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Abstract

The role of visual methods in geometry is puzzling. Though diagrams can
make a geometric theorem immediately evident, current rules of proper inference
suggest that diagrams are mere heuristics—simply aiding in the psychological
digestibility of a proof. Securing a justificatory role for visual methods involves
describing how inference from a diagram guarantees the universality and the a
priority of a geometric theorem. Such an analysis is provided in Kant’s synthetic
a priori account of geometry. In this paper, Kant’s theory is explicated and
subsequently defended from attacks related to modern advances in predicate
logic, relativistic physics, non-Euclidean geometry and formalism.
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1° Framing the Problem

Visual evidence plays an enigmatic role in geometric proof. The proofs of Eu-
clid’s Flements instruct the reader to construct triangles, produce sides and
draw lines. But what role do these constructions play in proving the theorems
of geometry? Take for example, Euclid’s Proposition 32 from Book I:

In any triangle, if one of the sides be produced, the exterior angle is
equal to the two interior and opposite angles, and the three interior
angles of the triangle are equal to two right angles.

Heath 1965: 319

In the proof of this proposition, Euclid “produces” one of the sides of a triangle,
then draws a line parallel to another side of the triangle as follows:

A D

B C E
Figure 1: Diagram Accompanying Euclid’s Proposition 32

After extending BC to E and drawing CD parallel to AB, Euclid appeals to
propositions of angle equality to prove that LZABC + /BCA + /CAB is equal
to 180°. Is this appeal to the drawn triangle necessary for the proof? Could one
simply lay down Euclidean definitions, postulates and common notions, then
subsequently derive Proposition 32 without reference to a visualized triangle?

The place of visualization in mathematics is ambiguous. The drawn triangle
in Figure 1 above certainly serves as a heuristic tool; one can more easily con-
clude that Proposition 32 is true when the diagram is before one’s eyes. But can
the diagram be said to serve an epistemic or justificatory role? A diagram or
an image is only a single instantiation of a mathematical concept; attributing a
property to a particular of a class is certainly not sufficient to conclude that the
property holds for all particulars. We are at something of an impasse. Diagrams
appeat to serve a role in proof, but the machinery of valid inference would tell
us otherwise.

Diagrams were not always so marginalized. Prior to the rigorization of analy-
sis,! arithmetic and geometry,? visual techniques were accepted as valid methods

1In “Purely Analytic Proof”, one of the key foundational texts of analysis, Bernard Bolzano
ezplicitly rejects visual techniques for proving the Intermediate Zero Theorem (Bolzano 1996).
This paper effectively set the tone for the acceptable proof methods in analysis—casting aside
diagrams as ‘misleading’.

2The rigorization of geometry was brought about, not only by the advent of non-Euclidean
geometries (See §4), but also the introduction of imaginary points. For an exceptional anal-
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of inference. Indeed, Mark Greaves pins the downfall of visual techniques not
upon an increasing sophistication in mathematical proof, but rather on shifts
in the accepted ontology of mathematical objects—though there is no intrinsic
characteristic of diagrams which means they are unreliable tools of inference.

There are, however, two major obstacles to securing an epistemic or justi-
ficatory role for visual evidence: universality and a priority. The properties of
diagrams are easily discernible—vyet disentangling these properties into those
which are universal and those which are particular proves to be difficult in some
cases. What is required is a reliable inference from the characteristics of the
token to those which are universal for the type.

However, an inference such as empirical induction, though often reliable, will
not do. Through inspecting a large number of triangles, producing their sides
and drawing parallel lines, one can inductively infer with reasonable certainty
that the sum of the angles of every triangles adds up to 180°. Proposition 32,
when justified in such a manner, becomes a contingent fact—true only insofar
as empirical triangles have been seen to have the characteristic angle sum. To
account for the a priority of geometry the inference from a diagram must nec-
essarily guarantee a property to hold universally. The difficulty of describing
such an inference is compounded by the empirical nature of a diagram. How
can we infer a universal, a priori truth of geometry from an empirical object?

These perplexities draw us toward Kantian constructivism. By claiming
geometry to be the paradigm of synthetic a priori knowledge in his Critique
of Pure Reason, Kant appears to allow visual methods in the derivation of
universal, a priori truths of geometry. Understanding the Kantian account of
geometry may reveal a way to secure a justificatory role for diagrams generally.

One might question the motivation for reconsidering Kantian constructivism.
Indeed, Michael Friedman sums up the views of many as follows: “Kant’s con-
ception [of geometry] is liable to seem quaint at best and silly at worst” (Fried-
man 1985: 455). The fact that Kantian constructivism is all-too-quickly dis-
counted in the philosophy of mathematics constitutes another impetus for my
project. The difficulties surrounding the interpretation of Kant’s philosophy,
his dependence on antiquated logic, controversy over the possibility of synthetic
a priori knowledge and advances in pure geometry have all contributed to the
commonplace dismissal of constructivism. Kant’s philosophy of mathematics
is frequently judged as something of an oddity—only to be studied from afar.
The Marburg neo-Kantians, notably Cassirer, appear to frame subsequent ap-
proaches to Kant’s philosophy in just this manner: though his motives were
pure, Kant’s appeal to intuition in geometry is simply untenable.® This reading
of Kant persists. Jesse Norman, a contemporary neo-Kantian who defends the
justificatory role of diagrams, similarly rejects Kant’s role for a priori intuition
{(Norman 2006).

ysis of the downfall of visual techniques in geometry in the time of Poncelet and projective
geometry, see Greaves 2002: 43-81.

3See Friedman’s seminal “Philosophy and the Exact Sciences” (Friedman 1992) for char-
acterizations of turn of the twentieth century analytic approaches to Kant’s theory of mathe-
matics.



The Geometry of Intuitions M. Bennett McNulty
May 5th, 2008 Macalester College

Yet philosophy of mathematics is currently faced with concerns akin to those
which Kant addressed—namely the role of visual evidence and the relation be-
tween geometry and the world. Moreover, constructivism provides us with a
desirable description of geometry. Kant’s view of mathematics as synthetic a
priori explains how geometry can be pure, while still expressing meaningful
truths. An analytic description of geometry does not accord with our intuitions
about geometry—it defies our experiences with geometry to think of it as a mere
string of tautologies. The constructivist move to ground geometry in intuition
provides an explanation for how geometric truths correspond to reality. This is
a point which formalist philosophies of geometry tend to overlook. Furthermore,
the Kantian picture of geometry provides us with a more expansive epistemic
framework than alternative solutions which lapse into an appeal to a mysterious
metaphysical realm, such as Platonism. Considering Kant’s constructivism will
prove to shed light on the precise role of visual evidence.

Our investigation of constructivism, however, will not simply be an uncriti-
cal explication of Kant’s account of geometry in the Critigue. Due to advances
in geometry, mathematics and logic since Kant’s time, his account cannot legit-
imately be taken at face-value. In this paper, we will explicate, rehabilitate and
supplement Kant’s theory of geometry while leaving the core principles intact.
That is, while adhering to the central doctrines of synthetic a priority and pure
spatio-temporal intuition we will attempt to provide a reasonable account of
the justificatory role of geometric visualization in light of modern mathematical
advances. We approach Kant critically but sympathetically—appreciating the
motivations and advantages of constructivism as well as its significant short-
comings.

The paper will continue as follows. §2 elucidates our interpretation of Kan-
tian constructivism. We will focus on securing universality and o priority for
inferences from geometric intuition. After fleshing out our version of construc-
tivism, we will attempt to defend our account from common critiques of con-
structivism. §3 investigates the possibility of polyadic logic supplanting the
role of intuition in geometry. Lastly, §4 concerns advances in modern geom-
etry, namely non-Euclidean geometries and Hilbert’s formalist project, which
seriously threaten Kant’s place for intuition in mathematics.
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2 Geometric Construction:
The Necessity of Intuition

In the “Doctrine of Method”, Kant describes mathematical knowledge as “the
knowledge gained by reason from the construction of concepts”, where “to con-
struct a concept means to exhibit a priori the intuition corresponding to the
concept” (A713/B741).% One motive for grounding mathematical knowledge in
intuition is clear from the famous Kantian adage “Thoughts without content
are empty, intuitions without concepts are blind” (A51/B75). In this section,
we will reveal why ‘thoughts’ or concepts alone are inadequate for geometry—
which in turn secures the synthetic a priority of geometry. To begin, we must
explain: (1) The manner by which intuitions and concepts are correlated, and
(2) How intuitions are necessary for geometric knowledge.

2.1 Construction and Syntheticity

The characterization of mathematical cognition as that which is focused on the
construction of concepts seems to directly follow from the Kant’s description of
the syntheticity of mathematics. Consider his example of a philosopher and a
geometer attempting to derive Euclid’s Proposition 32:

Suppose a philosopher be given the concept of a triangle and he be
left to find out, in his own way, what relation the sum of its angles
bears to a right angle. He has nothing but the concept of a figure en-
closed by three straight lines, and possessing three angles. However
long he meditates on this concept, he will never produce anything
new. He can analyse and clarify the concept of a straight line or
of an angle or of the number three, but he can never arrive at any
properties not already contained in these concepts. Now let the geo-
metrician take up these questions. He at once begins by constructing
a triangle. Since he knows that the sum of two right angles is exactly
equal to the sum of all the adjacent angles which can be constructed
from a single point on a straight line, he prolongs one side of his
triangle and obtains two adjacent angles, which together are equal
to two right angles. He then divides the external angle by drawing
a line parallel to the opposite side of the triangle, and observes that
he has thus obtained an external adjacent angle which is equal to an
internal angle—and so on. In this fashion, through a chain of in-
ferences guided throughout by intuition, he arrives at a full evident
and universally valid solution of the problem.

AT16-7/B744-5

4We will use the Norman Kemp Smith translation (Kant 1929). Further references will be
cited in text: (First edition page/Second edition page).
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The philosopher begins by attempting to prove the proposition purely analyt-
ically® from rational cognition on mathematical concepts. From the concept
triangle,® one can only deduce properties which are explicitly contained in the
concept, those such as figure, three, or straight-line. The understanding only has
the capability to parse through the concepts which constitute triangle. The sum
of the angles of the figure add up to 180° is not constitutive of triangle—hence,
we cannot derive Proposition 32 from conceptual reasoning. Kant’s point is that
there are certain characteristics of triangle which belong to the concept, but are
not explicitly contained in it. One cannot discern the sensible characteristics of
a concept until the concept has been synthesized in intuition. Thus, the predi-
cate (Proposition 32), lies outside the concept triangle, but stands in connection
with it through construction—therefore, Proposition 32 is synthetic.”

Two questions challenge this account. First, how can sensible characteristics
be said to belong a prior: universally to a concept or class of intuitions? If
the constructed intuition is empirical, any knowledge which issues from the
construction would appear to be accordingly empirical. Secondly, what exactly
is the connection between a concept and its construction? That is, how can one
construct an intuition which corresponds to a concept? Early on in the Critique,
Kant makes a sharp disconnect between understanding and sensibility, but at
this point, a correlation, or a method for creating correlations, is precisely what
is needed. On one hand, concepts have no sensible content, and on the other,
intuitions are nothing but sensible. Hence, the exhibition of a relation between
a concept and an intuition cannot take a direct route, for they have nothing in
common.® A concept cannot be intuited nor an intuition be thought. A ‘third
thing’ is necessary, a mediator that gives rules for this correlation between the
sensibility and the understanding. Kant’s schema of a concept fills this void.

2.2 The Schematism of Pure Sensible Concepts

This schematism ... is an art concealed in the depths of the human
soul.

A141/B181

Let’s start with a more basic question and ask how intuitions can be subsumed
by concepts. For example, when one has a plate-intuition, how can one deter-

5We will use Kant’s distinction between analytic and synthetic given on in the Introduction
to the Critiqgue. Analytic: “the predicate B belongs to the subject A, as something which is
(covertly) contained in the concept A,” and synthetic: “B lies outside of concept A, although
it does indeed stand in connection with it” (A6/B10). Though some take this definition as
metaphoric, it will serve to facilitate our comprehension of constructivism. Concerns related
to the analytic/synthetic distinction are beyond the scope of this paper.

