus thwarting this type of attack (http://www.packeteer.com).

8) Flash Crowds

A non malicious example of an almost unstoppable distributed denial of service

attack is flash crowds. As its name implies, flash crowds occur when numerous

legitimate users try to connect to a particular server, eventually flooding it with

more requests than it can manage, leaving other users unable to access the server.

This often happens following an important news, sports, or entertainment event

when millions of legitimate users attempt to access the same site. For example,

this is what happened to all major news broadcast web sites right after 9/11. Flash

11

crowds also occur after what is commonly known as the Slashdot effect

(http://slashdot.org is a popular news website).

9) Physical Attack

There is of course the possibility of a physical DoS attack, such as an attacker

physically cutting an Ethernet cable, or setting fire to the server building. This

paper will not elaborate more on these types of physical attack, nor with the

possible defenses. Only DoS attacks based on software assaults will be dealt with.

10) Other exploits

Many other DoS attacks are possible which exploit certain weaknesses in some

applications. Some of the most interesting ones are briefly listed below:

1. There have been numerous buffer overflow exploits in which applications

crash because they cannot handle incoming messages/instructions.

2. A recent (December 2005) exploit in the newly released Mozilla Firefox 1.5

could prevent further use of the web browser until its history.dat file was

erased.

3. Viruses and worms can crash computers and deny their legitimate use by

users. They also clog up network bandwidth.

There are many tools available that can exploit some of the weaknesses mentioned

above and which can simulate an overload of requests. Some of those tools are Tribe,

Tribe Floodnet, Trinoo, TFN2K, Stacheldraht, and Shaft, and they are all freely available

on the Internet. These are all highly specialized tools aimed at creating a Distributed

Denial of Service attack. Most of them work by first infecting a victim computer with

12

http://slashdot.org/

some sort of a Trojan, and then the attacker can remotely control those infected

computers to launch a massive DDoS attack on unsuspecting systems. A Trojan is a type

of virus that opens a back door in a computer to allow a malicious user to gain complete

control of the computer at a later time. It is similar to the Trojan horse in Greek

mythology.

There are also other packages that can test the performance of a server. Such

examples include hping, fping, nmap, and nessus. Although those tools are meant for

security purposes, they can also be used by malicious users to find weaknesses in or

attack a system.

Moreover, you can buy a product from a company that will test your network and

its performance and ensure that your system is secure. Examples include, but are not

limited to, http://www.ixiacom.com, and http://dast.nlanr.net/projects/advisor/.

1.5 Defenses

Someone once said “All programs are buggy”. This means that no program ever

written is perfect. Security holes, omitted tests or checks, and other weaknesses will

eventually be found and exploited. Although one cannot rely on any programs, protocols,

or systems to be completely secure from attacks, there are steps that can be taken to

prevent a DoS or DDoS attack.

1) The simplest defense step is of course to patch software as manufacturers

or developers make them available. However, some patches might be the

13

http://dast.nlanr.net/projects/advisor/
http://www.ixiacom.com/

cause for an attack. Some patches, for example in the Sendmail program,

would automatically reset settings back to default values without alerting

the system administrator. These default settings could pose a security risk.

Thus, patches should not be applied blindly.

2) Common and logical defenses also have to be applied such as not

downloading any attachments or random programs, installing anti-

spyware, anti-virus, and firewall programs.

3) IP broadcasting on routers should to be disabled if this feature is not to be

used. In some cases, for example a print server broadcasting a “I am

printer A. Who wants to use me?” message regularly, this cannot be

avoided.

4) Unused services on clients and especially servers should be disabled.

Many Linux distributions come with services (SSH, FTP, Samba) turned

on.

5) Filtering routers can be used. They could bolster security and help against

IP spoofing. Ingress filtering means making sure that all outbound

connections from behind the firewall have a valid IP address. Egress

filtering means making sure that all inbound connections are coming from

the correct place. This does not work if other routers don't use filtering.

6) Although firewalls are good at blocking and filtering packets, and even at

protecting the operating system with the newer combined network and OS

firewalls, they will only do what they are told and if a system is

14

compromised, they would not be able to detect or protect it anymore. This

is where Intrusion Detection Systems (IDS) come in. They can use

signature-based defenses (similar to what most anti-virus software use to

detect viruses) to detect and prevent against any known attacks. They can

also use heuristic scanning to monitor the processes and the regular usage

of a system. If the usage on that system changes significantly, they can

alert the system administrator.

7) Network connections are ephemeral and a network administrator has to

keep track of what computer is connecting to where, which requests are

being sent to the server, and many other network-related tracking.

Network monitoring is thus very important for an administrator to detect a

premature attack, detect port scanning which are usually a prelude to an

attack (although [Vijayan, 2005] shows that this only happens for about

5% of the time), and just to simply monitor network traffic. In some

companies, email can be filtered so that important and classified

information are not sent outside of the company's network.

8) Many servers are Linux. Since the latter is open source, there are dozens

of available Linux distributions which vary from Fedora to EnGarde to

Ubuntu to SuSE. Although they all use the same kernel, some distributions

have been designed with security from bottom to top. One example is

EnGarde (http://www.engardelinux.org) which has been designed with

security in mind and geared towards the server end of the market.

15

http://www.engardelinux.org/

9) The honeynet project can be used to track down zombie networks. A

zombie (or botnet) is a system that has been infected and is being used by

attackers to potential launch massive attacks. A group of infected systems

constitutes a zombie network. A honeypot acts like a bait to draw attacks

to it so that security experts can analyze the attacks and apply the

appropriate defenses.

10) Physical security is also of the utmost importance to protect against

attacks.

Although many of the defenses described above are useful against general attacks,

not all of them will work specifically for a denial of service attack, and they are even less

likely to work against a distributed denial of service attack. A DoS attack against a server

is quite easy to defend against. The network administrator can block the IP address of the

offending computer, and it is much easier to track down one computer than to try to track

down thousands. The simplest defense is of course to just buy more hard disk and

memory and processing space and power, and that usually works for bigger companies.

However, that approach does not work all the time, and this paper will investigate the

inherent problems in a DDoS attack and try to come out with the best possible defense

against it.

There are many problems in designing a good defense mechanism against a

Distributed Denial of Service attack.

1) One of the most common types of DDoS attacks is to just overload a

server with requests. However, that is the exact same definition of a flash

16

crowd event. It is difficult to distinguish a DDoS attack from a flash crowd

event.

2) Although the attack is distributed, that is, many computers participate,

defenses are usually solo and not distributed. A distributed defense,

sharing the load and information with other servers/computers, might

produce a better defense against this type of attack.

3) There is a lack of detailed information available when a DDoS attack

occurs. More information would include how many computers were used,

where they are found geographically, and what weaknesses, if any, were

exploited.

4) Although there is a taxonomy available to classify DDoS attacks and

defenses [Mirkovic et al, 2004], there is no current DDoS defense

available, therefore there is no benchmark available to determine whether

a new product for a DDoS defense is suitable or not.

5) It is very difficult to test software against a DDoS attack. A particular

defense could be implemented and be successful when 1000 unique

computers are used. However, it might fail if 1001 or 100,000 computers

were used.

6) There are economic and social factors involved as to why there is

currently no widely accepted DDoS defense mechanisms. Although DDoS

attacks are common, many companies do not want to disclose the attacks

to public knowledge for fear of bad publicity. Defenses against such

17

attacks are currently mostly of interest in academic research, not applied

security. Morever, DoS attack techiniques are analogous to viruses.

Attackers change their signature patterns and defense techniques have to

be updated to reflect the latest types of attacks.

There are new defense tools to protect against a DDoS attack. However, there is

no benchmark and although the developers claim the tool will help, there is no proof of

concept so far. Some examples of those commercial tools are RAZOR

(http://www.bindview.com/Services/Razor/), Mu Security (http://www.musecurity.com/),

and Melior Inc. (http://www.ddos.com/).

Moreover, there are some freely available tools to detect and prevent the use of

the “attacking” tools, such as gag – a stacheldraht scanner, and dds – a

Trinoo/TFN/stacheldraht agent scanner. Other software are also available to track down

the source IP, but none of those tools necessarily provide complete protection against a

DDoS attack. In fact, there is currently no way to stop such an attack, but there are ways

to try to mitigate it.

1.6 Similar Work

When a DDoS attack occurs, there are three main parts in the defense:

1) Detection: The attack has to be detected first. The simplest way to determine that

an attack is under way is to check the bandwidth of the network and the usage of

computers, as compared to a normal day.

18

http://www.ddos.com/
http://www.musecurity.com/
http://www.bindview.com/Services/Razor/

2) Prevention: After the attack has been detected, it has to be stopped or mitigated so

that normal use of the services can continue. Although there are currently no

known prevention techniques, some steps are to use a firewall and IDS, and also

seek the help of the ISP to filter the “evil” packets. This paper will deal mainly in

prevention methods.

3) Tracking: The attackers have to be tracked down so that necessary measures can

be taken – block them, try to contact the users/owners, or trace them for judicial

issues. The IP Source Tracker implemented in most Cisco routers can be useful.

Although the attacking computers can be traced back, it does not mean that they

can dealt with. International laws might apply and there might language and

culture issues.

DDoSVax (http://www.tik.ee.ethz.ch/~ddosvax/) is a research project for

developing detection and prevention techniques. The network simulator ns-2

(http://www.isi.edu/nsnam/ns/) can also be used to simulate a real network and try to

implement prevention methods.

1.7 This Paper

This paper will deal with simulating a computer network where various clients –

both good and evil clients – connect to various servers. Ways in which the server can

counteract against the evil clients while providing good service to the good clients will be

19

http://www.isi.edu/nsnam/ns/
http://www.tik.ee.ethz.ch/~ddosvax/

researched.