5Tor the sake of clarity, concepts will appear in italics.

"Kant also famously used the example of ‘7+5 = 12’ to show the syntheticity of arithmetic
(B15). He argues that nowhere within the concepts of 7 or 5 is the concept 12 analytically
contained. 12 lies outside of 7 and 5, accessible only through construction in intuition.

8Concepts and intuitions, both being necessary for knowledge, are intimately connected for
Kant. I do not wish to characterize them as incommensurable—but separate and relatable.
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mine that that intuition falls under the concept circular?® Kant claims that
intuitions are subsumed under concepts when the two are homogeneous. What
are we to make of this homogeneity? Michael Pendlebury characterizes homo-
geneity as follows: “An intuition, 4, and a concept, C, are homogeneous if and
only if C-ness is part of the content of ”; in our example of the plate-intuition,
the plate is homogeneous with circle if and only if “the intuition of represents the
plate as being circular” (Pendlebury 1995: 781). What matters for homogeneity
is the relationship between the content of an intuition and a concept. Hence
a plate-intuition as well as a wheel-intuition share a content of “circle-ness”,
though each intuition is quite unique. Likewise, a scalene triangle drawn on
a chalkboard shares the content of “triangle-ness” with an equilateral triangle
drawn in the imagination.

Schemata are rule-based procedures which serve as the vehicle for homogene-
ity, determining if a given intuition can be subsumed by a concept or instantiat-
ing a concept in intuition. Kant distinguishes three different types of concepts
and describes their corresponding schemata. There are empirical concepts, pure
sensible or mathematical concepts, and pure concepts of the understanding or
the categories. For our discussion, we will focus on the schemata which are
sensible. We will not dwell on the schemata for the categories, though we may
depend on them for the characterization of the schemata of mathematical con-
cepts.

In his discussion of sensible concepts, Kant claims:

...the schema of sensible concepts, such as of figures in space, is a
product and, as it were, a monogram, of pure a priori imagination,
through which, and in accordance with which, images themselves first
become possible. These images can be connected with the concept only
by means of the schema to which they belong.

A141-42/B181

The metaphor of a “monogram” implies that a schema is something like a struc-
ture or a mold in which an intuition can be placed or created. Empirical intu-
itions that are subsumed by the concept dog range from a miniature Daschund-
intuition to a German Shepherd-intuition. What both of these intuitions have
in common is that they ‘fit into’ the monogram: the schema of dog. Schemata
provide rules by which the imagination can delineate the intuition of a concept.
Thus, from the side of sensibility, we can take any intuition and check if it ‘fits
into’ the schema/monogram. From understanding, one can use the imagination
to create an intuition which ‘fits into’ the schema/monogram.

One may ask why a ‘third thing’ is necessary. If concepts contained not
only content but also rules for application to intuitions, the Kantian system
could be streamlined. For mathematical concepts, this is exactly the move that
commentators such as Lisa Shabel and Paul Guyer have made. Shabel argues
that “mathematical concepts come equipped with determinate conditions on

9Kant’s consideration of this example occurs on A137/B176.
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‘and procedures for their construction” {Shabel 2006: 111), and cites the fol-
lowing passage from the beginning of “The Schematism”: “Thus the empirical
concept of a plate is homogeneous with the pure geometrical concept of a circle.
The roundness which is thought in the latter can be intuited in the former”
(A137/B176). Shabel here interprets Kant as arguing that direct homogeneity
between pure sensible concepts and intuitions is possible; schemata are unnec-
essary.

Yet this position does not conform with our interpretation of homogeneity
nor the divide between the understanding and the sensibility. For an intuition
and a concept to be homogeneous, conceptual content in the understanding must
be intuited as belonging to an object of the sensibility. However, conceptual
content which is part of the understanding strictly cannot be intuited.

Also, schemata for empirical concepts and the categories are explicitly extra-
conceptual; this gives us, at the very least, evidence that the same holds for pure
sensible concepts. In the case of dog, one must create the concept by utilizing
experience. In order to classify a given intuition of a furred four-legged animal as
being subsumed by dog, one requires some procedure for subsuming specific intu-
itions (furred-intuitions, four-intuitions, leg intuitions, and so forth) under their
corresponding concepts.!? If a decision procedure is needed before we can have
an empirical concept, schemata, being these procedures, are pre-conceptual.
Furthermore, Kant unequivocally requires extra-conceptual schemata for the
categories.!! We will not dwell on this argument, since our focus is on sensible
concepts, though it would be curious to hold a unique characterization for pure
sensible concepts; whereas both empirical concepts and the categories require
extra-conceptual schemata.

Moreover, Kant claims that “it is schemata, not images of objects which
underlie our pure sensible concepts” (A142/B181). This suggests that the
schemata for mathematical concepts play a distinct role from the concepts.
Klaus Jgrgensen also notes that combining concepts and schemata blurs what
the properties of a concept are properties of (Jgrgensen 2006). Qualities that
are found to belong universally to a class of mathematical constructions can-
not be said to belong to the construction procedures for a concept but rather
belong to the content of the concept. If a schema were part of a concept, then
qualities of the concept would only be subsumed by, or apply to one part of a
concept (the content) and not another (the schema). At this point, an account
which collapses schemata in concepts appears untenable. If different qualities or
attributes apply to concepts and schemata, in what manner can they be said to
be the same? At some level, the content of a concept is necessarily distinct from
the concept’s rules for construction/applicability (the schema of the concept).!2

10See (Pendlebury 1995) for an in-depth discussion of the manner by which we create em-
pirical concepts based on a priori concepts and their schemata.

1'His chapter on schemata, “The Schematism of the Pure Concepts of Understanding”, is
devoted to explaining how the categories subsume/apply to intuitions through schemata.

12This explanation may not be entirely faithful to Kant. Guyer and Shabel argue convinc-
ingly that Kant holds pure sensible schemata to be part of concepts’ content (In particular,
Guyer 1987: 159-65). However, to achieve our goal of the most reasonable interpretation of
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How then do schemata allow for universal reasoning? In Kant’s déscription
of the geometer proving Proposition 32 (A716-7/B744-5, quoted above), the
geometer modifies the triangle-intuition, namely by extending and adding lines.
Eventually, he comes to prove that for this singular intuition, the sum of angles
in the triangle is 180°. To prove that all triangles have this quality, the geometer
must show that no empirical characteristics of the individual triangle (whether it
is scalene, isosceles, or equilateral, for example) are necessary for the conclusion.
This is done through the schema of the concept triangle, described by Kant in
“Axioms of Intuition”:

If I assert that through three lines, two of which taken together are
greater than the third, a triangle can be described, I have expressed
merely the function of productive imagination whereby the lines can
be drawn larger or smaller, and so can be made to meet at every
possible angle.

A165-6/B206

This is the procedure which is utilized to both construct a triangle and also
to judge whether an intuition falls under the concept triangle. In the former
sense, one can construct three lines in intuition (in accordance with the schema
for line) such that two of which taken together are greater than the third, then
the line-intuitions together to form a triangle-intuition. In the latter sense, if
one can judge an intuition to have been constructed in this manner, then the
intuition can be said to be subsumed by the concept triangle.

However, schemata do not only reconcile intuitions and concepts—they also
hold the key for universal reasoning from singular intuitions. Visual techniques
applied to the triangle only proves a particular case of Proposition 32—however,
the geometer can use the schema of triangle to imagine making each angle and
each line of the triangle as large or as small as possible:

constructivism, we will refer to schemata as extra-conceptual. If the content of a concept
can be differentiated from its construction procedures then referring to them as distinct is the
most cogent interpretation.
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B E
Figure 2: Function of Productive Imagination in the Proof of Proposition 32

Figure 2 shows us how this function of productive imagination works: ZACB
can be made to be any size (less than 180°) by lengthening and shortening AB.
Hence, the geometer can imagine various triangles with different angle and side
measures. In this way, he can imagine constructing every possible triangle—
and at all times, the extended and added lines remain to show that the angles
of each triangle add up to 180°. What matters for the inference are not the
particular characteristics of the triangle but rather the procedures by which
the triangle is constructed. Thus, since the truth of the proposition for the
individual empirical intuition is only dependent on properties which issue from
the schema of triangle, the geometer knows universally that the sum of the
angles of a triangle is equal to two right angles.

2.3 The Construction of A Priori Intuitions

In this manner, the Kantian account of mathematics appears to expand the role
of visual techniques in mathematics. Indeed, many advocates of visualization
similarly ground the universality of a property on a diagram’s construction pro-
cedures. However, the question of a priority is troublesome. Inference via the
schema of a concept may guarantee universality, though this inference does not
prima facie deny that the knowledge of Proposition 32 could be empirical.'® In
fact, the procedure we previously examined is grounded upon empirical objects,
which suggests that resultant knowledge must be empirical. The moment that
we intuit our construction empirically, all succeeding cognition appears in some-
way tainted, unable to achieve a priority. Consider our earlier description of the
proof of Proposition 32—to an extent, our proof appears dependent upon expe-
rience. That is, one must sense the properties of what appears to be an empirical
object.!* Kant certainly recognized that the idea of intuitions grounding a priori

3That is, unless one equates universality with a priority. We will approach the problem
more conservatively, requiring an a priori foundation for geometric properties.

14 At this point, I would be remiss if I did not mention the imagination. A shrewd reader
would note that Kant claims that intuitions in the imagination can be a priori. We should
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inferences is worrisome. Consequently in his characterizdtion of mathematical
construction, Kant requires that “For the construction of a [mathematical] con-
cept, we therefore need a non-empirical intuition” (A713/B742). The intuited
tokens of a geometric concept, however, appear to be empirical.

There are two ways to explain the role of particular intuitions in mathe-
matical cognition: either particular intuitions are empirical but represent or
symbolize a non-empirical intuition (which can be utilized ¢ priort in mathe-
matical reasoning), or are themselves, in some manner, pure. The former is a
view, defended by Jgrgensen (Jgrgensen 2006), which characterizes construc-
tions as symbols for the pure intuitions of space and time (the symbolic inter-
pretation).!® The a priority of mathematical knowledge is therefore grounded
on space and time, rather than the instantiations of a concept in space and
time. The latter account claims that singular intuitions are sufficient for the
attainment of a priori mathematical knowledge (the ostensive interpretation).

Let us first consider the symbolic account. Recall Kant’s definition of con-
struction: “to construct a concept means to exhibit a priori the intuition cor-
responding to the concept” (A713/B741). Interestingly, in this definition, Kant
states that construction involves a correspondence between the concept and the
intuition which relates to it. Perhaps then, our inference from the particular to
the general achieves a priority through symbolizing a special, single intuition
which corresponds to the concept. Indeed, the symbolic interpretation seems
consistent with Kant’s introduction of the object of the concept:

...mathematical knowledge [considers] the universal in the particu-
lar, or even in the single instance, though still always a priori and
by means of reason. Accordingly, just as this single object is deter-
maned by certain universal conditions of construction, so the object
of the concept, to which the single object corresponds merely as its
schema, must likewise be thought as universally determined.

AT714/B742, emphasis added

At first glance, the introduction of this “object of the concept” may give one
pause. What can a “universally determined” object, to which each singular in-
tuition relates, be? Jgrgensen notes that here Kant appears to be characterizing

be skeptical of this contention and its utility for securing a priority. It is curious what makes
imagined tokens so unique from drawn intuitions. Indeed, imagined constructions, similarly
to drawn constructions, have particular properties. Asserting that imagined triangles are a
priori while drawn triangles are empirical is incongruous. Our route is a conservative one:
since imagined triangles have particular qualities, we will treat them as empirical. Again,
this may be a divergence from Kant—however, if our concern is deriving o priori, universal
properties from individuals, we should be skeptical of any intuition with particular properties.

5For Jgrgensen, empirical figures are drawn or instantiated in outer intuition, where the
construction in the imagination is pure. So our manipulations of a drawn triangle correspond
to analogous manipulations upon the imagined triangle. As stated earlier, in our account, we
will not distinguish the imagined and the outer instances of a concept. Hence, in our critique
of the symbolic account, we do not mean to characterize Jorgensen as a pseudo-Platonist, for
that which is symbolized in his account s intuitable (in the imagination). His views are here
to introduce a more radical version of the symbolic account.

10
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‘an arbitrary objéct to allow for an inference similar to universal introduction
in predicate logic. This object of the concept is an arbitrary intuition sub-
sumed by the concept: sensible but pure. We are now faced with a formidable
difficulty-—explaining the possibility of an arbitrary intuition.

Since space and time are the only pure intuitions, the object of a concept
must be a representation of space and/or time, though it cannot be a singu-
lar empirical intuition. The object of the concept triangle must have sensible
properties (so that geometry is not analytic), but only those which belong to
the concept. In this way, the object of the concept triangle is an a priori tri-
angle which relates to all triangles in virtue of its representing the necessary
properties of every triangle. Hence, our non-empirical triangle-intuition is a
triangle-shaped part of space, but one which has no empirical content. Yet
certainly, we cannot hold such an arbitrary triangle in the imagination or in-
stantiate it in intuition—each triangle which we intuit certainly has properties
particular to that triangle. Moreover, the manner by which the object of the
concept imparts a priority to construction or drawn figures is still unclear.

Jorgensen claims that “the empirical intuition functions as a symbol which
refers by analogy to the pure intuition” (Jgrgensen 2006: 13). Empirical figures
hence serve as a cognitive stimulus, a basis for the intuition of sensible properties
which correspond to a priori properties of the object of the concept. For exam-
ple, extending the base of the empirical triangle in the proof of Proposition 32
symbolizes what can be done to the pure construction of triangle. The qualities
which we derive from an empirical intuition, so long as they are dependent only
on the schema of the concept triangle, correspond by analogy to properties of the
universally determined object of the concept triangle. As alluded to previously,
in mathematical cognition a pure intuition serves as the arbitrary object for
our universal introduction. Hence an empirical intuition, in combination with
the schema of the concept, serves to illustrate the sensible characteristics of the
arbitrary object of the concept which we universalize. This account purports to
thereby guarantee the a priority of mathematical knowledge achieved through
construction.

However, under the symbolic account, the object of the concept takes on a
mysterious role—though it guarantees the a priority of inferences from particu-
lar intuitions, we cannot access the pure intuition. The arcane character of the
object of the concept under this account should be familiar to anyone acquainted
with Platonism. The pure intuition of triangle certainly resembles the Platonic
form of triangle. Indeed the object of the concept in this account inherits sim-
ilar epistemological worries—our epistemological relation to the object of the
concept is nebulous at best.

Indeed, given that we have no access to the pure intuition, the ‘by analogy’
relation appears too weak to guarantee a priority. Moreover, the relation be-
tween the object of the concept and the concept or its schema is quite vague.
The ability of an intuitively inaccessible object to guarantee the universality
and a priority of geometric inference is questionable. Interpreting the object
of the concept as an inaccessible arbitrary intuition muddies our account of
construction, introduces a mystical realm of intuition and construes Kant as a

11
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pseudo-Platonist.

The ostensive interpretation, on the other hand, denies the need for an
independent object of the concept, taking empirical intuitions as sufficient for
a priori inference. Shabel claims that there is no worry about the a priority
of empirical mathematical intuitions, for such constructions display the content
of their concepts. Empirical triangle constructions are a priori for they inherit
their spatial properties from a priori space. If a sensible quality is based only
on the procedure of delimiting a figure from the singular manifold of space,
then concluding that that quality holds a priori for all so produced intuitions is
justified. So for Shabel, even “...if [geometric] figures are rendered empirically,
the apriority of the reasoning they support is not surrendered” (Shabel 2006:
109).

When inferring that an intuited property holds universally for a concept, one
uses the schema of the concept to guarantee that the property is not dependent
upon any particular, empirical qualities of the intuited token. The properties
that are left are the pure sensible properties of the concept. When one strips
an intuition of its empirical qualities, what is left is the sensible content of
the concept as it is instantiated in the pure intuition of space. Universality is
attained because the intuited construction displays the general content of the
concept—meaning that the inferred property belongs to the concept and can
be found in all subsumed intuitions. A priority is achieved because the inferred
property belongs to the token in virtue of being a specific type of intuition carved
out of the a priori intuition of space. Shabel defends the ostensive account:

...the shapes we construct in a mathematical context are not ab-
stracted from our sensible impressions of shaped objects, such as
plates or tables. Rather, on Kant’s view, our empirical intuitions
of shaped objects borrow their patterns from our pure intuitions of
shapes in space. So, in constructing the intuition that corresponds to
a mathematical concept, we attend not to the particular features of
the resultant figure but to the act that produced it. So, in construct-
ing the concept triangle one might produce a scalene or an equilateral
figure; either way, one has produced a representation of all possible
triangles by producing a single paradigm triangle. That one figure
has unequal and another equal sides is irrelevant: one abstracts from
the particular magnitudes of the sides and angles in order to recog-
nize the relevant feature of the figure, namely three-sidedness.

Shabel 2006: 109-10

Intuitions, framed out of the a priori intuitions of space and time, inherit
certain a prior: properties. When we conclude that a property belongs to, but
is not contained in a concept, this can be said to be synthetic knowledge. This
knowledge is only a priori when the intuition is constructed by delimitation
of the all-encompassing space. The difference between geometric and empirical
inferences however is ambiguous at this point. If certain properties of a triangle-
intuition inherit a priority in virtue of being carved out of the pure intuition

12
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of space, then a dog-intuition, framed by space, should likewise have a prior:
characteristics that can be universalized. The problem can be restated: what
is unique about geometric intuitions, as opposed to empirical intuitions, that
allows us to derive synthetic a priori knowledge?

For Shabel, geometric intuitions are unique in that their patterns are derived
from the pure intuition of space; whereas the patterns of empirical intuitions
are derived from sensible impressions. Hence, the properties which we can find
in the patterns of geometric intuitions achieve a priority, where the properties
of empirical intuitions remain empirical. This distinction between geometric in-
tuitions and empirical intuitions is best illustrated by the act which instantiates
each. In imagining an instantiation of an empirical concept, such as dog, we vi-
sualize any number of dog-intuitions, which fixes some intuitive content—that
is, all dog-intuitions have some commonalities. However, the spatial content
of an empirical intuition is not fixed. For example, a two-legged short-haired
Chihuahua has little spatially in common with Lassie. What these intuitions
have in common is that we have learned, in some way, that each fall under
the concept dog—that is, the pattern of intuitions which are subsumed by the
concept is derived from empirical impressions of shapes.

Geometric concepts, however, fix their spatial content. In constructing a
triangle-intuition, we attend to an act of the productive imagination (as was
outlined previously), which determines some spatial content of the intuition. A
triangle-intuition, for example, is a three-sided spatial figure in virtue of our
fixed construction procedure in intuition. Geometric concepts are characterized
by the fixed construction procedure for carving instantiations our of the pure
intuition of space, determining their spatial content. With the schema of a
concept, we can ascertain the universal, a priori properties of intuitions which
constitute geometry. In this manner, a singular intuition of geometry, in some
sense, can be stripped of its empirical qualities and serve as an arbitrary object
of the concept, effectively providing universality and a priority.

13
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3 The Priority of Singular Space -

Kantian constructivism is most commonly rejected for two reasons. The first of
these stems from the advent of polyadic quantification, which allows concepts
to force infinite extensions. Secondly, modern advances in geometry, specifically
non-Euclidean geometries, question the a priority of Kant’s geometry. We will
consider the latter in §4.

The ability of concepts to force such extensions suggests that a general con-
cept of space could cognitively precede the singular intuition of space. That
is, instead of the singular manifold of space being necessary to delimit all par-
ticular spaces, a polyadically defined general concept of space could subsume
the infinite parts of space. If a general concept of space were so prior to the
all-encompassing space, the appeal to construction would be unnecessary: ge-
ometry could be practiced purely analytically and intuitions would be mere
heuristics.

Many commentators, most notably Michael Friedman, deem Kant’s utiliza-
tion of intuition as something of a logical stopgap. Kant’s syllogistic logic,
lacking the capabilities of polyadic quantification, is clearly augmented by the
use of intuition. Hence, though concepts such as denseness or continuity could
not be logically represented in Kant’s time, the indefinite iterability of intuitive
constructions does the work of polyadic quantifiers. Despite the importance of
this role for intuition for the Kantian enterprise, this section will establish that
one cannot reasonably hold, qua Friedman, logical gap-filling as the sole function
of intuition. In his analysis, Friedman focuses on the nature of space, claim-
ing that each of Kant’s justifications for the intuitive nature of space depend
upon the limitations of monadic logic. In our analysis, we will first explicate
Kant’s description of space, then consider and subsequently evaluate Friedman’s
interpretation of Kant.

Our considerations, however, are not meant to characterize Friedman as
anti-Kantian. Indeed, in “Kant’s Theory of Geometry,” Friedman’s motive
was positive: to reconsider and shed new light on Kant’s account of geometry.
While many reject constructivism outright in the face of contemporary logic and
mathematics, Friedman showed how Kant’s appeal to intuition was sensible in
his time—necessitated by his inadequate logic. Though the account may look
strange, Kant’s motives were pure: to give an sufficient account of mathematics
with the tools he was given. Friedman’s departure from the canonical rejection
of Kant in the analytic tradition in fact laid the foundation for contemporary
reconsiderations such as this paper.

However, where Friedman set out to simply validate the appeal to intuition
as a logical tool, we aim to account for intuition’s philosophical role for Kant.
Constructivism, for us, is not a mere historical oddity, but rather makes impor-
tant claims about mathematical thought and the interface between geometry
and the world.

14
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3.1 The Metaphysical Exposition: Space as Intuition

Kant justifies the intuitive nature of space in the Metaphysical Exposition. He
gives two arguments in each edition of the Critique, though only the first (The
Part-Whole Relation) is common to both.

The Part-Whole Relation

On A24-5/B39, Kant claims the relation between space and its constituents dif-
fers from that between a concept an its instances. Space is a singular manifold—
there is one overarching, infinite space. However, we can carve up this repre-
sentation and conceive of all manner of distinct spaces, though they all belong
to, or are parts of, the single overarching space. These parts of space are only
represented through the introduction of “limitations”, i.e. these specific spaces
do not precede the one all-inclusive space, but rather are related to it via a
part-whole relation. By delimiting the singular manifold of space we can refer
to its constituents; singular space precedes these parts.

However, a concept and its instances are not related in this manner. Con-
sider the concept deg, and an instance of a dog, Fido. According to Kant,
the relation between dog and Fido is one of homogeneity or subsumption: the
“dog-ness” of the former is instantiated in the latter. One could hardly say that
this relation is between a part and a whole. If Fido is a constituent of dog,
then consider how we would come to the concept dog. Each individual instance
of a dog (the parts) would have to be put together to make dog (the whole).
Yet, a writhing pile of Great Danes and French Poodles is hardly the concept
dog. For Kant, the relation between an instance of a concept and the concept
is not one of a part to the whole. Only within intuition can the whole precede
the parts. As Norman Kemp-Smith notes, “Intuition stands for multiplicity in
unity, conception for unity in multiplicity” (Kemp-Smith 1923: 105)—that is,
only in intuition can we begin with a manifold which can be parsed into its
constituents. Since distinct spaces are merely parts of the all-embracing space,
as such, singular space be an intuition.

The Magnitude Problem

Kant also argues for the intuitive nature of space via appealing to its infinitude.
There are two versions of this argument. In the first edition of the Critique,
Kant argues that a general concept of space cannot represent space, for a general
concept of space, being that which is common to all space, common both to “a
foot and an ell”, cannot refer to magnitude, since each of the spaces to which
it refers have different magnitudes (A25). That is, if a general concept of space
has instances which are of all possible magnitudes, then the intension of the
concept cannot contain magnitude.