Chapter 2 will explain how the network simulator works and how it is

implemented.

Chapter 3 will show the base case against which all experiments are compared.

Chapter 4 will describe the first experiment performed – using a priority queue.

Chapter 5 will detail the second experiment performed – limiting the number of

connections per client.

Chapter 6 will describe the third experiment performed – using a server reset.

Chapter 7 will conclude and explain what worked and what did not and why.

Chapter 8 will provide some future research that could be undertaken related to

this paper and also provide other guidelines related to Distributed Denial of Service

attacks.

Chapter 9 and 10 will deal with references and acknowledgments.

20

2. Network Simulation

2.1 Introduction

A complete connection-establishment network simulation is designed and built.

Only the three way handshake connection establishment process is simulated. The four

way handshake connection termination, data transfer, and other negotiations are not

simulated. Only ways to prevent malicious clients from establishing a connection will be

investigated in this paper.

The network simulation is a discrete event-driven model. It consists of virtual

computers, which will make up the basis of the simulation. Each computer can be divided

into two categories: server or client. Furthermore, a client can be either a good client or

an evil client. The client's purpose is hidden from the server and is only used for

statistical purposes.

Moreover, data packets are not actually simulated nor sent, so once a client

establishes a connection, there is no actual sending of data or packets or messages, but it

is assumed that the data is sent and received and processed, and after a certain amount of

time t, whatever needed to be done (for example delivery of a web page, or transferring

of a file) has been completed.

When a timeout occurs, the connection is just deleted. There is no retransmission

21

of messages, or trying to reestablish a connection.

2.2 Example

Each computer in the simulation can be either a client or a server. A client sends

requests to the server to create connections. The server just accepts connections from

clients. The server is the focus of this paper, as it will become under attack by clients.

Each computer contains a connection table, an inbound message queue, and an

outbound message queue.

The connection table holds a list of all the connections – either “in progress” or

“established”. The inbound message queue is a First In First Out (FIFO) queue, where the

first message in will be the first message out to be processed. This queue is used for

messages incoming to the computer only. The outbound message queue is also a FIFO

queue, and is only used for outgoing messages from the computer. Both queues hold

messages until the computer can process them. Queues are needed because it takes a

finite amount of time to process a message to determine what it is, who the sender and

receiver are, etc...

22

There are two types of clients – evil and good. Evil clients act exactly like good

clients except in two circumstances. Evil clients never tell the server that they are done

with a connection, and thus when an evil client creates a new connection in the server's

connection table, that connection stays in the table for the duration of the simulation.

Good clients, on the other hand, reset or terminate every connection they establish. The

other difference is that evil clients send more connection requests, and thus more

messages, to the server than good clients do.

The following is an example of a simulation run:

● Client A wants to establish a connection with server S. Client A thus creates a

new Initial Connect message, M1 and puts it in its outbound message queue.

23

Figure 4: Main Components of the Simulator

● That message is processed and sent to the server S. A new entry in the client's

connection table is created for that new connection. That entry is “in progress”.

● After a certain amount of time (called the interval time), client A creates another

Initial Connect message, M' to the server.

● After the message M1 has been processed and sent, the server S will eventually

receive message M1 from client A after a delay time (transmission time).

24

Figure 5: Initial Connect Request

Figure 6: Creation of New Connection for Client

● Since the server's inbound message queue is empty and its inbound processor is

idle, message M1 is processed right away. If the processor was busy, the message

would have been put in the queue to be processed later. If the queue is full, the

message is just dropped.

● After the processing time (which is needed to determine what message it is, and

who the sender and receiver are), the server attempts to create a new entry in the

its connection table. If the table is full, no new connection is created. The new

connection is “in progress”. The latter is also marked to be from client A and from

index 1 (client A might have multiple connections).

25

Figure 7: Receive Initial Connect Message

● If a new connection has been created, the server creates a new Ack Client

message, M2 to acknowledge the receipt of the initial request from client A. The

message is put in the outbound message queue, processed, and sent.

● After a delay time, the client receives the message from the server. The message

is put in the inbound message queue of the client, and processed. The message has

26

Figure 8: Creation of New Connection for Server

Figure 9: Ack Client Message

now been determined to be an acknowledgment. The client's connection table is

queried to find the corresponding connection for that message. If it is not found,

an error is reported for that client. If the connection is found, it is updated so that

the server is marked to be S and the index used on server S is 1. The connection is

now “established” on the client's side.

● The client now creates an Ack Server message, M3 and adds it to its outbound

message queue for processing.

● After processing, the message is sent to the server.

● After the reset time (reset time is the time it takes for the Ack Server message to

travel from the client to the server, for the server to process the message, and send

the appropriate data back. The data could be, for example, a web page), the client

creates a Client Reset message M4, adds it to its outbound message queue,

processes the message, and sends it to the server.

● After the delay time, the server receives the Ack Server message M3 from the

27

Figure 10: Updating Connection for Client

client. The message is put in the inbound message queue and processed.

● The server has now determined that the message is an acknowledgment to the

acknowledgment it sent earlier. It thus tries to find the corresponding connection

in its connection table. If the connection is not found, an error is reported for the

server. If the connection is found, the latter is now “established”. The three-way

handshake connection establishment procedure is now over.

● After the reset time and the delay time, the server receives the Client Reset

message M4. The latter is queued in the inbound message queue and processed.

28

Figure 11: Update Connection for Server

● The server has now determined that the message is a reset to an earlier created

connection. It thus queries its connection table for the corresponding connection.

Once found, that connection is deleted. If not found, an error is reported for the

server.

The four-way handshake connection termination procedure is not simulated

because this paper is only interested in connection establishments. Thus, a reset without

any acknowledgements is sufficient.

A timeout is also scheduled after a new connection is created. It is discarded if the

connection is updated/established or removed. If the timeout does occur, the connection

in the connection table is deleted. No reset or other message is sent to indicate to the

other computer that the connection has timed out.

29

Figure 12: Receive Client Reset Message

2.3 Goals

The main goal of this simulation is to keep the server running even while under

attack from a distributed network of malicious clients, and also being available to good

clients. Evil clients can also be blocked or prevented from connecting to the server.

To achieve this goal, a set of parameters has to be well-defined. As mentioned in

Chapter 2.2, there are a lot of variables. The real-world or at least a good approximation

value of those variables need to be set, and if needed, tweaked to achieve a better result.

Moreover, a number of good clients will be connecting to a server, so that the latter starts

to get busy. Evil clients are then added into the simulation, and defense techniques

developed to still try to achieve the same availability and dependability as when the

simulation was without any evil clients. The result would be to try to maximize the

number of good clients serviced, while trying to minimize the number of evil clients

serviced. Since the server does not know which clients are good or evil, it will have to act

upon what it knows already.

2.4 Technical Details

2.4.1 Software Used

30

The whole network simulator was built from the ground up using Java. IntelliJ

IDE (Integrated Development Environment) by JetBrains was used to improve efficiency,

easier debugging, decrease development time, and make refactoring easy. Moreover, test-

first programming was applied, as unit tests were developed first before the actual code is

written. JUnit was used for the unit tests. This is to ensure that each and every piece of

code is working as it should. An automated end-to-end test was not implemented, but the

simulation was assumed to be working correctly by going through each event one at a

time and making sure that the simulator was doing what it was supposed to do.

2.4.2 Time Units

Since Java is very bad at dealing with decimals, the time is not represented as a

double, but rather as an integer. Since the simulator produces a discrete event-driven

simulation, each event happens at discrete time and is processed sequentially. Even if two

events happen to occur at exactly the same time, the first one will be dealt with first, then

the second one. Therefore, it is acceptable to use integers as time units instead of

portraying real time in seconds or minutes. However, 10,000 time units is equal to 1

second.

31

2.4.3 Events

A heap is used to store all the different events, arranged in chronological order.

The whole simulation is event-driven, not time-driven. Therefore, there must always be

an event in the heap. All clients create new events to establish a connection with a server.

The end of the simulation is indicated by a Terminate event. The seven main types of

events are Initial Connect, Ack Client, Ack Server, Reset, Timeout, Terminate, and

Measure events. Additionally, the first four are further divided into four events:

● Create – The event has just been created and added to the outbound message

queue. When the message is to be processed, a Send event is scheduled on the

heap.

● Send – The message related to the event is being processed, and a Receive event

is scheduled on the heap.

● Receive – The message related to the event has just arrived at the destination and

is added to the inbound message queue. When the message is ready to be

processed, an End event is scheduled on the heap.

● End – The message related to the event is being processed at the receiver's side.

Depending on what event that is, further events can be scheduled.

Therefore, all the events possible in the simulation are:

● Initial Connect – Create, Send, Receive, End

A client wants to establish a connection with a server, and sends an initial connect

32

request. This event can only be created by a client and sent to a server.

● Ack Client – Create, Send, Receive, End

A server has received an initial connect request from a client and sends an

acknowledgment. This event can only be created by a server and sent to a client.

● Ack Server – Create, Send, Receive, End

A client has received the acknowledgment from the server and sends back its own

acknowledgment. This event can only be created by a client and sent to a server.

● Reset – Create, Send, Receive, End

A reset event can be created by either a client or a server and sent to the opposite

computer (client to server or server to client). Its function is to delete the

connection from the sender and indicate that it wants the connection deleted at the

receiver.

● Timeout

A connection has timed out in a connection table. The latter could belong to either

a server or a client, the connection is just deleted from the connection table.

● Terminate

The end of the simulation.

● Measure

Regular events that take a snapshot of the simulation. It is used for statistics

gathering.

33

2.4.4 Distributions

In the simulation, just like the real world, it must be really a coincidence for two

things to happen at exactly the same time. For example, a message sent from a client to a

server at time t would take f seconds, but a second message sent from a client to a server

at the same time t might take g seconds, where f is not equal to g.