Let us take an example to clarify this point. The concept 7 is a foot does not
subsume an ell-intuition, and z is an ell does not subsume a foot-intuition—z
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is a foot or x is an ell, however, subsumes both. To create a general concept of
space, we require a concept which will subsume all magnitudes. To create such a
concept, we may naturally want to use a concept which refers to all magnitudes,
such as x s a picometer or x is a nautical mile or x is a light-year or... and so
on. This concept, though referring to all magnitudes, has no monadic logical
form. We have no way to logically represent the intension of such a concept.!®
Therefore, the general concept of space, unable to represent infinite magnitude,
must be cognitively preceded by that which is infinite: the singular intuition of
space. Kemp-Smith elucidates:

Such infinity must be derived from limitlessness in the progression
of intuition. Our conceptual representations of infinite magnitude
must be derivative products, acquired from this intuitive source.

Kemp-Smith 1923: 108

Reference to magnitude can only be achieved in the sensibility; so again,
space must be an intuition.'?

The Under/Within Distinction

On B39-40, Kant gives the second edition version of the infinity argument ar-
gument. Besides an appeal to the infinitude of space, these arguments seem to
have little in common. Kant claims:

Space is represented as an infinite given magnitude. Now every con-
cept must be thought as a representation which is contained in an
infinite number of different possible representations (as their com-
mon character), and which therefore contains these under itself; but
no concept, as such can be thought as containing an infinite number
of representations within itself. It is in this latter way, however,
that space is thought; for all the parts of space exist ad infinitum.

B39-40

This quote is somewhat dense; parsing the passage will prove difficult, yet
quite fruitful. A streamlined version of this argument is as follows: (1) Space
contains an infinite number of representations within itself, (2) A concept may
only contain a finite number of representations within itself, (3) Therefore, space

16This point will be considered in our explication of the under/within distinction. The
ability to define an infinite intension, a logical reader may note, is provided by polyadic logic.
This is precisely the quality of polyadic logic which threatens the Kantian account (See §3.2).

Y70One may find a distinct similarity between the magnitude problem and Kant’s argument
that ‘A straight line is the shortest distance between two points’ is a synthetic proposition
(See B15-17).
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"is not a concept. (1) and (2) clearly imply (3), though there are certainly
ambiguities surrounding Kant’s premises.
The first concern is what containment within means in contrast with con-
tainment under. Consider this passage from the Jasche Logic:

Every concept, as a partial concept, is contained in the representa-
tion of things; as a ground of cognition, i.e. as a mark , these things
are contained under it. In the former respect every concept has a
content, in the other an extension. The content and extension of
a concept stand in inverse relation to one another. The more a con-
cept contains under itself, namely, the less it contains in itself, and
conversely.

Kant 1992: 593, emphasis added

Those representations falling under a concept are the extension of the con-
cept. For example, the concept animal contains under itself intuitions of Yellow
Labradors and Duck-Billed Platypuses. On the other hand, the concepts which
are within a concept constitute its content or intension. Again, to illustrate,
animal contains within itself concepts such as life or substance, for each of these
concepts subsumes animal.

A vital concern is why concepts cannot contain within themselves an infini-
tude of representations. Suppose that a concept could, in principal, subsume
an infinite number of possible intuitions. There could be an infinite number of
intuitions corresponding to dog that I construct in the imagination. Why then,
can a concept not contain within itself an infinite number of representations?
What makes containment under so distinct from containment within? The an-
swer lies in the fact that a concept can contain an intuition under itself, but
not within itself.

Given a concept and its schemata, one has a procedure by which one can
represent an instance of the concept in the imagination. Imagine that one is
constructing intuitions of the concept dog in an attempt to intuit every dog.
Cousider, for any dog-intuition one represents in the imagination, there is an-
other distinct dog-intuition (perhaps one with pink hair, a gold tooth, a bit-off
ear, and so on). Hence, the set of dog-intuitions is possibly infinite (for you
can always construct one more dog-intuition). As such, the number of possible
representations under dog, by virtue of the its schema, is infinite.

On the other hand, no such construction procedures exist for representa-
tions within a given concept. While, as we just illustrated, the schema of a
concept allows us to construct intuitions under a concept, by its very nature
the schema cannot produce representations within the concept. Kant gives us
no method to produce concepts which constitute the intension of a concept.
For the concept dog, I can start counting concepts that are contained within
it: animal, substance, furred animal, etc. But without a procedure by which I
can parse-out these sub-concepts, I cannot guarantee that there exist an infinite
number of representations within dog. As Michael Friedman notes, without such
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a construction procedure, one would have to conceive of an infinite number of
concepts, but the finite powers of the mind preclude this possibility.

This distinction alone does not rule out the possibility that the singular
manifold of space could be a concept. What rules out this possibility is that,
as Kant claims above, each particular space contains within itself an infinite
number of other particular spaces. How are we to make sense of this claim?
Kant takes the statement “all the parts of space coexist ad infinitum” to justify
his argument. Each part of space coexists ad infinitum because there exist,
not only the infinite particular spaces inside the part of space, but also there
exists an infinite number of spaces that contain the part of space. Through the
limitlessness of the introduction of limitations, one can demarcate an infinite
number of parts of space that contain any given part of space. Hence, each
part of space recognizably contains an infinite number of representations (other
parts of space) within itself. Therefore, space must be an intuition.

3.2 Friedman’s Redundancy of Intuition

Thus, for Kant a concept cannot contain within itself an infinite number of
representations; however, there clearly exist representations which require infi-
nite extensions [e.g. denseness, continuity or the natural numbers]. Given this
conceptual limitation, representing infinity and infinite extensions is difficult for
constructivists. As we have seen, Kant must appeal to the infinite iterability
of construction procedures in intuition in order to achieve such representations:
for example, in order to represent the singular manifold of space or universal-
ize Euclid’s Proposition 32, Kant requires intuition. One may query why Kant
advances a recondite system of pure intuitions, objects of the concept, and
schemata, when it seems that the entire project could be streamlined by simply
permitting space to be a concept, or permitting concepts to contain an infi-
nite number of representations within themselves analytically. Friedman argues
Kant’s stipulation that concepts cannot force infinite extensions is a product of
his antiquated logic and that advances since his time [namely predicate logic and
polyadic quantification] show us that both the stipulation and Kant’s appeal to
intuition are unnecessary. In fact, he takes this contention further, claiming
that Kant’s inadequate logic constitutes the only impetus for the utilization
of intuition: all arguments for the intuitive nature of geometry and space are
motivated by the insufficiency of Kant’s weak monadic logic.

The focus of Friedman’s argument is the intuitive nature of space. Kant
freely admits that we can have a general concept of space such as z is a space;
however, the singular manifold of space in intuition must cognitively precede
such a concept. Friedman interrogates this account. Friedman sees Kant’s
move as one necessitated by his logic, but now unnecessary given the enhanced
power of polyadic logic. Friedman concentrates his efforts on demonstrating
the possibility for a general concept of space to precede the all-encompassing
space—a possibility which issues from the power of polyadic quantification to
allow concepts to analytically contain reference to infinity.

We will consider Friedman’s argument as follows. First, we will examine
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his claim that polyadic quantification yields the necessary logical machinery
to represent infinite extensions conceptually. Secondly, Friedman argues that
the magnitude argument rests upon Kant’s stipulation that concepts cannot
contain within themselves an infinite number of representations and hence col-
lapses to logical inadequacy. Finally, Friedman’s argument that the part-whole
relation similarly rests upon obsolete conceptions of geometry and logic will be
presented.

Failure of the Under/Within Argument

The allure of intuition for Kant is clear. Intuition allows a constructivist to
essentially bolster a weak logic. Take for example, an intuitive description of
denseness. A monadic concept of denseness cannot guarantee that for any two
points, there will always exist a third between them for a concept cannot force
an infinite extension. Logical limitations underpin the impossibility of mak-
ing infinity analytic of a concept; Kant, however, uses intuition as a stopgap.
Denseness and the existence of the third point is represented as a faculty of con-
struction: “whenever I can represent (construct) two distinct points ¢ and b on a
line, I can represent (construct) a third point ¢ between them” (Friedman 1985:
467). Intuition thus bolsters the extensional power of mathematical concepts,
allowing us a rigorous definition of denseness. Denseness, or more specifically,
the infinity implicitly contained therein, cannot be analytic of a monadic con-
cept, but rather must be a function of the infinite constructive possibilities of
intuition.

However, polyadic logic gives us another method for ensuring the existence
of ¢ without an appeal to constructions. We can define denseness as Yavb3cla <
b — a < ¢ < b—guaranteeing that the third point, ¢, exists without dependence
upon intuition. Given a set of k predicates {F;, Fs,..., Fi} in monadic logic, we
can only have extensions with 2% objects: specifically objects that are Fy, Fb,...,
Fy, those that are =F1, F»,..., Fy, those that are Fy, = F5,..., F} and so on.

Emily Carson states the superiority of polyadic quantification as follows: “by
allowing us to bypass infinite conjunction, |polyadic quantification] allows finite
intellects to grasp infinite many representations in one concept and thus to ‘de-
scribe’ infinitely many objects by presenting formulas with only infinite models”
(Carson 1997: 493). Monadic logic precludes concepts from forcing infinite ex-
tensions. Thus, given a concept which contains within itself k predicates, we can
know with certainty that 2% objects must fall under the concept. Though the
actual extension may be larger, the concept can only force its extension to be
2k, leaving us well short of infinity. The only way to force an infinite extension
is to have a concept which contains within itself an infinite number of concepts.
As we saw previously (§3.1), the reason that a concept cannot contain within
itself an infinite number of representations is that the human mind cannot hold
an infinite number of concepts at a given time and has no procedure by which
these representations can progressively established. As Carson claims, polyadic
logic releases us from this constraint; a finite mind can logically represent forced
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infinite extensions with polyadic quantification. Our question now becomes: if
the elements of geometry can be modeled polyadically, must geometry be an
intuitive endeavor?

Friedman shows that polyadic quantification gives us the infinite intensions—
meaning that concepts with such intensions analytically have infinite extensions.
Hence, a general concept of space can be defined polyadically to contain within
itself an infinite number of instances.'® Such a concept would force an infinite
extension. The singular manifold of space does not necessarily precede the
general concept, for the extension of the concept, in virtue of being infinite,
includes all possible spaces.

However, Friedman’s above contention that intuition is merely a logical stop-
gap only addresses the under/within distinction. Though polyadic logic may
allow a concept to contain within itself an infinite number of representations,
Kant provided two other arguments for the intuitive nature of space: the mag-
nitude problem and the part-whole relation. Friedman now sets his sights on
describing how these other arguments are similarly derived from the limitations
of a weak logic.

The Magnitude Problem and the Under/Within Argument

Friedman believes A25 and B40 give identical arguments for the intuitive nature
of space, though that B40 is more refined. That is, since B40 was inserted in
place of A25, the under/within argument is merely a polished, general version
of the argument from the infinitude of space. In A25, Kant argues that space
cannot be a concept because infinite magnitude is not analytic of a general
concept of space. This is meant to show that a general concept such as z is a
space is an insufficient foundation for a priori space. However, Friedman points
out that one could instead represent space by a concept which does refer to
magnitude, such as x is a greater space than y or z is a cubic foot. Magnitude is
analytic of such a concept, suggesting that it may avoid the magnitude problem.

This possibility is expressly ruled out by the under/within argument of B40.
Friedman notes that “The second edition passage at B40 is clearer, for Kant
is more explicit that the problem is not with the general concept ‘x is a space’
in particular but with all general concepts as such” (Friedman 1985: 473, em-
phasis added). Hence a concept such as z is a greater space than y can avoid
the magnitude problem; however, no concept can circumvent the under/within
problem. For Friedman, the problem lies in the fact that any concept, whether
it refers to magnitude [z is a greater space than y] or not [z is a space], cannot
force its extension to be infinite. Where A25 suggests that this is a unique
defect of the concept z is a space, B40 rightfully establishes this problem as
one for all concepts. No concept may force its extension to be infinite; whereas

18Given the capabilities of polyadic quantification, we can thus logically represent our earlier
general concept of space with an infinite extension (z is a picometer or z is a nautical mile
or z is a light-year or...).
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the indefinite iterability of construction yields the infinitude of space. Concepts
such as z is a space or x is a part of y are consequently cognitively preceded
by the intuitive act of delimiting parts from the singular manifold of space.
The magnitude problem, in virtue of being a specific case of the under/within
argument, also stems from the inadequacy of Kant’s monadic logic.

The Inadequacy of the Part-Whole Argument

In §3.1, we saw that concepts do not have the right relations to their instances
in order for space to be a concept. The relation between concepts and their
instances is one of subsumption, whereas the relation between individual spaces
and the singular space is one of the part to the whole. Friedman, however,
argues that the part-whole relation can be analytic of a concept, for example,
the concept z is a part of y. Thus, if concepts can have infinite extensions
[as was shown above] and can relate as parts and wholes, why can’t concepts
logically represent space?

Kant rejects this possibility. Space exists as the whole from which its con-
stituents can be delimited; furthermore, the whole must be prior to the parts.
Kant claims that a “general concept of relations” [presumably a concept such as
z s a part of y| cannot precede the all-encompassing space: “on the contrary,
[the parts] can be thought only as in it” (A25/B39). For Kant, the whole can
only precede the parts in intuition; it is worth restating Kemp-Smith’s quote
on the matter: “Intuition stands for multiplicity in unity, conception for unity
in multiplicity” (Kemp-Smith 1923:105). A general concept of space puts the
cart in front of the horse; that is, a general concept of space takes the parts
as cognitively prior to the whole: an antecedence which Kant expressly denies.
Indeed, “these concepts are themselves only possible via the intuitive act of
‘cutting out’ parts of space from the singular intuition space” (Friedman 1985:
472).

Friedman interrogates this response, questioning the cognitive priority of
the singular intuition. Why, he asks, must the all-encompassing space precede
the parts or the general concept? The answer is pinpointed as issuing from
our experiences with geometry. Directly following Kant’s presentation of the
part-whole argument, we find an appeal to geometry:

So too are all principles of geometry—for example, that in a triangle
two sides together are greater than the third—derived: never from
general concepts of line and triangle, but only from intuition, and
this indeed a priori, with apodeictic certainty.

A25/B39

A similar reference to geometry is made by Kant after his presentation of the
part-whole argument in the Inaugural Dissertation:

Geometry does not demonstrate its own general propositions by think-
ing an object by means of general concepts as happens with things
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rational, but by subjecting it to the eyes by means of a singulor in-
tuition as happens with things sensitive.

Kant 1894: §15.C

For Friedman, Kant justifies the cognitive priority of the singular intuition
of space by these geometric appeals which, in turn, support the part-whole
argument. The reason that the all-encompassing space precedes the general
concept is that the theorems of geometry require all variety of singular intuitions.

However, Friedman claims that the appeal to intuition in geometry is again
merely a product of Kant’s monadic logic. Consider how a constructivist would
intuitively represent infinity: given a constructed point a, one can construct a
point b such that @ > b. Such an iterative construction procedure can represent
infinity, but only as a possible infinity. For Kant, as with any constructivist, we
can never get to the ‘end’ of this procedure, point to our product and say, “this
is infinity”. Similarly, space cannot be the product of a progressive iteration in
intuition. Since space is infinite, there is no progression of greater spaces such
that we can get to the ‘end’ of the procedure, point to the result and say, “this is
space”. Accordingly, positing the precedence of the singular infinite intuition—
the whole before the parts—is the only option. Let us call this the ‘top-down’
approach. If we take the whole as primordial, construction procedures can
produce any particular space similarly to our earlier description of embedding
denseness in intuition [between any two constructed points, we can construct
a third]. Given an all-encompassing space, we can delimit the single intuition
into any particular space, no matter how small or large.

Polyadic quantification, frees us from the top-down approach. Infinity can be
analytic of a concept through the form Va3bla < b. The priority of the singular
manifold of space again appears to merely be a by-product of Kant’s simplistic
logic; with monadic logic, positing space as the preeminent whole from which the
parts are delimited is the only option. Given the tools of polyadic logic, however,
we can analytically express the infinitude of space from its constituents. We shall
refer to this as the ‘bottom-up’ approach.

Therefore, for Friedman, the Kantian description of space is avoidable; poly-
adic logic’s bottom-up approach undercuts the priority of the singular intuition
of space. Moreover, the power of polyadic logic appears to allow us to do
geometry analytically.!® Hence, constructive procedures in intuition are logically
unnecessary. For Friedman, construction is a mere artifact of an impotent logic.

3.3 Defense of Construction

The main point where we disagree with Friedman is in his claim that intuition
serves solely as a logical stopgap. Friedman is correct in arguing that intuition
allows Kant to force infinite extensions where none would have been possible
otherwise; he errs in assuming that this logical role is the only function for

19 A point which will be considered in greater detail in §3.3 and §4.4.
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intuition. To reject construction on purely logical grounds is to ignore the
epistemological status of intuition in geometry: the syntheticity of geometry
gets thrown out with monadic logic.

The most pressing concern, however, is that Friedman’s account overlooks
the motives and advantages of constructivism in mathematics. That is, the
philosophical underpinnings which motivate Kantian constructivism are ignored
in reducing intuition to a mere logical gap-filler. Moreover, we should be skepti-
cal when Friedman collapses the three main arguments for the intuitive nature
of space: Kant presented these as separate arguments. Hence, in this section,
we will illuminate the philosophical motives behind construction and focus on
the unique character of each argument, concluding that the part-whole argu-
ment is wholly independent of the under/within argument, and furthermore,
that collapsing the part-whole argument to the failures of monadic logic misses
the philosophical character of this argument and the overall Kantian enterprise.

For Kant, one of the roles of construction is to constrain geometric concepts
to those which are possible in intuition. Without this check on conceptual repre-
sentation, we would be in danger of creating empty concepts in geometry. One
can easily conceive of a meaningless geometric concept, such as a square-circle.
However, when one attempts to construct a square-circle in intuition in order to
acquire knowledge of the concept, it becomes apparent that square-circle does
not correspond to any possible intuition, hence is a mere empty concept. This
example demonstrates both the necessity of construction regardless of the capa-
bilities of logic and the motive of the Kantian epistemological requirement that
knowledge requires both concepts and intuition.?° As Kant claims: “Although
all these [Euclidean] principles, and the representation of the object with which
this science occupies itself, are generated in the mind completely a priors, they
would mean nothing, were we not always able to present their meaning in
appearances, that is, in empirical objects” (A239-40/B299, emphasis added).

This quotation illuminates another, perhaps more subtle, role of construction
in geometry. Not only does construction prohibit meaningless concepts; it ex-
plains the applicability of geometric concepts to experience. In constructivism,
intuited tokens are necessary for the derivation of geometric theorems. Hence,
since geometry is inferred from tokens, we get applicability to these tokens for
free. This point will be further expounded in §4; for now, we simply note the
ease with which constructivism deals with a historically formidable problem in
the philosophy of mathematics. Eliminating the role of intuition in geometry
would merely reintroduce the question.

Besides these advantages of constructivism, we can also find fault in Fried-
man’s argument. He contends that geometry serves as Kant’s motivation for
claiming the priority of the intuited space. That is, since we can delimit in-
finitely in geometry, and since Kant lacks the logical machinery to produce this
infinitude conceptually, space must be given as a cognitively prior intuition.

Friedman takes the proximity of Kant’s arguments for the priority of space

20Carson gives an excellent analysis of this role for construction in the third section of “Kant
on Intuition in Geometry” (Carson 1997: 501-11).
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with geometric considerations to show that the former is justified by the latter.2!
This, however, is not enough to prove the priority of geometric concerns over the
nature of space. In fact, the references to geometry appear to be mere examples
of analogous situations that serve to illuminate the nature of space. Doubt is
hence cast on Friedman’s account.

Kant’s explicit rejection of the priority of geometric considerations, however,
casts much more than doubt:

For the representation of space (together with that of time) has a
peculiarity found in no other concept; viz., that all spaces are only
possible and thinkable as parts of one single space, so that the rep-

resentation of parts already presupposes that of the whole. Now, if
the geometer says that a straight line, no matter how far it has been
extended, can still be extended further, this does not mean the same
as what is said in arithmetic concerning numbers, viz., that they can
be continuously and endlessly increased through the addition of other
units or numbers. In that case the numbers to be added and the mag-

nitudes generated through this addition are possible for themselves,

without having to belong, together with the previous ones, as parts of
a magnitude. To say, however, that a straight line can be continued
infinitely means that the space in which I describe the line is greater

than any line which I might describe in it. Thus the geometrician

expressly grounds the possibility of his task of infinitely increasing a

space (of which there are many) on the original representation of a -
single, infinite, subjectively given space.

Allison 1973: 175-622

The possibility for the geometer to extend a line depends upon the singularity
of space in intuition. The only way that the geometer can continuously extend
a line is if there is a preexistent infinitude of space into which the line can
be extended. Kant here is presenting something of a transcendental argument.
Since we can continuously iterate extension of a line, the infinitude of space must
be prior to the extension. This is where Friedman’s account fails. For him, the
particular characteristics of geometry may justify the nature of space—for Kant,
however, the nature of space comes first as the grounds for geometry. The fact
that geometry is even possible is a product of the prior, intuitive nature of space.
We may take the truths of geometry to affirm features of space but not to justify
them.

Though Friedman legitimately illustrates the logical function of construction
in Kant’s theory of geometry, he is wrong to claim that this is the only role for

21Namely in the ‘Metaphysical Exposition of Space’ in the Critigue and §15 in Inaugural
Dissertation.

22This passage is one of some note. Emily Carson depends heavily upon it in her analysis
of Kant’s theory of geometry and her arguments against Friedman’s interpretation (Carson
1997: 497-8).
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intuition. Constiruction constrains geometric concepts to the realm of possible
intuitions while also reasonably describing the connection between intuitions
and concepts. Moreover, specific geometric concerns do not justify the features
of the all-encompassing space; rather, the possibility for geometry requires a
certain nature for the prior singular manifold of space. Consequently, intuitive
space and construction are necessary elements of Kant’s philosophy; mere logical
advances do not eliminate the indispensable role of intuition in geometry.
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4 Non-Euclidean Geometry, Constructibility
and Modality

The wildest visions of delirium, the boldest inventions of legend and
poetry, where animals speak and stars stand still, where men are
turned to stone and trees turn into men, where the drowning haul
themselves up out of swamps by their own topknots—all these re-
main, so long as they remain intuitable, still subject to the axioms
of [Euclidean] geometry.

Frege 1950: 20

Kant took Euclidean geometry to impose itself necessarily upon space; how-
ever, modern developments suggest otherwise. Lobachevsky, Bolyai, and Rie-
mann developed theories of geometry in which not all of Euclid’s axioms hold.
The existence of these consistent non-FEuclidean geometries casts doubt on the
a priority of Buclidean geometry. If space can possibly be interpreted as non-
Euclidean, in what manner is space a priori Euclidean? Alternate theories of
geometry suggest that we arbitrarily impose FKuclidean axioms onto appear-
ances, whereas we might just as easily impose Lobachevsky-Bolyai or Rieman-
nian geometry. If we can construct non-Euclidean geometries, the a priority of
Euclidean geometry is seriously threatened.

Moreover, science suggests that Euclidean geometry is strictly false of phys-
ical space. The application of relativity to astronomy suggests that space is
curved and that lines are ‘warped’ by gravity; consequently, the Euclidean in-
terpretation of a line as being ‘straight’ may not be consistent with the true
nature of space. The properties of physical space seem contrary to Kant’s all-
encompassing space. The concern is clear: the a priori manifold of space may
not be Fuclidean.

Similar concerns are elicited by David Hilbert’s work on geometry. Hilbert’s
The Foundations of Geometry proved appeal to intuition to be unnecessary for
geometric proof; by setting down axioms, the truths of geometry can be derived
by logical analysis. The Hilbertian project thus questions the role of intuition
in geometry. If Euclidean geometry can be shown to be analytically derived
from a set of axioms, the necessity of construction is questioned. This threat
is somewhat akin to Friedman’s thesis in the preceding chapter; however, there
is a key difference. Where Friedman attempts to prove a general concept of
space to be prior to the singular manifold of space, Hilbert is mute on the topic.
He rather proves that geometry can be done conceptually without any appeal
to eitherspace or intuition. The priority of space or spatial concepts does not
matter for Hilbert, for the theorems of geometry can be derived without any
appeal to objects or intuitions.