Most time variables follow an exponential random distribution, given by

(- log (r) * mean), where mean is the mean time provided, and r is a random

number and 0 <= r < 1

This returns a double (or a decimal number). The extra decimals can be truncated

to return just an integer.

2.4.5 Parameters

As mentioned before, the simulator requires a lot of variables. All the different

parameters that can be changed in the simulator is given below.

General Configuration

measurementInterval 100,000 The Measurement Interval (10 seconds)

terminate 18,000,000 The Termination Time (30 minutes)

verbose false Whether to go into verbose/debugging
mode

delayTime 20,000 The mean delay/transmission time (2
seconds)

34

Server Configuration

numServers 1 The number of servers

computeSendTimeServer 10 The time to process an outgoing message

computeReceiveTimeServer 10 The time to process an incoming
message

connectionTableSizeServer 250 The size of the connection table

timeoutServer 300,000 The timeout value (30 seconds)

inQueueSizeServer 500 The size of the inbound message queue

outQueueSizeServer 500 The size of the outbound message queue

Good Clients Configuration

numClientsGood 1 The number of good clients

computeSendTimeClientGood 10 The time to process an outgoing message

computeReceiveTimeClientGood 10 The time to process an incoming
message

connectionTableSizeClientGood 50 The size of the connection table

timeoutClientGood 300,000 The timeout value (30 seconds)

inQueueSizeClientGood 100 The size of the inbound message queue

outQueueSizeClientGood 100 The size of the outbound message queue

intervalTimeClientGood 200,000 The interval time between initial connect
requests (20 seconds)

resetTimeClientGood 600,000 The time after which a client reset
message is sent (60 seconds)

Evil Clients Configuration

numClientsEvil 0 The number of evil clients

computeSendTimeClientEvil 10 The time to process an outgoing message

computeReceiveTimeClientEvil 10 The time to process an incoming
message

connectionTableSizeClientEvil 5,000 The size of the connection table

timeoutClientEvil 300,000 The timeout value (30 seconds)

inQueueSizeClientEvil 100 The size of the inbound message queue

outQueueSizeClientEvil 100 The size of the outbound message queue

intervalTimeClientEvil 40,000 The interval time between initial connect
requests (4 seconds)

35

resetTimeClientEvil -1 No client reset is sent

Table 1: Parameters

Even though all the variables can be changed for every simulation run, most of

them are fixed because they are the real values used in the different servers currently in

use around the world. Macalester College's (http://www.macalester.edu) web and email

server's settings were obtained from the current network administrator, and those values

are used. A more detailed description of each parameter and what the default or set-in

value is is given below.

● measurementInterval = 100000

Every 100,000 time units (10 seconds), a measure event is scheduled which takes

a snapshot of the current state of the message queues and connection table of the

servers. Since each simulation is run for 18,000,000, a total of 180 measurements

are taken which are deemed sufficient.

● terminate = 18000000

18,000,000 equals to 30 minutes and that time is neither too short when nothing

exciting happens nor too long when the simulation will take too long and not yield

any further interesting results.

● verbose = false

If verbose is true, then each event's occurrence will be displayed along with its

information. Unless the simulation has to be debugged, only the output of the

results is needed, which is the statistics gathered during the simulation run.

36

http://www.macalester.edu/

● delayTime = 20000

This is the mean time it takes a message to travel from a computer (either client or

server) to another computer (either client or server). This is 2 seconds in real time

and it follows the exponential random distribution aforementioned. A mean time

of two seconds is thought to be about analogous to the time it would take in the

real world.

● numServers = 1

Although the simulation could have been run using more servers, only one is

needed because the results would have been the same for the different servers. If a

more real-world model has been simulated, then more servers would have been

needed, but for the simple simulation for this thesis, one server is sufficient.

● ComputeSendTimeServer = 10

The compute send time is the time it takes the server to process an outgoing

message and send it on its way to the client. 10 time units is 1 millisecond.

Although no information could be obtained about how fast a computer or router

takes to process a message, 1 millisecond has been correct for the simulation. The

compute send time is the same for all clients and all servers.

● ComputeReceiveTimeServer = 10

The compute receive time is the time it takes a server to process an incoming

message and determine what to do next with it. The compute receive time is the

same for all clients and all servers.

● connectionTableSizeServer = 250

37

The Macalester College's email and web server both use a maximum number of

connections of 250.

● timeoutServer = 300000

The timeout value for a connection is 30 seconds. If an ack is received, then the

timeout event is removed from the events heap. Else, the timed-out connection is

removed from the connection table. Once a connection has been established, it

cannot be timed out. The Macalester College's email server has a timeout value of

30 seconds.

● inQueueSizeServer = 500

500 messages can be received at one time. Since the size of the connection table is

250 and it takes only 1 millisecond to process a message, a message queue of size

500 is deemed to be more than enough. Moreover, in a real server, each data

message (for example a web page hit) usually takes only one buffer space in the

queue.

● outQueueSizeServer = 500

The outbound message queue is the same as the inbound message queue. Usually,

the inbound message queue is the one that receives the most messages, especially

during an attack, while the outbound message queue will usually not get full

because if the server can process a message and create a new connection, the

outbound message queue should not be too overloaded.

● numClientsGood = Variable

This is a variable and indicates the number of good clients in the simulation.

38

● computeSendTimeClientGood = 10

● computeReceiveTimeClientGood = 10

● connectionTableSizeClientGood = 50

A good client can create a maximum number of 50 connections at any one time.

This should be more than enough for this simulator.

● timeoutClientGood = 300000

The timeouts for connections for the clients are also the same as for the server.

● inQueueSizeClientGood = 100

Since the maximum number of connections is 50, a queue size of 100 is deemed

to be plentiful.

● outQueueSizeClientGood = 100

The outbound message queue is the same as the inbound message queue.

● intervalTimeClientGood = 200000

A good client tries to establish a new connection with the same server on a mean

time of 20 seconds. This time is arbitrary and was chosen because the average

user on an average computer will be trying to establish a new connection on an

average of 20 seconds. Moreover, since the simulation is run for 30 minutes, this

will give a total of about 90 connections per good client. This time follows the

exponential random distribution mentioned above.

● resetTimeClientGood = 600000

Since a good client send an initial connect request about every 20 seconds, after a

mean time of 60 seconds, it will send the reset. This will give on average 3

39

connections per client in the server's connection table. The reset is always sent 60

seconds (mean time) after the acknowledgment back to the server from the client

is sent.

● numClientsEvil = Variable

The number of evil clients in the simulation. This can be varied as needed.

● computeSendTimeClientEvil = 10

● computeReceiveTimeClientEvil = 10

● connectionTableSizeClientEvil = 5000

Since an evil client tries to establish a lot of connections and those are never reset,

a table size of 5000 is chosen. Although this might be on the extreme side, it is to

be sure that the evil client's connection table is never full (else what's the point of

it being evil?).

● timeoutClientEvil = 300000

The timeout is still set to 30 seconds.

● inQueueSizeClientEvil = 100

Although a big connection table is needed, a message queue size of 100 is

sufficient since each message takes about 1 millisecond to process.

● outQueueSizeClientEvil = 100

● intervalTimeClientEvil = 40000

As will be discussed later in chapter 3, the optimal1 value is 4 seconds.

1 Optimal means a value such that it is not extreme on either the high side or the low side. In this case,
optimal means that the evil clients will send an initial connect request at a rate that will not completely
overwhelm a server nor at a rate too low that the evil clients do not send enough messages to overload a
server.

40

● resetTimeClientEvil = -1

An evil client never sends a reset message. Therefore, once an evil connection has

been established in the server's connection table, it will never be removed.

Although there are a lot of parameters, only two of them are variables – number of

evil clients and number of good clients.

The times that follow an exponential random distribution are delayTime,

intervalTime, and resetTime.

2.5 Sample Output

A sample output given the parameters from Chapter 2.4.5, for both verbose and

non-verbose mode, is given in Appendix A.

2.6 Useful Statistics

A total of 39 types of statistics are gathered for each simulation run. However, not

all 39 are really useful, depending on the runs and test cases. A complete list of all the

measurements collected is given in Table 2. Most of them are self-explanatory. A

description is given for any ambiguous ones.

41

Time Independent Data Data collected each
time such an event
occurs

Total number of inbound total messages

Total number of inbound good messages

Total number of inbound evil messages

Total number of inbound dropped total messages

Total number of inbound dropped good messages

Total number of inbound dropped evil messages

Total number of outbound total messages

Total number of outbound good messages

Total number of outbound evil messages

Total number of oubtound dropped total messages

Total number of outbound dropped good messages

Total number of outbound dropped evil messages

Total number of connections This reprensents the
total number of
connections attempted
(whether they are
created or not)

Total number of good connections

Total number of evil connections

Total number of dropped connections

Total number of dropped good connections

Total number of dropped evil connections

Total number of established connections

Total number of established good connections

Total number of estbalished evil connections

Total number of reset connections

Total number of reset good connections

Total number of reset evil connections

Total number of timeouts

Total number of good timeouts

42

Total number of evil timeouts

Total number of errors

Total number of good errors

Total number of evil errors

Time Dependent Data Data collected at every
measurement interval

Average size of inbound message queue with all messages

Average size of inbound message queue with good messages

Average size of inbound message queue with evil messages

Average size of outbound message queue with all messages

Average size of outbound message queue with good messages

Average size of outbound message queue with evil messages

Average size of connection table with all connections

Average size of connection table with good connections

Average size of connection table with evil connections

Table 2: Measurements

Measurements are collected only at the server side since we are only interested in

analyzing the performance of the server.