In this chapter, we will present the major developments in geometry since
the time of Kant and address their effects upon constructivism. We will be-
gin with a description of non-Euclidean geometries and physical space, then a
discussion of the constructibility of non-Euclidean geometries. Finally, we will
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consider Hilbert’s formalist project, which will isolate the role of intuition and
construction in contemporary geometry.

4.1 Describing Non-Euclidean Geometry

The history of Euclid’s fifth postulate is one of contention. Euclid began his
Elements with definitions, common notions, and postulates [axioms] meant to
serve as the foundation for his investigations of geometry. The fifth and final
postulate has historically been viewed as an anomaly. Whereas the first four
postulates are simple and seemingly self-evident,?? the ‘parallel postulate’ takes
a complicated and less obvious form:

That, if a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the
angles less than the two right angles.

Heath 1956: 155

Geometers realized the aberrancy of this postulate and consequently spent
centuries attempting to prove the parallel postulate from the 4 other axioms.
These efforts were fruitful, allowing geometers to derive many propositions which
are logically equivalent to the parallel postulate, though not successful.?* How-
ever, in the early 1700s, Giovanni Girolamo Saccheri approached the parallel
postulate in a new, promising manner, utilizing a reductio ad absurdum method
of proof in his ambitiously titled Euclides ab Omni Naevo Vindicatus [“BEuclid
Freed of Every Flaw”]. Saccheri’s method was to show that the negation of
the parallel postulate, in conjunction with the other 4 axioms, would derive a
contradiction. Instead of using Euclid’s version of the parallel postulate, Sac-
cheri chose a logically equivalent proposition, based on his work with Saccheri
quadrilaterals. Such quadrilaterals have two adjacent right angles. Let these
angles be ‘base angles’ and the line which they contain be the ‘base’. The line
opposite the base will be the ‘summit’ and the angles containing the summit
will be ‘summit angles’. Hence the logically equivalent proposition is ‘that in a
Saccheri quadrilateral, the summit angles are right’.

Saccheri first considered the case when the summit angles are obtuse. A con-
tradiction was not hard to find; Saccheri simply proved that in such a system
of geometry, lines are finite, contradicting Euclid’s second postulate.?® The ‘hy-
pothesis of the acute angle’, however, led to no readily apparent contradiction.

23Take for example, postulate 4: “That all right angles are equal to one another” (Heath
1956: 154).

24Geometers have shown that there are over a dozen propositions which are equivalent to
the parallel postulate. The formulation which will prove most important in our discussion will
be the equivalent proposition “that the angles of a triangle sum to 180°”.

25However, Riemannian geometry was later developed by rejecting both the second and fifth
postulates.
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After rejecting the obtuse hypothesis with such ease, Saccheri becomes some-
what frustrated in his attempt to ‘free Euclid of every flaw’, defiantly claiming
at the end of book I that “the hypothesis of the acute angle is absolutely false,
being repugnant to the nature of the straight line” (Saccheri 1920: 208). In
proposition 37 of book II, Saccheri presents three proofs of contradictions de-
rived from the acute hypothesis— though all have been since proven spurious.
Saccheri is in apparent duress when, in proposition 38, he states that “the hy-
pothesis of the acute angle is absolutely false because it destroys itself” (Saccheri
1920: 225).

The acute hypothesis, however, does not ‘destroy itself’; in fact, as Lobach-
evski and Bolyai recognized in the 1830s, adopting the acute hypothesis in lieu
of the parallel postulate yields a consistent form of geometry. In Lobachevski-
Bolyai geometry, the summit angles of a Saccheri quadrilateral are acute and
there exist more than 1 line incident with a point which does not intersect a
given line.

Commonly, Lobachevski-Bolyai geometry is modeled as the geometry of hy-
perbolae or lines drawn on the contours of an infinitely extended saddle-shape.26
As such, the lines of hyperbolic geometry appear everywhere curved outwards:

Figure 3: Saddle Model of Hyperbolic Geometry

In the above figure, we can see that, when modeled on the contours of a
saddle, the angles of a triangle sum to less than 180°.

Another useful model of Lobachevski-Bolyai geometry was given by Klein
in 1871. In this model, we confine our geometric universe to the inside of a
circle, and the straight lines of Lobachevski-Bolyai geometry are the interior
line segments or the ‘chords’ of the circle. As we can see from the figure below,
this model fulfills the ‘many parallel lines’ theorem:

28Though there are many models of Lobachevski-Bolyai geometry, including the Lorentz
model and Poincaré’s disc and half-plane models [which are each isomorphic to the Saddle
and Klein models].
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TN

Figure 4: Klein model of Hyperbolic Geometry

In this model, we can see that there are an infinite number of lines through
point = which do not intersect a.2”

In 1854, Riemann investigated the possibility for a consistent geometry
grounded in the obtuse hypothesis and the rejection of Euclid’s second postu-
late [that lines are infinite]. He thus invented Riemannian or elliptic geometry.
As the name may suggest, the lines of this geometry are commonly construed
as ellipses or great arcs of a spheroid. Whereas are many methods for visually
modeling hyperbolic geometry, elliptic geometry is nearly always modeled as
the geometry of great arcs on the surface of a sphere or spheroid:

Figure 5: Spherical Model of Elliptic Geometry

Here we see a visual representation of a theorem of elliptic geometry: that
the angles of a triangle sum to greater than 180°.

The simple existence of these non-Euclidean geometries is troublesome for
the Kantian account of space, especially when coupled with the work of Eugenio
Beltrami and Henri Poincaré. In 1868, Beltrami proved the relative consistency
of hyperbolic geometry with Euclidean geometry; that is, hyperbolic geometry
is consistent if and only if Euclidean geometry is consistent. This work was fol-
lowed by Poincaré’s proof that Euclidean geometry is also relatively consistent

27This proposition, named Playfair’s theorem, is logically equivalent to the parallel postu-
late.
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with elliptic geometry. With no trouble, a constructivist can plausibly assert
that space is Euclidean when there are no other options. However, given al-
ternative geometries, it is not clear which geometry or which set of geometric
theorems holds of space. Even more troublesome, perhaps, are the results of
Einstein’s application of his General Theory of Relativity, which suggest that
Buclidean geometry is in fact false of physical space.

4.2 Relativity and Applied Geometry

As far as the laws of mathematics refer to reality, they are not cer-
tain; and as far as they are certain, they do not refer to reality.

Albert Einstein

Einstein’s application of the theory of relativity yields a persuasive argument
against the Euclidean nature of physical space. Assuming Euclidean geometry
it appears that, in certain situations, there exists local but uniform forces which
act upon all surrounding space. Hence, all measurements of the local space are
uniformly deformed. For example, due to the force of gravity, measurements
surrounding large heavenly bodies are warped. We can see this effect when
light beams bend around a quasar or the edge of a black hole.?® Hence, our
measurements surrounding these bodies are deformed; a straight edge would
curve around the source of gravity. Instead of taking this uniform force into
consideration each time the physicist does a calculation, he can choose to set
the strength equal to zero and treat the surrounding space itself as curved.

Finstein’s move was to reject the convention of using rods and lines for mea-
surement. For Einstein, the shortest distances in space are curves—the paths of
light rays around these bodies. If space is considered Riemannian, scientists can
more simply represent and calculate the relativistic physics.?? This conversion
merely involves a uniform recalibration of the physicists’ measuring instruments.
This translation is straightforward and permittable; Hans Reichenbach notes:

28The famous experiment of Sir Arthur Eddington confirms this result of relativity. Rela-
tivity implies that during the daytime, light reaching Earth from other stars would be pulled
by the gravity of the sun. Consequently, Eddington and a team of scientists measured the
position of stars during a total solar eclipse, and compared the findings with the positions of
the same stars at nighttime. The predicted deviation in position was confirmed. This is one
of Karl Popper’s favorite examples of a crucial experiment (Popper 1963: 33-9).

29In physics, Riemannian and BEuclidean geometries only diverge at large scales: the lev-
els of astrophysics. Hence, at smaller scales, Euclidean and Riemannian geometries give us
(practically) identical results. This fact allows the physicist to treat all space as Riemannian
while retaining an adequate model of space.
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Just as we can measure the temperature with a Fahrenheit thermome-
ter and then convert the results into Celsius, measurements can be
started under the assumption of Fuclidean geometry and later be
converted into non-Euclidean measurements. There is no logical ob-
jection to this procedure.

Reichenbach 1958: 30

However, it is misleading to claim that Einstein’s geometry is more true of
space than a wholly Euclidean geometry. Certainly for the bodies with which
Einstein is concerned, his theory of geometry is simpler. Using a Riemannian
method of measurement is more manageable than taking into account a uniform
force in every calculation. This approach is significantly more successful than
considering local space as Euclidean and warped by gravity. But the hasty
physicist may be willing to conclude that physical space itself is non-Euclidean
(at least in specific circumstances).

We will consider two refutations of this argument which share a similar char-
acter. First, the physicist’s chief concern when determining which geometry to
choose is simplicity. Fuclidean and non-Euclidean measurements yield identical
results; it just happens that in this situation, regarding space as non-Euclidean
makes calculation easier. However, simplicity does not entail truth.

Though I neither want to open the Pandora’s box of scientific realism nor
endorse his constructive empiricism, Bas van Fraassen sums up our point nicely:

...some writings on the subject of induction suggest that simple the-
ories are more likely to be true. But it is surely absurd to think that
the world is more likely to be simple than complicated (unless one
has certain metaphysical or theological views not usually accepted as
legitimate factors in scientific inference).

van Fraassen 1980: 90

Reichenbach himself states, “...we can no more say that Einstein’s geometry
is “truer” than Euclidean geometry, than we can say that the meter is a “truer”
unit of length than the yard” (Reichenbach 1958: 35). This point is all-too-
quickly ignored by anti-Kantians. Ease for the physicist is hardly the summa
bonum of geometry—simplicity does not imply a specific nature of space. As we
will see, in determining the geometry of the singular manifold of space, we are
concerned with which geometry is intuitable, not simpler for a physical account.

Our second defense is something of a more fleshed-out version of the first.
For this argument, we must first dwell on the distinction between pure and
applied geometry. Pure geometry is solely concerned with the derivation of
theorems from a given set of axioms; its objects are devoid of an interpretation.
Hilbert’s The Foundations of Geometry is the quintessential example of this
approach to geometry. The non-interpretive nature of the Hilbertian enterprise
is exemplified by his definitions: his formalist project defines its objects merely
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based on axioms and relations. Indeed, Hilbert defines the domain of geometry
as follows:

Let us consider three distinct systems of things. The things compos-
ing the first system we will call points and designate them by the
letters A, B, C,....; those of the second, we will call straight lines
and designate them by the letters a, b, c,....; and those of the third
system, we will call planes and designate them by the Greek letters

a, B, v,

Hilbert 1902: 3

Hilbert defines the objects of geometry without appeal to an interpretation.
His endeavor [apparently] showed that geometry can be a purely analytical
process.?0  From sets of objects, defined merely by axioms and relations to
other objects, one can deduce various properties of these objects [theorems].
For Hilbert, nothing hangs upon the Euclidean interpretation of a point as
‘that which has no part’, or a line as ‘an breadthless length’; indeed, he once
famously proclaimed, “One must be able to say at all times—instead of points,
straight lines, and planes—tables, chairs and beer mugs”.%!

Applied geometry, on the other hand, is ultimately concerned with the cor-
rect interpretation of geometry. A physical theory is input into pure geometry
which fills in the content of the geometric concepts. It is in conjoining a pure
geometry with a physical theory which allows us to test the empirical ‘truth’ of
the geometry. Carl Hempel notes: '

Thus, the physical interpretation transforms a given pure geometri-
cal theory— Euclidean or non-Euclidean—into a system of physical
hypotheses which, if true, might be said to constitute a theory of
the structure of physical space. But the question whether a given
geometrical theory in physical interpretation is factually correct rep-
resents a problem not of pure mathematics but of empirical science;
it has to be settled on the basis of suitable experiments or systematic
observations.