43

3. Simulation Runs

3.1 Test Runs

All the runs are performed using the parameters given in Chapter 2.4.5. When the

parameters are not the same as shown in that chapter, the parameters used will be shown.

The statistics are gathered as in Chapter 2.6.

Each simulation test case is run ten times to avoid any statistical fluctuations. Two

outliers are removed, and the average of the remaining runs are taken. That average is

used as the final measurement for that particular run.

3.2 Goals

The main goals of this thesis' simulation are to maximize the availability and

serviceability of the server with regards to the good clients, while blocking or limiting the

attack from the evil clients.

The total number of established good connections, total number of dropped evil

connections, average number of connections (to maximize usage of the server), and

average number of good connections will all be maximized, while the total number of

evil connections, total number of dropped good connections, and average number of evil

44

connections will all be minimized. The total number of good timeouts, the total number

of good errors, and the total number of reset good connections should not vary too much

from the base case.

3.3 Base Case

3.3.1 What is a Base Case?

There will be two base cases, but they both have the same definition. A base case

in this paper means the very basic statistics gathered using a set configuration of

parameters. The base case will be used for comparison to determine if any

features/improvements/new defense techniques/changes in parameters help the goals

mentioned in Chapter 3.2.

3.3.2 Base Case 1 – Number of Good Clients

In this case, there are no evil clients, and the parameters are as shown in Chapter

2. The number of good clients is varied, until the load on the server is right. “Right”

meaning that the server is busy enough and is neither swamped nor has nothing to do for

periods of time (this can be deduced by the amount of free space in the connection table).

45

It is possible that the server will not be able to service all requests even if there are only

good clients. This is acceptable.

46

Table 3: Base Case 1 - No evil clients

Number of Good Clients 1 4 16 32 64 80 96 128
of Inbound Messages 267 1051 4146 8577 17031 20233 22193 25221
of Good Inbound Messages 267 1051 4146 8577 17031 20233 22193 25221
of Evil Inbound Messages 0 0 0 0 0 0 0 0
of Dropped Inbound Messages 0 0 0 0 0 0 0 0
of Dropped Good Inbound Messages 0 0 0 0 0 0 0 0
of Dropped Evil Inbound Messages 0 0 0 0 0 0 0 0
of Outbound Messages 91 355 1399 2898 5751 6691 6974 7059
of Good Outbound Messages 91 355 1399 2898 5751 6691 6974 7059
of Evil Outbound Messages 0 0 0 0 0 0 0 0
of Dropped Outbound Messages 0 0 0 0 0 0 0 0
of Dropped Good Outbound Messages 0 0 0 0 0 0 0 0
of Dropped Evil Outbound Messages 0 0 0 0 0 0 0 0
of Attempted Connections 91 355 1399 2898 5752 7104 8508 11367
of Good Attempted Connections 91 355 1399 2898 5752 7104 8508 11367
of Evil Attempted Connections 0 0 0 0 0 0 0 0
of Dropped Connections 0 0 0 0 1 413 1534 4308
of Dropped Good Connections 0 0 0 0 1 413 1534 4308
of Dropped Evil Connections 0 0 0 0 0 0 0 0
of Established Connections 89 349 1377 2864 5697 6626 6902 6990
of Established Good Connections 89 349 1377 2864 5697 6626 6902 6990
of Established Evil Connections 0 0 0 0 0 0 0 0
of Reset Connections 86 342 1351 2788 5542 6452 6727 6809
of Reset Good Connections 86 342 1351 2788 5542 6452 6727 6809
of Reset Evil Connections 0 0 0 0 0 0 0 0
of Timeouts 0 0 0 0 1 1 1 1
of Good Timeouts 0 0 0 0 1 1 1 1
of Evil Timeouts 0 0 0 0 0 0 0 0
Number of Errors 1 5 18 28 41 51 57 54
Number of Good Errors 1 5 18 28 41 51 57 54
Number of Evil Errors 0 0 0 0 0 0 0 0
Average Size of Inbound Queue 0 0 0 0 0 0 0 0
Average Size of Inbound Queue (Good) 0 0 0 0 0 0 0 0
Average Size of Inbound Queue (Evil) 0 0 0 0 0 0 0 0
Average Size of Outbound Queue 0 0 0 0 0 0 0 0
Average Size of Outbound Queue (Good) 0 0 0 0 0 0 0 0
Average Size of Outbound Queue (Evil) 0 0 0 0 0 0 0 0
Average Size of Connection Table 2 12 48 99 199 233 240 245
Average Size of Connection Table (Good) 2 12 48 99 199 233 240 245
Average Size of Connection Table (Evil) 0 0 0 0 0 0 0 0

As shown in Table 3 and Figure 13, there are no dropped connections until there

are 64 good clients. Moreover, there are no dropped messages. The errors are due to a

reset from a client to the server arriving before the acknowledgment. The number of

errors increases as the number of good clients increases because if one good client causes

one error to occur, two good clients should cause two errors to occur. It is not exactly

linear due to statistical fluctuations. Moreover, the number of reset connections plus the

number of errors is approximately equal to the number of established connections, which

by the definition of an error, is correct. The number of incoming messages does not

increase linearly when there are dropped connections because an acknowledgment or

reset message counts towards the number of inbound messages. It is also interesting to

note that the number of dropped connections plus the number of outbound messages is

equal to the number of connections. Each connection that was not dropped should create

one and only one outbound message – the acknowledgment back to the client.

47

The optimal value for the number of good clients is 80. With 80 good clients and

no evil clients, the server will be busy with requests, as shown by almost full connection

table on average (233/250 = 93.2%), but not so busy that everything grinds to a halt

because only 5.8% (413/7104) of the total number of connections are dropped.

3.3.3 Base Case 2 – Evil Clients come in!!

80 good clients is a base case, but evil clients need to come in the picture. The

48

Figure 13: Number of Dropped Connections vs Number of Good Clients

1 2 4 8 16 32 64 80 96 128 256
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

Dropped Connections vs Good Clients

Number of Good Clients

N
um

be
r

of
 D

ro
pp

ed
 C

on
ne

ct
io

ns

second base case is where there is only one evil client. Only one evil client is used

because you need to start somewhere. As will be seen later, more evil clients are added.

The optimal value of the mean interval time of initial connect requests for evil clients will

now be determined using 80 good clients and one evil client. The optimal value with

regards to the evil clients would of course be the lowest value possible, with clients

bombarding a server with messages as often as possible, and the optimal with regards to

the server would be the highest value possible so that the server receives very few

requests and is thus available for other requests as long as possible. Thus the optimal

value would be one to strike the balance between those two extremes.

As shown in Figure 14 and Appendix A, the optimal value chosen for the mean

interval time for evil clients is 40,000 time units, which is 4 seconds. Therefore, on

average, an evil client will send an initial connect request every four seconds to the

server. Four seconds was chosen because out of 7124 good connections, 3943 (55.3%)

good connections were dropped. The average size of the connection table is also 243

(97.2%), with about half of them good and half evil. From Figure 14, it can be seen why

the mean time of four seconds was chosen – the server is neither too busy that nothing

can really help nor too idle that no noticeable improvements can be performed.

The number of established good connections decreases exponentially and the

number of dropped good connections increases logarithmically as the mean interval time

decreases. This is due to the exponential distribution. This causes a lot of good clients

being denied service, while the single evil client hogs up all the resources. Moreover, evil

clients do not reset their connections, thus the evil connections stay in the server's

49

connection table for the whole duration of the simulation. The number of errors does

decrease because as fewer clients can create new connections, the probability of a reset

message arriving before an acknowledgment message decreases.

3.3.4. Message Queue always Empty?

For all the runs completed so far, the average size of the message queues (both

inbound and outbound) has always been empty, and there have not been any dropped

messages whatsoever.

50

Figure 14: Number of Good Connections vs Mean Evil Interval Time

0 50000 100000 150000 200000
0

500

1000
1500
2000
2500

3000
3500
4000
4500

5000
5500
6000
6500

7000
7500

Good Connections vs Interval Time

Good Connec-
tions

Drop Good
Connections

Established
Good Conns

Mean Interval Time

N
um

b
e

r
o

f
C

o
nn

e
ct

io
ns

A reset time of 6 seconds (60000 time units) was used for this run, with no evil

clients, and it can be seen from Figure 15 that as the number of good clients increases, the

server becomes so overloaded that messages start getting dropped and chaos occurs. The

outbound message queue never gets full because it can never happen that there are more

outbound messages at any time than the size of the connection table.

The number of dropped incoming messages and the average size of the inbound

message queue increases exponentially when there are more than 16,000 clients, and

everything grinds to a halt. The number of established connections drops from 21311 to

654. The number of timeouts also increases because as messages get dropped, sometimes

an acknowledgment would get lost as well.

51

Figure 15: Number of Dropped Messages vs Number of Clients

0 10000 20000 30000 40000
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

Dropped Messages vs Clients

Number of Clients

N
u

m
b

e
r

o
f D

ro
p

p
e

d
 M

e
ss

a
g

e
s

3.4 Defenses

The parameters provided for the simulation are held constant since these are the

real values that some servers in the real world use. The only way to try to improve the

serviceability of the server while under attack is to introduce new features in the

simulation. The three defense features to be implemented are

● Priority Queue

Instead of using a first in first out (FIFO) message queue, a priority queue is used

instead, to give higher priority to the messages from clients which do not have too

many connections in the table at the time.

● Limit the number of Connections

Each client can only create a certain amount of connections at any time.

● Server Reset

The server performs a reset when its connection table gets full.

52

4 Experiment 1 – Using a Priority Queue

4.1 Goals

In the first experiment, a priority queue is used instead of a First In First Out

queue for the inbound message queue for the server. Only the inbound message queue is

changed since this is the bottleneck as described in the Base Case. All messages will be

given a priority based on how many connections they currently have on the server. It does

not matter whether a client has 10 in progress connections or 10 established connections

– in both cases, the client will be counted as having 10 connections.