Hempel 1945: 30

Applied geometry is an empirical endeavor, which depends upon physical
measurements. As such, the findings of the physicist, whether confirming or
denying the physical truth of Euclidean geometry, do not concern our investiga-
tions. What matters for the nature of the singular manifold of space is whether
a particular geometry is imposed upon appearances or intuitions. In §4.3, we
will consider the possibility of intuiting non-Euclidean space.

However, the cleavage of pure and and interpreted geometry is a double-
edged sword. Though this distinction shows that the space of physics is not the

30We will analyze the implications of this claim in §4.4.
31Uttered by Hilbert as he waited for a train in Berlin (Reid 1970: 57).
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all-encompassing space with which we are concerned, it will also raise concerns
regarding the syntheticity as well as the a priority of geometry. As we will see in
§4.4, our rejection of possible non-Euclidean intuitions will place constructivism
in a precarious position. If we can lie down a set of axioms and inference rules
from which geometry proceeds analytically, then what is the place of construc-
tion? We will conclude by considering the implications of divorcing pure and
applied geometry.

4.3 Kant Vindicatus: Constructing Geometry

We have hence determined that physical space is not the space of our interest:
scientific simplicity is no reason to accept that the a priori manifold of space is
non-Euclidean. We must take a step back if we are to adequately characterize
the all-encompassing space. We look first to the role of intuition in geometry;
the role of these constructions will help to illuminate the character of the a
priori framework of these intuitions: space.

Our investigations will begin with a curious passage from the Critigue:

Thus there is mo contradiction in the concept of a figure which is
enclosed within two straight lines, since the concepts of two straight
lines and of their coming together contain no negation of a figure.
The impossibility arises not from the concept in itself, but wn con-
nection with its construction in space, that is, from the conditions of
space and of its determination.

A220-1/B268

Kant here appears to be allowing for the logical possibility of non-Euclidean
geometry. An evident theorem of Euclidean geometry is ‘that no figure can
be enclosed in two lines’. However, such a figure is possible in Riemannian
geometry.32 This should strike the reader as bizarre at first glance. Kant takes
a proposition which is, at face-value, inconsistent with Euclidean geometry as, in
some manner, ‘consistent’. How can Kant justify such a possibility as anything
but a serious threat to his theory of space and geometry?

Kant’s answer hangs on a distinction between logical and constructive pos-
sibility. We can admit that there is no contradiction in the concept of a figure
enclosed within two straight lines because the concepts of two straight lines
contain nothing of figure. That is to say, neither the concept of figure nor the
concept of not-figure is analytically contained within the concepts of two lines.
Such a property is only accessible in intuition, much as the quality of being the
shortest distance between two points can only be accessed by constructing the
concept line in intuition. Geometry is synthetic a priori: underdetermined by
logical, analytic processes. Hence, that which constrains or limits the domain of
geometry is constructive possibility in addition to logical possibility. For Kant,

32Imagine two great arcs of a sphere which intersect on the poles. These ’lines’ of elliptical
geometry enclose a space on each side of the sphere.
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the concepts of geometry are only those which can possibly be constructed in
intuition.

Our task is therefore to show that non-Euclidean geometry strictly cannot
be intuited. If this can be shown, then the a priori space is necessarily Eu-
clidean. Otherwise imposing FEuclidean theorems upon space is unjustifiable.
Since constructions inherit their a priority in virtue of symbolizing intuitions
carved out of space, if non-Euclidean geometry is constructible, then, for ex-
ample, our Fuclidean construction of a triangle is no longer universal [rather,
it is particular in that it is a Euclidean triangle]; consequently, properties of
Euclidean triangles cannot be universalized to all triangles. The potential con-
structibility of non-Euclidean geometries constitutes a serious threat to the a
priority of synthetic geometric judgments.

In non-Euclidean geometries, there exist more than one line between two
points, and each line is of minimal distance. Such a possibility, however, is
impossible to visualize:

L "

FIGURE 6: Visualizing Lines

The existence of multiple lines between points z and y cannot be reconciled
with the minimal distance requirement. One can imagine L becoming less and
less curved, and getting closer to K, but in order for L to be of minimum
distance, it must be identical with K. But if L is identical to K, then there
exists only one distinct line from z to y. Holding both requirements to be true
is obstructed by the sensibility.

Perhaps if we simply treat L and M as lines of minimal magnitude between
z and y or assume that a rigid body measures L to be the same size as K,
then we can truly construct non-Euclidean geometry. As Reichenbach says.
“one can forget that from the viewpoint of Euclidean geometry these distances
are different in length” (Reichenbach 1958: 56). He refers to this ignorance
of the Fuclidean viewpoint as an “emancipation from Euclidean congruence”.
Reichenbach takes this emancipation as the necessary and sufficient condition
for visualizing non-Euclidean geometry: “so long as we cannot emancipate our-
selves from Euclidean congruence...non-Euclidean relations can only be mapped
upon the visualized Euclidean space” (Reichenbach 1958: 57) and “Whoever
has successfully adjusted himself to a different congruence is able to visualize
non-Euclidean structures as easily as Buclidean” (Reichenbach 1958: 55).

James Hopkins likens this emancipation to the well-known duck-rabbit draw-
ing (Hopkins 1982: 45). There is a set stock of lines drawn on a piece of paper;
one could look at it and choose to see a duck, then decide to see a rabbit. Anal-
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ogously, one could look at Figire 6 and choose to see K as the unique minimal
distance between x and y, then look at it again and decide to see K and L to
be of the same minimal distance. This is what would constitute Reichenbach’s
emancipation of Euclidean congruence.

However, in the duck-rabbit drawing, both the duck and the rabbit are
natural interpretations of the lines on the page. Judging K and L to be of
equal length, on the other hand, involves deceiving oneself of appearances. For
Reichenbach, one must ‘forget’” Euclidean congruence, and perhaps convince
oneself that the lines have any quality. Yet this does not change the fact that
intuition, the guide of geometry, represents lines L and M as curved lines of
non-minimal length.

Hopkins postulates a different method for constructing non-Euclidean ge-
ometries. As we know from physics, the divergence between non-Euclidean and
Euclidean geometries is minimal in small regions. Calculations in each geom-
etry only deviate at astronomical levels. One will also note that all intuitable
lines are not, strictly speaking, lines; that is, they exist three-dimensionally.
Each ‘line’ one sees has thickness, where the lines of geometry are purely one-
dimensional constructions. Hopkins takes the two preceding points to suggest
that intuited lines have an amount of ‘wiggle-room’. That is, since the naked
eye could not possibly note a visible difference between a Euclidean and non-
Euclidean line at human-levels and all intuited lines have thickness, visible lines
are not strictly Euclidean or non-Euclidean. Within the ink which represents
K between z and y, there are possible theoretically indistinguishable Fuclidean
and non-Euclidean lines. Hence, empirical intuition does not determine the ge-
ometry of appearances. One could choose to interpret K as one Euclidean line
or as two non-Euclidean lines nestled together.

Hopkins here appears to be presenting a refined version of Reichenbach’s
emancipation from Euclidean congruence. To construct non-Euclidean geome-
tries, one simply must look at K and forget that it is one line, just as for
Reichenbach one would look at L and M and forget that K is the shortest dis-
tance between z and y. Both possible avenues for construction involve ignoring
that which we actually intuit. Hopkins does, however, avoid the duck-rabbit
problem: whereas Reichenbach’s move was to read non-Euclidean qualities into
a Buclidean intuition, Hopkins claims that intuitions are geometrically indeter-
minate and that assigning any geometry is reading a quality into the intuition.

This raises an interesting question: is congruity imposed by intuition, or
can we interpret intuitions as congruent at our own discretion? In §13 of the
Prolegomena, Kant argues for the former. This argument will prove to have
import on the constructibility of non-Euclidean geometry.3® In arguing for the
ideality of space, Kant describes two scenarios in which the independent reality
of space is interrogated. The second of these scenarios secures the Euclidean
character of intuitions.

33Kant’s use of seemingly non-Euclidean examples both in the Critigue (A220-1/B268) and
in the Prolegomena (§13) have led some commentators, namely Leonard Nelson, to postulate
that not only is Kant’s theory of geometry unthreatened by non-Euclidean geometry but is
moreover vindicated by the existence of these geometries.
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The first of these is Kant’s [in]famous ‘glove argument’:

What can be more similar in every respect and in every part more
alike to my hand and to my ear than their images in a mirror? And
yet I cannot put such a hand as is seen in the mirror in the place
of its original, for if this is a right hand, that in the mirror is a left
one, and the image or reflection of the right ear is o left one, which
never can serve as a substitute for the other. There are in this case
no internal differences which our understanding could determine by
thinking alone. Yet the differences are internal as the senses teach,
for, notwithstanding their complete equality and similarity, the left
hand cannot be enclosed in the same bounds as the right one (they
are not congruent); the glove of one hand cannot be used for the
other.

Kant 1977: §13

As Norman Kemp-Smith notes, Kant is here arguing that congruence and
similar relational properties of intuitions are dependent upon the possibility of
distinguishing how and where objects lie in relation to our body: “The three
dimensions of space are primarily distinguishable by us only through the relation
in which they stand to our body.... Through these distinctions we are enabled to
define differences which cannot be expressed in any other manner” (Kemp-Smith
1923: 162).34 The example of the gloves is meant for us to merely reinforce the
fact that the relation of congruence, and the possible emancipation therefrom,
is brought to space by distinguishing the ways in which outer intuitions are
related to one’s body.?®

Moreover, the glove argument is similar to the preceding argument given by
Kant in the Prolegomena, which will serve as the foundation for our rejection of
constructible non-Euclidean Geometry. At the beginning of §13, Kant presents
another scenario which is meant to show that congruence is preceded by the
relations of the subject to space. The reader is asked to imagine “two spherical
triangles on opposite hemispheres which have an arc of the equator as their
common base” (Kant 1977: §13). These triangles are assumed to have identical
angles and sides, though placed on opposite hemispheres of the globe. Though
the triangles are clearly quite similar, they cannot be said to be congruent, for
by simple Euclidean displacement the triangles cannot occupy the same space,
just as a right-hand cannot occupy a left-hand glove. If we move the triangles on
the surface of the sphere, we have the correct curvature, but the vertices do not
match up; on the other hand, if we move one off the face of the sphere and flip
it, the triangles’ vertices will coincide, but the curvature will not match. Hence,

34For an in-depth discussion of incongrious counterparts in Kant, see “The Paradox of
Incongruous Counterparts” in Kemp Smith 1923: 161-6.

35If extra dimensions were visualizable, Wittgenstein’s counter-argument (Wittgenstein,
1922: 6.36111) would succeed [that is, that fourth-dimensional manipulations to right- and
left-handed gloves would make them congruent]. Since our concern is with that which is
intuitable for humans, we will move past the fourth-dimensional argument.
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though thé triangles are internally identical [having the same measurements],
the erternal relations of the triangles to a priori space differentiate them as
incongruous.

Congruence is therefore imposed upon our intuitions. An intuition, framed
by the singular manifold of space, has external relations which strictly defines
with what it is congruous. Contrary to the opinions of Reichenbach and Hop-
kins, we cannot simply choose to ignore the congruity of intuitions. Eman-
cipation from Euclidean congruence while logically possible, constructively is
not.

Finally, I will argue that the impetus still remains upon those who argue
against Kant’s theory of geometry to provide a method for constructing non-
Euclidean geometry which does not merely describe a specific Euclidean space.
The disc model describes the Euclidean geometry of the chords of a circle. The
spheroid model describes the Euclidean geometry of the great arcs of a spheroid
and moreover is only a model of two-dimensional Riemannian space. The saddle
model is only elliptic near the center of the saddle and there is no center of
Lobachevski-Bolyai space; moreover, the model again is merely describing the
Euclidean geometry of the contours of the saddle. To secure the constructibility
of non-Euclidean geometry, one needs to provide a model in which the lines are
straight, the planes are straight, and the geometry abides by the non-Euclidean
theorems.®® As Bertrand Russell notes: “Unless non-Euclideans can prove, what
they have certainly failed to prove to this point, that we can frame an intuttion
of non-Euclidean spaces, Kant’s position cannot be upset by Metageometry
alone, but must also be attacked, if it is to be successfully attacked on its purely
philosophical side” (Russell 1897: 56-7).