A cutoff point (call it x) is used. Clients that have more than x connections will be

given a low priority, while clients that have at most x connections in the server's

connection table will be given a high priority. Only two priorities are used since there are

only two types of clients – good and evil. The priority queue will function as a heap, with

highest priority messages at the top and lowest priority messages at the bottom.

The main reason behind using a priority queue instead of a FIFO queue is that evil

clients will generally have a lot of connections in the connection table, as compared to the

good clients. Thus, all messages from evil clients will end up at the end of the queue.

Therefore, good clients are expected to receive better performance and evil clients'

messages are blocked or slowed down at the inbound queue. The expectation is that the

53

number of established good connections would go up, and the number of dropped good

connections and established evil connections would go down.

The optimal value of that cutoff point x will be determined to see if any

improvements have been made.

4.2 New Parameters

Two new parameters are introduced for this new feature. They are shown in Table

4.

useFIFOQueue false Whether or not to use the FIFO queue

NumCutOffPriority 0 The priority cutoff point x to be used. Of
course, a negative value does not make sense

Table 4: New Parameters for Experiment 1

4.3 Runs

The simulator was run using the same parameters as mentioned before, except that

a priority queue is now used instead. The cutoff point is varied to determine if there is an

optimum value.

54

The most important statistics collected for the priority queue are shown in Table

5. The average connection size remains constant throughout all the runs, and the same

observation can be made for other test cases (as shown in Appendix A).

In the graphs to follow, the point below the 0 priority cutoff means that no priority

queue is used and represents the base case.

From Figure 16, the number of created total connections and the number of

created good connections remain more or less constant. Thus, the number of created evil

connections also remains constant. The slight decrease at priority cutoff = 5 is due to

statistical fluctuations since both the number of created total connections and the number

of created good connections decrease.

55

Table 5: Using a Priority Queue - 80 Good and 1 Evil Clients

Cutoff 8 7 6 5 4 3 2 1 0 Base Case
Total Connections 7637 7604 7623 7555 7619 7583 7600 7591 7592 7574
Good Connections 7177 7157 7184 7102 7164 7138 7149 7146 7143 7112
Evil Connections 460 447 439 453 455 445 451 445 450 462
Drop Connections 4284 4258 4186 4209 4220 4104 4193 4206 4210 4237
Drop Good Connections 4029 4015 3947 3960 3970 3860 3944 3961 3965 3983
Drop Evil Connections 254 243 239 249 251 244 249 244 245 254
Total Established Connections 3318 3305 3400 3312 3359 3445 3368 3349 3347 3302
Established Good Connections 3112 3101 3199 3108 3155 3244 3167 3148 3143 3093
Established Evil Connections 206 204 200 204 204 201 201 201 204 209
Total Reset Connections 3103 3096 3187 3096 3149 3229 3157 3135 3132 3087
Reset Good Conns 3103 3096 3187 3096 3149 3229 3157 3135 3132 3087
Average Total Connections 243 243 243 243 243 243 243 243 243 243
Average Good Connections 111 111 115 110 111 114 112 112 111 110
Average Evil Connections 132 132 128 132 131 128 130 130 131 133

56

Figure 16: 80 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5 6 7 8
7100

7150

7200

7250

7300

7350

7400

7450

7500

7550

7600

7650

Connections vs Priority Cutoff

Total Connections

Good Connections

Priority Cutoff

N
um

be
r

o
f

C
on

ne
ct

io
ns

Figure 17: 80 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5 6 7 8
110

112.5

115

117.5

120

122.5

125

127.5

130

132.5

135

Average Table Size vs Priority Cutoff

Average Good
Connections

Average Evil Connec-
tions

Priority Cutoff

A
ve

ra
ge

 C
on

ne
ct

io
n

T
ab

le
 S

iz
e

From Figures 17 and 18, it would seem that the optimal cutoff point is at 3

connections. The number of dropped good connections is at the lowest, while the average

number of good connections and the number of established connections are at their

highest.

However, only an improvement of 2% in the number of dropped good

connections is achieved (3983/7112 = 56% to 3860/7138 = 54%), and an improvement of

0.5% in the number of established good connections (3093/3302 = 93.7% to 3244/3445 =

94.2%), and an improvement of 1.6% in the average number of good connections

(110/243 = 45.3% to 114/243 = 46.9%).

Statistically, those percentages are not very significant, therefore more evil clients

57

Figure 18: 80 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5 6 7 8
3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

Dropped and Established vs Priority Cutoff

Total Dropped
Connections

Good Dropped
Connections

Total Established
Connections

Good Established
Connections

Priority Cutoff

D
ro

pp
ed

 a
nd

 E
st

ab
lis

he
d

C
on

ne
ct

io
ns

are added.

80 good clients and 3 evil clients are used in the next test case.

58

Figure 19: 80 Good Clients and 3 Evil Clients (-1 is the base case)

-1 0 1 2 3 4 5
6500

6750

7000

7250

7500

7750

8000

8250

8500

8750

9000

9250

9500

Connections vs Priority Cutoff

Total Connections

Good Connections

Priority Cutoff

N
um

be
r

of
 C

on
ne

ct
io

ns

59

Figure 20: 80 Good Clients and 3 Evil Clients (-1 is the base case)

-1 0 1 2 3 4 5
0

25

50

75

100

125

150

175

200

225

250

Average Table Size vs Priority Cutoff

Average Good
Connection

Average Evil
Connection

Priority Cutoff

A
ve

ra
ge

 C
o

nn
e

ct
io

n
T

a
bl

e
 S

iz
e

Figure 21: 80 Good Clients and 3 Evil Clients (-1 is the base case)

-1 0 1 2 3 4 5
5600

5800

6000

6200

6400

6600

6800

7000

7200

Dropped Connections vs Priority Cutoff

Total Dropped
Connections

Good Dropped
Connections

Priority Cutoff

N
um

be
r

of
 D

ro
pp

e
d

C
o

nn
e

ct
io

ns

From Figures 19, 20, 21, and 22, the addition of a priority queue does not seem to

help, as shown by the almost horizontal lines in all four graphs.

To prove that a priority queue does not help improve performance of the system,

more good clients are added with only 1 evil client. The results are as shown in Figures

23, 24, and 25.

1024 good clients and one evil client interact with one server. The percentage of

dropped connections is very high, as expected, since the server just gets overloaded by

connection requests. Although there is one evil client, it only has 19 connections on

average in the server's connection table. This is because the good clients greatly

60

Figure 22: 80 Good Clients and 3 Evil Clients (-1 is the base case)

-1 0 1 2 3 4 5
1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

Established Connections vs Priority Cutoff

Total Established
Connections

Good Established
Connections

Priority Cutoff

N
um

b
e

r
o

f
E

st
a

b
lis

he
d

 C
o

nn
e

ct
io

ns

outnumber the lonely evil client.

Similar to the previous test case, Figures 25 and 26 show a graph of horizontal

lines, indicating that the priority queue does not help improve the performance of the

server. On the other hand, Figure 23 shows a display of “zig zag” lines, but these are due

to statistical fluctuations.

61

Figure 23: 1024 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5
90700

90800

90900

91000

91100

91200

91300

91400

91500

91600

91700

91800

91900

92000

Connections vs Priority Cutoff

Total Connections

Good Connections

Priority Cutoff

N
um

be
r

of
 C

on
ne

ct
io

ns

62

Figure 24: 1024 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5
0

25

50

75

100

125

150

175

200

225

250

Average Table Size vs Priority Cutoff

Average Good
Connections

Average Evil
Connections

Priority Cutoff

A
ve

ra
g

e
C

on
ne

ct
io

n
T

a
bl

e
 S

iz
e

4.4 Conclusion

As discussed in Chapter 4.3, the priority queue feature did not significantly

improve the performance of the server with regards to the good clients. Although

intuitively a priority queue should help since all the evil messages are being sent at the

back of the queue, the experiment did not work because the evil messages will eventually

get to the front of the line and get processed by the server. Processing time of incoming

messages is only one millisecond, and even if good clients keep sending messages to the

63

Figure 25: 1024 Good Clients and 1 Evil Client (-1 is the base case)

-1 0 1 2 3 4 5
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Dropped and Established vs Priority Cutoff

Total Dropped
Connections

Drop Good
Connections

Total Established
Connections

Established Good
Connections

Priority Cutoff

D
ro

p
p

e
d

 a
n

d
 E

st
a

b
lis

h
e

d
 C

o
n

n
e

ct
io

n
s

server, the latter only needs one millisecond to process an evil message, and once a

connection from an evil client has been created in the server's connection table, it stays

there forever because the evil clients do not send any resets and these connections are

never removed. Even though all the evil messages are being pushed back at the end of the

queue, once they get to the front, they will get processed by the server and a new entry

created in the table. This new entry will never be removed from the connection table, thus

the good clients are still being denied access to the server.

Moreover, a message priority queue is not known to be used on any

configurations for any servers in the real world, giving further evidence that a priority

queue might not work.

We will have to do more rigorous processing to prevent evil clients from getting

into the table in the first place.

Next, experiment 2 is going to be implemented and discussed.

64

5 Experiment 2 – Limit Number of Connections

5.1 Goals

The base case allows a client to create as many connections as needed. This can

be harmful and impact performance when an evil client creates dozens of connections,

preventing other clients from obtaining a connection space in the table.

Thus, in this second experiment, the number of connections any client can have in

the server's table is limited to the limiting value x. Whenever a client tries to create a new

connection, the connection table for the server is checked to determine how many

connections that client currently has open – both in progress connections and established

connections. If the limit x is exceeded, that new connection is dropped. Else, a new entry

is created in the server's table for that connection. Only the server uses the limit since it is

the object under study.

Since evil clients never reset or remove the connections they create, they could

potentially create lots of connections in the server's table, thus denying access by the

good clients. Limiting the number of connections each client can create will hamper the

negative impacts of the evil clients. However, if the limit is too low, that would impact

the good clients in a negative way too since they won't be allowed to create more

legitimate connections. On the other hand, if the limit is too high, it would not matter that

65

the limit is being used since no client will ever have that high number of connections in

the table.

The optimal value of the limit x will be determined to see if any improvements

have been made.

5.2 New Parameter

For this new feature to work, one new parameter is needed. This is shown in

Table 6.

limitNumConnPerClient 0 The limit to be used (0 means no limit), and of course, a
negative limit does not make sense

Table 6: New Parameter for Limit

5.3 Runs

The simulator was run using the same parameters as mentioned before, but with

the new parameter in Chapter 5.2 introduced. The limit is varied to determine if there is

an optimal value.

The priority queue is not used since it was shown in Chapter 4 that adding a

priority queue instead of a FIFO queue did not help improve performance on the server.

Table 7 shows the runs with 80 good clients and 1 evil client, with the most

important statistics.

66

In the graphs to follow, a limit of 0 represents the base case scenario.

Figure 26 shows the attempted number of connections. Both curves are similar, as

they both have a peak at the same limit and follow the same general pattern. Although

there are some fluctuations, those are due to statistical errors. Therefore, the line can be

considered to be horizontal, which is what is expected since the number of connections

should stay approximately the same, regardless of the limiting value used.

The number of dropped connections is shown in Figure 27. The number of

established connections and the average size of the connection table are graphed in

Figures 28 and 29 respectively.

67

Table 7: Limit Number of Connections - 80 Good Clients and 1 Evil Client

Limit 10 9 7 6 5 4 3 2 1 Base Case
Total Inbound Messages 20407 20475 20320 20548 19756 18620 16618 14094 11032 14134
Good Inbound Messages 19955 20010 19866 20094 19298 18173 16160 13635 10596 13486
Evil Inbound Messages 452 465 454 455 458 447 457 459 437 648
Total Outbound Messages 6542 6572 6520 6548 6235 5604 4583 3303 1742 3414
Good Outbound Messages 6532 6563 6513 6542 6230 5600 4580 3301 1741 3210
Evil Outbound Messages 10 9 7 6 5 4 3 2 1 204
Total Connections 7581 7588 7531 7701 7526 7622 7626 7612 7615 7559
Good Connections 7139 7132 7084 7253 7073 7179 7172 7155 7179 7115
Evil Connections 442 456 447 449 453 443 454 457 436 444
Total Dropped Connections 1039 1016 1010 1154 1291 2018 3043 4309 5873 4145
Dropped Good Connections 607 569 570 711 843 1580 2592 3854 5439 3905
Dropped Evil Connections 432 447 440 443 448 439 451 455 435 240
Total Established Connections 6478 6512 6453 6486 6166 5549 4535 3265 1714 3386
Established Good Connections 6468 6503 6446 6480 6161 5545 4532 3263 1713 3182
Established Evil Connections 10 9 7 6 5 4 3 2 1 204
Total Reset Connections 6299 6328 6283 6311 6008 5405 4418 3186 1680 3164
Reset Good Connections 6299 6328 6283 6311 6008 5405 4418 3186 1680 3164
Total Errors 49 48 54 50 56 45 38 31 23 25
Good Errors 49 48 54 50 56 45 38 31 23 25
Evil Errors 0 0 0 0 0 0 0 0 0 0
Average Total Connections 236 236 234 233 219 197 162 115 61 243
Average Good Connections 226 227 227 227 214 193 159 113 60 112
Average Evil Connections 9 8 6 5 4 3 2 2 1 130

68

Figure 26: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
7050

7100

7150

7200

7250

7300

7350

7400

7450

7500

7550

7600

7650

7700

7750

Connections vs Limit

Total Connec-
tions

Good Connec-
tions

Limit

N
um

be
r

of
 C

on
ne

ct
io

ns

Figure 27: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Dropped Connections vs Limit

Total Dropped
Connections

Dropped Good
Connections

Limit

N
um

be
r

of
 D

ro
pp

e
d

C
on

ne
ct

io
ns

When the limit is really low (limit = 1, 2), there are a lot of dropped connections.

This is because, each good client would have, on average, about 3 to 4 connections at any

time in the connection table of the server since every 20 seconds, it sends a new initial

request, and every 60 seconds, it sends a reset message. As mirrored in Figures 28 and

29, there are very few established connections and the connection table is pretty much

empty on average for those low limits. This is an extreme case. Figure 28 is a mirror of

Figure 27.

However, as the limit increases, the number of dropped connections drops

significantly. The number of established connections and the average size of the

connection table also increase dramatically. As can be seen in Figure 28, the total number

of established connections and the total number of established good connections are on

69

Figure 28: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Established Connections vs Limit

Total Established
Connections

Established Good
Connections

Limit

N
um

be
r

of
 E

st
ab

lis
he

d
C

on
ne

ct
io

ns

the same line. This is because the single evil client is being hampered by the introduction

of the limit. The client is limited to the number of connections it can create, and from

Figure 29, the good clients “hog up” the whole connection table.

As the limit increases, the performance converges back to the base case. This is

because as more evil connections can be created, the limit does not help anymore, as the

evil client creates as many connections as possible and the good clients suffer from that.

The optimal value of the limit is 6. This is about the average number of

connections a good client will have at any time in the server's connection table.

More evil clients are added to the simulation to determine if the limit really helps

or not. The next test case contains 80 good clients and 16 evil clients.

70

Figure 29: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200

225

250

Table Size vs Limit

Average Total
Connections

Average Good
Connections

Average Evil
Connections

Limit

A
ve

ra
ge

 C
on

n
ec

tio
n

T
ab

le
 S

iz
e

Figure 30 shows that the number of connections is constant, so there are no side-

effects to be considered.

Figures 31, 32, and 33 show the total number of dropped connections, the total

number of established connections, and the average size of the connection table. They are

all very much similar to Figures 27, 28, and 29.

The base case was not very successful in diminishing the impact of the evil clients

because they were able to create so many connections, thereby reducing the effective size

of the server's connection table. As shown in Figure 33, the evil clients were taking up

most of the connection space in the table.

Therefore, the introduction of the limit helped right away, even with a low limit

since evil clients are effectively being denied.

71

Figure 30: 80 Good Clients and 16 Evil Clients (0 is the base case)

0 1 2 3 4 5
5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Connections vs Limit

Total Connections

Good Connections

Limit

N
um

be
r

of
 C

o
nn

e
ct

io
ns

72

Figure 31: 80 Good Clients and 16 Evil Clients (0 is the base case)

0 1 2 3 4 5
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Dropped Connections vs Limit

Total Dropped
Connections

Dropped Good
Connections

Limit

N
um

be
r

of
 D

ro
pp

ed
 C

on
ne

ct
io

ns

Figure 32: 80 Good Clients and 16 Evil Clients (0 is the base case)

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Established Connections vs Limit

Total Established
Connections

Established Good
Connections

Limit

N
um

be
r

o
f

E
st

ab
lis

he
d

 C
on

ne
ct

io
ns

However, with a low limit, the connection table was not being used to its full

capacity, but as the limit is increased, the average size of the connection table increases to

its maximum. As the limit is increased beyond 5, the evil clients are again allowed to

hamper the server's availability.

In Figure 28, both lines overlap each other. However, in Figure 32, the “good

established connections” line is a bit below the “total established connections” line. This

is due to more evil connections being established since there are more evil clients.

With only 1 evil client, the optimal value for the limit is around 6 connections.

With 16 evil clients, the optimal value for the limit decreases to 4 connections. The same

trend can be seen as the number of evil clients increases.

73

Figure 33: 80 Good Clients and 16 Evil Clients (0 is the base case)

0 1 2 3 4 5
0

25

50

75

100

125

150

175

200

225

250

Average Table Size vs Limit

Average Total
Connections

Average Good
Connections

Average Evil
Connections

Limit

A
ve

ra
ge

 C
on

ne
ct

io
n

T
a

bl
e

S
iz

e

5.4 Conclusion

Limiting the number of connections a client can have in the server's connection

table does help in reducing the impact of an attack by evil clients. Moreover, the good

clients receive a boost in their ability to create new connections in the table. However, as

was shown with the two different cases in Chapter 5.3, it is very hard to determine what

the optimal value of the limit should be since there is no way of knowing who the evil

clients are.

Decreasing the limit as the number of clients increases might work if the number

of clients is increased. But a lot more tests have to be run to determine what the optimal

value should be for each number of clients. Moreover, if there are no evil clients, the

limit should not be decreased because good clients do not connect that often to the server.

Since there is no way for the server to determine whether a client is good or evil,

another method has to be found to improve the performance of the server.

74

6 Experiment 3 – Server Reset

6.1 Goals

As was discussed in Chapter 4, a priority queue did not help hinder evil clients'

attack. In Chapter 5, using a limiting value to limit the number of connections a client can

create did help improve the performance of the server but it was difficult to determine

what the optimal value of the limit should be since the server does not know how many

good and evil clients there are.

The third and last experiment to be implemented is the server reset. Whenever its

connection table becomes full and a new connection needs to be created, the server will

forcefully remove the oldest established connection in its connection table, regardless of

which client created that connection. In-progress connections are not removed. If an evil

client does not acknowledge back to the server, that in-progress connection will

eventually time out.

Since evil clients never reset any of their established connections, the latter stay in

the server's connection table for the duration of the simulation. Therefore, the server will

try to shoulder the responsibility of flushing out the evil connections. The oldest

established connection is removed since this is the most likely connection to be evil.

Good clients will eventually reset their connections after about 60 seconds. The oldest

75

connection is just deleted and no reset message is sent from the server to the client whose

connection is being removed. The server reset is performed only when the server's table

is full, which implies that it is busy, under attack, or under a big load of requests.

Therefore, having the server create a new message and send it will just create more

overhead for the server.

It is expected that the evil connections will get reset which will allow more good

connections to be created. However, it is also expected that some good connections will

be reset prematurely as well. If this happens, when the real reset from the client reaches

the server, this will be reported as an error.

The priority queue will still not be used in this experiment but the limit will be

implemented as well as the server reset. The limiting value will be varied to determine

whether the server reset helps in all cases, including the base case.

6.2 New Parameter

One parameter needs to be added to the parameter list to implement the server

reset. It is shown in Table 8.

useServerReset true Whether or not to use the server reset

Table 8: New Parameter for Server Reset

76

6.3 Runs

The same parameters are used as before, except that both the limit and the server

reset are used. It will be determined whether the addition of the server reset helps

improve the performance of the server or not.

Table 9 shows a sample of the important statistics measured.

As shown in Appendix A, the total number of connections for both cases –

without server reset and with server reset – for all the limit values is constant. The small

changes are only due to statistical fluctuations.

As shown in Figure 34, there are no dropped good connections for the base case

when the server reset is used. This is not quite surprising although it was expected that at

least a couple of connections would get dropped, because the server deletes the oldest

established connection when its connection table gets full.

77

Table 9: Server Reset

Limit 10 w/ Reset 10 6 w/ Reset 6 1 w/ Reset 1 Base Case w/ Reset Base Case
Total Connections 7633 7581 7627 7701 7745 7615 7564 7559
Good Connections 7179 7139 7184 7253 7282 7179 7116 7115
Evil Connections 454 442 443 449 463 436 448 444
Total Dropped Connections 348 1039 760 1154 5971 5873 0 4145
Dropped Good Connections 4 607 365 711 5509 5439 0 3905
Dropped Evil Connections 344 432 396 443 462 435 0 240
Total Established Connections 7211 6478 6781 6486 1745 1714 7483 3386
Established Good Connections 7101 6468 6733 6480 1744 1713 7036 3182
Established Evil Connections 109 10 48 6 1 1 447 204
Total Reset Connections 7038 6299 6632 6311 1710 1680 7317 3164
Reset Good Connections 6938 6299 6590 6311 1710 1680 6897 3164
Reset Evil Connections 100 0 42 0 0 0 420 0
Total Errors 687 49 312 50 25 23 972 25
Good Errors 687 49 312 50 25 23 972 25
Average Total Connections 237 236 229 233 62 61 240 243
Average Good Connections 227 226 223 227 61 60 211 112
Average Evil Connections 9 9 5 5 1 1 29 130

For low limit values, the server reset does not help at all, but for higher values, it

helps to reduce the number of dropped connections significantly, even more than the limit

without the server reset does. However, without using the server reset, as the limit is

increased, the number of dropped connections increases, whereas with the server reset,

the number of dropped connections stays at zero. However, this is not the only measure

that is to be considered as shown later.

Figure 35 shows the number of dropped evil connections. It is analogous to Figure

34 with fewer dropped evil connections as the limit is increased, but evil connections are

still being dropped, unless the limit is really big, then it converges back to the base case.

78

Figure 34: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Dropped Good Connections vs Limit

Dropped Good
Connections

Dropped Good
Connections w/
Server Reset

Limit

N
um

be
r

of
 D

ro
pp

e
d

G
o

od
 C

on
ne

ct
io

ns

Figures 36 and 37 show the number of established connections. Compared to the

base case, the limit helps decrease the number of established evil connections while the

number of established good connections increases. Using the server reset, the number of

established good connections is increased even more with the optimal value of limit.

Although the number of established evil connections also increases, the increase in the

established good connections is more significant than the increase in the established evil

connections.

79

Figure 35: 80 Good Clients and 1 Evil Client

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

Dropped Evil Connections vs Limit

Dropped Evil
Connections

Dropped Evil
Connections w/
Server Reset

Limit

N
um

be
r

of
 D

ro
pp

e
d

E
vi

l C
o

nn
e

ct
io

ns

80

Figure 36: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Established Good Connections vs Limit

Established Good
Connections

Established Good
Connections w/
Server Reset

LimitN
um

be
r

o
f

E
st

ab
lis

he
d

 G
o

o
d

C
o

nn
e

ct
io

ns

Figure 37: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Established Evil Connections vs Limit

Established Evil
Connections

Established Evil
Connections w/
Server Reset

Limit

N
um

be
r

of
 E

st
a

bl
is

he
d

E
vi

l C
o

nn
ec

tio
ns

81

Figure 38: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Reset Good Connections vs Limit

Reset Good
Connections

Reset Good Con-
nections w/ Server
Reset

Limit

N
um

be
r

of
 R

es
e

t G
oo

d
 C

on
ne

ct
io

ns

Figure 39: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Reset Evil Connections vs Limit

Reset Evil
Connections

Reset Evil Con-
nections w/
Server Reset

Limit

N
um

be
r

of
 R

es
et

 E
vi

l C
on

ne
ct

io
ns

Figures 38 and 39 show the number of reset connections. With the server reset,

the number of reset good connections goes up. The extra reset good connections are due

to the server prematurely removing connections when its connection table gets full. It just

so happened that a good client's connection was the oldest established connection at that

time. The extra reset connections match the extra errors reported by the server, as shown

in Figure 40. On the other hand, evil connections, which were never reset before, are now

being removed from the server's connection table. This is the main reason why there are

more established and fewer dropped connections overall.

Figure 41 shows the average number of good connections in the server's table.

The average number of good connections is about the same with or without the server

82

Figure 40: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

Good Errors vs Limit

Good Errors

Good Errors w/
Server Reset

Limit

N
um

b
e

r
o

f
G

o
o

d
 E

rr
o

rs

reset, except in the base case. In the latter, evil clients are effectively being removed from

the connection table all the time. However, the number of errors also goes up

dramatically.

The same results are observed when the number of evil clients is increased. The

data is shown in Appendix A.

6.4 Conclusion

Using the server reset with no limit is a bit drastic, since good connections are

ended prematurely. Although there is no way of knowing in the current simulation

83

Figure 41: 80 Good Clients and 1 Evil Client (0 is the base case)

0 1 2 3 4 5 6 7 8 9 10
60

80

100

120

140

160

180

200

220

240

Average Table Size vs Limit

Average Good
Connections

Average Good
Connections w/
Server Reset

Limit

A
ve

ra
ge

 C
on

ne
ct

io
n

T
a

bl
e

 S
iz

e

whether that had any effect or whether the reset from the client was on its way already

when the server removed the connection, the big increase in the number of errors is

something to be analyzed deeper.

When limits are used, an even better improvement is seen when the server reset is

used, which was expected. As mentioned above, there is no way of knowing whether the

increase in errors caused any problems such as a connection ending prematurely and the

client having to reestablish the connection.

Moreover, the optimal value for the limit cannot be effectively determined for the

same reasons mentioned in Chapter 5.4.

84

7 Conclusions

Distributed Denial of Service attacks are a real threat as described in Chapter 1.

They are currently generally unstoppable, and there are a lot of academic research and

government-funded research going on in this area. This thesis only analyzed a very small

portion of the whole field of DDoS attacks.

The simulation performed consisted of a lot of parameters or input values but

most of them were fixed and were obtained from the real world (Macalester College's

servers). Although a lot of statistics were taken, not all of them are applicable or mean

anything for every test case. The simulation also focuses mainly on brute force attack and

varying the number of clients – good and evil.

The base case was carefully chosen after numerous tests and analysis and was

such that the server is not completely overloaded that any defense techniques

implemented would not really help or not busy at all that any improvements by

implementing some defenses would not be noticeable. 80 good clients and variable evil

clients with an interval time of initial connect requests of 4 seconds were chosen as the

base case.

The first experiment performed was implementing an inbound message priority

queue for the server instead of an inbound first in first out message queue. As shown in

Chapter 4, the addition of a priority queue did not help improve the performance of the

85

server. This was due to the fact that evil messages will eventually get to the front of the

line and once an evil connection has been created, it is never reset.

In light of the failures of the first experiment, the second experiment performed

implemented a limit. The limit value limits the number of connections each client can

have in the server's connection table at any time. As described in Chapter 5, the limit did

improve the performance of the server, but sometimes it was too extreme, such as if the

limit value is too low, there are no improvements, but in fact there are deteriorations in

the availability of the server. Moreover, if the limit value is too large, the limit is not

really used as the test case resembles the base case without the limit. Finding the optimal

value of the limit is hard because it depends on the number of clients, the number of good

clients, and the number of evil clients. However, if somehow it could be predicted in

advance how many good and evil clients there will be in the simulation, then the limit

does help a lot. The same results are observed for increasing number of evil clients.

Since evil connections stay in the connection table for the duration of the

simulation because evil clients never reset their own connections, a forced server reset is

implemented in experiment 3. Whenever its connection table becomes full and a new

connection needs to be created, the server will forcefully remove the oldest established

connection, regardless of how old it is and what client created that connection. Chapter 6

describes in more details the effects of the server reset. The main aspects of this

implementation are that the server reset along with the limit further improves the

availability of the server. Also, the limit is not as important as it was when it was used

alone as in experiment 2. Although the number of established evil connections increases,

86

the increase in the number of established good connections more than offsets it. Even

with an increase in the number of evil clients, the same results are observed. The

downside to using the server reset is that the number of errors also increases. An error

means that a message arrived at the server and the latter does not know what to do with it.

In the server reset case, the increase in errors is due to a good connection being

prematurely removed, and when the reset from the client comes in, the connection has

already been deleted and the server does not know what to do with the message. With the

way the simulator has been implemented, it cannot be determined whether the connection

has been terminated prematurely or whether the client reset was already on its way when

the server deleted the connection.

The limit experiment is in fact implemented in real life: The macalester SMTP

(outgoing email) server uses a limit of 10. The server reset is also used in the real world.

It probably happened to everyone when their connection gets timed out, when logged in

to a bank's website, or when idling in an FTP session. Since no data transfer is simulated,

there is no way to set the “idle” time value, but just the oldest established connection

being removed.

In both experiments 2 and 3, the limit and the server reset were performed

regardless of who the client is. They don't try to differentiate between a good and an evil

client. Thus, there are a lot of other defense techniques that could have been implemented

and those are discussed in the next chapter.

87

8 Future Work

A lot of other work could build from the simulator to examine other aspects.

Detection techniques could be implemented. There are currently a lot of ways to try to

detect when a DDoS attack is happening and also who the attacker(s) are. When that is

known, the limit could be tuned to the optimal value for each set of parameters. Also, the

server can reset only the evil connections.

A firewall could also be implemented to act like a proxy between the server and

the clients. It will thus only pass in completely established connections to the server,

thereby reducing the load on the latter. The processing time would probably be lower for

the firewall and it can have in-built mechanisms to detect and mitigate DDoS attacks.

That would be its single task which could then be optimized, in contrast with the server,

which has to be more of a general purpose service.

Multiple servers could be used to allow for greater connection space, higher

bandwidth, and the ability to cope with a larger attack force. A load balancer thus has to

be implemented which then distributes messages to all the servers in a fair way, such as

using round robin or determining which server is the least busy and giving it the message

to process.

Other attacks could also be implemented or analyzed such as the TCP SYN

exploit, LAND attack, smurf attacks, and all those other types of attacks outlined in

Chapter 1. The current simulation uses only brute force attack which might be the hardest

type of attack to defend against, but the other types of attacks are also interesting.

88

Least but not last, the simulator could be extended to allow for virtual data

transfer, the four-way handshake connection termination, and other real aspects of a

network. A current simulator that possesses all those abilities will be the ns-2 simulator,

but other features can easily be added to the current simulator so that it simulates a real

traffic network.

89

9. Bibliography

1. [Carl et al, 2006] Carl, G., Kesidis, G., Brooks, R. R., Rai, S., “Denial of Service

Attack-Detection Techniques”, IEEE Internet Computing, Jan/Feb 2006

2. [Challita et al, 2004] Challita, A., Hassan, M. E., Maalouf, S., Zouheiry, A.

(2004), “A Survey of DDoS Defense Mechanisms”, Department of Electrical and

Computer Engineering, American University of Beirut, Retrieved from

http://webfea.fea.aub.edu.lb/proceedings/2004/SRC-ECE-39.pdf

3. [Cheswick et al, 2003] Cheswick, W., Bellovin, S., Rubin, A., Firewalls and

Internet Security: Repelling the Wily Hacker. Addison-Wesley Professional,

Second Edition, 2003

4. [Denial of Service, n.d.] Denial of Service (n.d.), Retrieved on May 10, 2005 from

http://whatis.techtarget.com/definition/0,289893,sid9_gci213591,00.html

5. [Farrow, n.d.] Farrow, R. (n.d.), “Distributed Denial of Service Attacks (DDoS)”,

Retrieved from

http://chinese-school.netfirms.com/computer-article-denial-of-service.html

6. [Forouzan, 2000] Forouzan, B. A., TCP/IP Protocol Suite. McGraw-Hill

Companies, Inc., 2000

7. [Kessler, 2000] Kessler, G. C., “Defenses Against Distributed Denial of Service

Attacks”, SANS/GIAC Security Essentials Certification, November 2000

8. [Land Attacks Still Going Strong, 2005] Land Attacks Still Going Strong (2005),

90

http://chinese-school.netfirms.com/computer-article-denial-of-service.html
http://whatis.techtarget.com/definition/0,289893,sid9_gci213591,00.html

Retrieved on December 14, 2005 from

http://www.securiteam.com/securitynews/6H00E15EUE.html

9. [Lau et al, 2000] Lau, F., Rubin, S. H., Smith, M. H., Trajkovic, L., “Distributed

Denial of Service Attacks”, 2000 IEEE International Conference on Systems,

Man, and Cybernetics, Volume 3: 2275-2280, 2000

10. [Mell et al, 2000] Mell, P., Marks, D., McLarnon, M., “A denial-of-service

resistant intrusion detection architecture”, Computer Networks 34: 641-658, 2000

11. [Mirkovic et al, 2004] Mirkovic, J. and Reiher, P., “A Taxonomy of DDoS Attack

and DDoS Defense Mechanisms”, ACM SIGCOMM Computer Communications

Review, Volume 34, Issue 2, April 2004

12. [Mutaf, n.d.] Mutaf, P. (n.d.), “Defending against a Denial-of-Service Attack on

TCP”, Retrieved from

http://www.raid-symposium.org/raid99/PAPERS/ParsMutaf.pdf

13. [Oliver, 2001] Oliver, R. (2001), “Countering SYN Flood Denial-of-Service

Attacks”, Retrieved on August 21, 2001 from

http://www.tech-mavens.com/synflood.htm

14. [Rogers, n.d.] Rogers, L. R. (n.d.), “What is a Distributed Denial of Service

(DDoS) Attack and What Can I Do About It?”, Retrieved on September 10, 2005

from http://www.cert.org/archive/pdf/homeusers/ddos.pdf

15. [Stein et al, 2002] Stein, L., Stewart, J. (2002), “The World Wide Web Security

FAQ”, Retrieved on February 4, 2002 from http://www.w3.org/Security/Faq

16. [Tanenbaum, 2002] Tanenbaum, A. S., Computer Networks. Pearson Education,

91

http://www.w3.org/Security/Faq
http://www.cert.org/archive/pdf/homeusers/ddos.pdf
http://www.tech-mavens.com/synflood.htm

Inc, Fourth Edition, 2002

17. [Templeton et al, 2003] Templeton, S. J., Levitt, K. E. (2003) "Detecting Spoofed

Packets", DARPA Information Survivability Conference and Exposition -

Volume I: p. 164, 2003

18. [Tupakula et al, 2003] Tupakula,U. K. and Varadharajan, V., “A Practical Method

to Counteract Denial of Service Attacks”, ACM International Conference

Proceeding Series, Volume 35: 275-284, 2003

19. [Vijayan, 2005] Vijayan, J. (2005), “Port scan may not always signal attacks”,

Retrieved on Dec, 7, 2005 from

http://www.computerworld.com/securitytopics/security/story/0,10801,106849,00.

html

92

http://www.computerworld.com/securitytopics/security/story/0,10801,106849,00.html
http://www.computerworld.com/securitytopics/security/story/0,10801,106849,00.html

10. Acknowledgments

I would like to thank my advisor Professor Michael Schneider, and my committee

members Professor Richard Molnar and Mr. Barron Koralesky. A special thanks also

goes to Mr. Ted Fines for all the information pertaining to the Macalester network.

I would also like to thank my brother, Sebastien Chan-Tin, for his help; my

parents and Youa Yang for their love and affection; Jesse Harman, Jacob Dorer, Rita Lee,

Dang Vang, Pakou Vang, and Thao Huynh for their friendship and support during my

thesis research.

Last but not least, I convey my thanks to the OpenOffice community for such a

great product.

93

Appendix A – Raw Data and Tables

In an effort to save paper, the raw data and tables are not printed. They are

available in electronic format at the Macalester College library. You can also contact the

author at echantin@alumni.macalester.edu

94

Appendix B – Code

Similar to the reason mentioned in Appendix A, the code is not printed but is

available in electronic format at Macalester College. It can also be obtained from the

author by contacting him via email at echantin@alumni.macalester.edu

95

	Macalester College
	DigitalCommons@Macalester College
	May 2006

	Analysis of Defenses against Distributed Denial of Service Attacks
	D. Eric Chan-Tin
	Recommended Citation

	Abstract
	1. Introduction
	1.1 Analogy
	1.2 Why?
	1.3 Examples
	1.4 DDoS Attacks
	1.5 Defenses
	1.6 Similar Work
	1.7 This Paper

	2. Network Simulation
	2.1 Introduction
	2.2 Example
	2.3 Goals
	2.4 Technical Details
	2.4.1 Software Used
	2.4.2 Time Units
	2.4.3 Events
	2.4.4 Distributions
	2.4.5 Parameters

	2.5 Sample Output
	2.6 Useful Statistics

	3. Simulation Runs
	3.1 Test Runs
	3.2 Goals
	3.3 Base Case
	3.3.1 What is a Base Case?
	3.3.2 Base Case 1 – Number of Good Clients
	3.3.3 Base Case 2 – Evil Clients come in!!
	3.3.4. Message Queue always Empty?

	3.4 Defenses

	4 Experiment 1 – Using a Priority Queue
	4.1 Goals
	4.2 New Parameters
	4.3 Runs
	4.4 Conclusion

	5 Experiment 2 – Limit Number of Connections
	5.1 Goals
	5.2 New Parameter
	5.3 Runs
	5.4 Conclusion

	6 Experiment 3 – Server Reset
	6.1 Goals
	6.2 New Parameter
	6.3 Runs
	6.4 Conclusion

	7 Conclusions
	8 Future Work
	9. Bibliography
	10. Acknowledgments
	Appendix A – Raw Data and Tables
	Appendix B – Code