4.4 Formalism, Logic and Constructive Possibility

We now return to the threat of formalism upon constructivism. The worry
is that Hilbert’s The Foundations of Geometry show that geometry can be
done analytically. The advent of formalism, however, does not refute Kant’s
claim that geometric truths “are not conclusions from some general notion of
space, but ounly discernible in space as in the concrete” (Kant 1984: §15.C).
Modern advances merely demonstrate an enhanced role for a “general notion
of space”. The Hilbertian enterprise, in developing an enhanced role of logic,
is forever tied to logic; indeed, in showing that geometry can be done purely
analytically, without reference to an interpretation, Hilbert is merely proving
the logical possibility of geometric concepts. Hilbert’s project is not at odds with

36There is another possibility, however. Helmholtz provided a thought-experiment which
seems to suggest that there is a possible world in which beings with the same cognitive
structure to humans could visualize in a non-Euclidean manner; consequently, the intuitive
necessity of Euclidean geometry is lost (Helmholtz 1977). However, as Robert Hanna notes,
Helmbholtz’s argument at best yields an isomorphism between Euclidean and non-Euclidean
geometry, which is not enough to avoid the intuitive necessity of Euclidean geometry. For a
discussion of Helmholtz’s argument and another defense of Kant in light of the challenge from
non-Euclidean geometry, see Hanna 2001: 270-9.
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the Kantian account, for Kant would claim it merely to be a work of logic, not
geometry.

Here, we again focus on the distinction between logical and constructive
possibility. The Hilbertian enterprise is certainly useful in showing the concepts
of geometry to be logically consistent. However, for Kant, the concepts of
geometry must also be shown to be constructively possible. Intuition plays
the critical role in confining geometry to those concepts which refer to possible
intuitions, that is, non-empty concepts. As Emily Carson notes in her discussion
of Friedman,

...geometry is constrained by pure intuition because only intuition
makes the representation of mathematical concepts possible. If a
purely conceptual representation were possible, it seems, there would
be no such constraint. I am suggesting that mathematics is con-
strained by pure intuition because only that can provide its concepts
with objective content, thereby ensuring that it is not a mere play of
the imagination.

Carson 1997: 510

We should take a concept’s constructibility in intuition to be a property
worth noting. Construction achieves two desirable characteristics for geometry:
the meaningfulness of geometric propositions and the applicability of geometric
concepts to intuitions. These two qualities are certainly not achieved by logical
proof. By declaring geometry to be synthetic a priori, Kant achieves both.
The intimate relation between geometry and the world is achieved because the
theorems of geometry themselves are derived from intuitions.

‘Geometry’ comes from the Greek yewperprer, which means ‘earth-measure’.
This material origin should not be ignored for the sake of placing geometry on
a ‘more primordial’ foundation. The utility of geometry, and I would venture to
say all of mathematics, comes from applicability to intuitions. Geometry is not
‘mere play of the imagination’ nor a long string of empty tautologies. Rather,
through construction, the emptiness of the analytic is filled by the content of
intuitions and this play of the imagination is made into reality. Without a
foundation in intuition, the objects of geometry are mere logical possibilities;
that is, they do not contradict themselves. This is not an adequate description.
To claim triangle is merely a way of saying ‘A is A’ deprives geometry of its
essential applicability and contentful nature.
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5 Afterword: Geometric Truth

In his widely influential “Mathematical Truth,” Paul Benacerraf isolates two
objectives for an account of mathematical truth (Benacerraf 1983). The first
is for seamless semantics—that a description of the semantics for mathematics
mirrors the semantics for the rest of language. That is, a proposition such as
‘17 is a prime number is true in the same manner as ‘the flower is pink’ is true.
Secondly, an explanation of mathematical truth should mesh with a ‘reasonable
epistemology’. In accounting for the truth of mathematical propositions, we
must leave open a reasonable route by which we can come to know what is true.
Benacerraf contends that one of these objectives can be achieved only at the
expense of the other. We can illustrate this point well by briefly considering
naive formulations of Platonism and formalism.

Platonism is a realist philosophy of mathematical objects: such objects in-
dependently exist of humans. Through some sort of faculty of the mind or
perception, we discover these objects and the facts about them. Platonism eas-
ily achieves the goal of seamless semantics. Just as “the flower is pink” is true
because it corresponds to independently existent reality, “17 is a prime number”
is true because the object 17 has certain independent qualities, one of these be-
ing its prime-ness. On the other hand Platonism, classically construed, presents
a capricious epistemology. How exactly we come to discover these independent
objects and facts is vague—as Benacerraf says, “a typical [Platonism] will depict
truth conditions in terms of conditions on objects whose nature, as normally
conceived, places them beyond the reach of the better understood means of
human cognition (e.g. sense perception and the like)” (Benacerraf 1983: 409).
Where one can point to the flower and observe its color, the nature of 17 and the
medium of our acquaintance with 17 are nebulous. Rarely do some Platonists
do much better than Plato’s own maligned theory of recollection. This is not to
say that some versions of Platonism do not fare better than others. Our point
is that the preeminent problem for Platonists is one of epistemology.

On the other hand, formalism appears to achieve a reasonable epistemology
at the expense of seamless semantics. Under formalism, mathematics is the re-
sult of lying down axioms and rules for what can be derived from these axioms.
For example, given the Peano axioms and logic, we can derive arithmetic. For
the formalist, mathematics is the process of manipulating our axioms under
certain constraints—the products of these manipulations are the theorems of
mathematics. The truth of these theorems issues from the truth of the axioms
and appropriate application of inference rules. Formalism hence deals well with
epistemology—a proposition of mathematics is true based on its derivability
from the axioms or its syntax. The ease with which formalism deals with epis-
temology however comes at the cost of seamless semantics. Where propositions
of the world are true in virtue of corresponding to actual facts, the statements
of mathematics are true in virtue of their form. The truth of the statement
statement “17 is a prime number”, does not mean that the object 17 has the
quality of being prime; rather, it means that the proposition itself is therefore
a product of our mathematical ‘game’ of setting up axioms and inference rules.
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Those who prioritize one of Benacerraf’s two objectives generally ¢hoose to
defend either Platonism or formalism. Admittedly, Platonism easily secures
seamless semantics and formalism clearly achieves a reasonable epistemology.
I contend, however, that there is a third motivation for an account of math-
ematical truth: the account must explain the applicability of mathematics to
the world. An adequate account of mathematics must not make the success of
mathematics a divine coincidence.

Constructivism provides the best such explanation for two reasons.®” First,
constructive geometry is concerned with determining the a priori qualities of
objects delimited from the singular intuition of space. When we determine such
a quality, it attains universality in experience for, since space is the a priori form
of outer intuition, the properties of space are imposed upon all outer intuitions.
A properly derived geometric theorem holds for all associated intuitions in virtue
of each intuition’s being framed by the spatial form of intuition. Secondly,
construction in intuition is a necessary part of proof. In a geometric proof,
a specific property of an intuition is universalized through the schema of the
corresponding concept—embedding the property in experience is necessary for
the proof. Hence, it is no divine coincidence that a property applies to all
intuitions of a class; a necessary step in the proof is universalizing the property
for all such intuitions.

On the other hand, Kantian constructivism gives no account for that which
is not intuitively possible. A Kantian is hard-pressed to give an account for the
‘truth’ of non-Euclidean geometry, segments of set theory, or even the calculus.
Many objects and concepts of such domains are strictly not constructible. Yet
simply denouncing these areas as not-math is clearly unacceptable. There is
much more work to be done by the constructivist.3®

This said, our objective was never to provide an account of Kantian construc-
tivism which avoids this critique. Rather, we meant to show that constructivism
is more resilient than many have thought. Contrary to being “quaint” or “silly”,
constructivism deals well with many problems in philosophy of mathematics.
When we recognize the applicability of mathematics to the world as a serious
question, constructivism is as much a player in philosophy of mathematics as
Platonism or formalism. Indeed, we should look for the best account perhaps
not in rehabilitating Platonism or formalism, but rather in giving constructivism
the honest consideration it deserves.

3TPlatonism, however, seems to do markedly better than formalism in accounting for appli-
cability to intuitions.

38 A possible (but not well thought-out) move for the Kantian may be to expound a hybrid
account of mathematics. A classical constructivist account could be coupled with a formalism
for non-constructible domains of mathematics. I see two possible problems with this account.
First, the fact that some areas of mathematics are constructible seems to devalue the ar-
eas which are the results of formal manipulation. Secondly, the hybrid theory inherits the
shortcomings of formalism at the fringes where it is invoked.

40




The Geometry of Intuitions M. Bennett McNulty
May 5th, 2008 Macalester College

References

Allison, Henry. 1973. Kant-Eberhard Controversy. Balitmore: The Johns Hop-
kins University Press.

Benacerraf, Paul. 1983. “Mathematical Truth” in Philosophy of Mathematics:
Selected Readings ed. Paul Benacerraf and Hilary Putnam. Cambridge: Cam-
bridge University Press. 403-20.

Bolzano, Bernard. 1996. “Purely analytic proof of the theorem that between
any two values which give results of opposite sign, there lies at least one real
root of the equation” in From Kant to Hilbert: A Source Book in the Foun-
dations of Mathematics ed. William Ewald. Oxford: Oxford University Press.
225-48.

Carson, Emily. 1997. “Kant on Intuition in Geometry” in Canadian Journal
of Philosophy. 22(4): 489-512.

Frege, Gottlob. 1950. The Foundations of Arithmetic trans. J. L. Austin.
Evanston: Northwestern University Press.

Friedman, Michael. 1985. “Kant’s Theory of Geometry” in The Philosophical
Review. 94(4): 455-506.

1992. “Philosophy and the Exact Sciences” in Inference,
Explanation, and Other Frustrations: Essays in the Philosophy of Science ed.
John Earman. Berkeley: University of California Press. 84-98.

Greaves, Mark. 2002. The Philosophical Status of Diagrams. Stanford: CLSI
Publications.

Guyer, Paul. 1987. Kant and the Claims of Knowledge. Cambridge: Cambridge
University Press.

Hanna, Robert. 2001. Kant and the Foundations of Analytic Philosophy. Ox-
ford: Clarendon Press.

Heath, Thomas. 1956. The Thirteen Books of Euclid’s Flements. New York:
Dover Publications.

41



The Geometry of Intuitions M. Bennett McNulty
May 5th, 2008 Macalester College

Helmholtz, Hermann. 1977. “On the Origin and Significance of the Axioms of
Geometry” in Epistemological Writings ed. R.S. Cohen and Y Elkana. Dor-
drecht: D. Reidel.

Hempel, Carl. 1945. “Geometry and Empirical Science” in American Mathe-
matical Monthly. 52.

Hilbert, David. 1902. The Foundations of Geometry trans. E.J. Townsend.
Chicago: The Open Court Publishing Company.

Hopkins, James. 1982. “Visual Geometry” in Kant on Pure Reason ed. Ralph
C. S. Walker. Oxford: Oxford University Press.

Jargensen, Klaus. 2006. “Construction and Schemata in Mathematics” in
Phinews. 9: 4-28.

Kant, Immanuel. 1929. Critique of Pure Reason trans. Norman Kemp Smith.
New York: St. Martin’s Press.

1894. Inaugural Dissertation of 1770 trans. William J. Eck-
off. New York: AMS Press, Incorporated. ’

1992. Lectures on Logic trans. J. Michael Young. Cam-
bridge: Cambridge University Press.

1977. Prolegomena to Any Future Metaphysics That Will
Be Able to Come Forward as Science trans. James W. Ellington. Cambridge:
Hackett Publishing Company, Inc.

Kemp-Smith, Norman. 1923. A Commentary to Kant’s ‘Critique of Pure Rea-
son’. New Jersey: Humanities Press.

Norman, Jesse. 2006. After Euclid: Visual Reasoning and the Epistemology of
Diagrams. Stanford: CSLI Publications.

Pendlebury, Michael. 1995. “Making Sense of Kant’s Schematism” in Philoso-
phy and Phenomenological Research. 55(4): 777-97.

Poincaré, Henri. 1983. “On the Nature of Mathematical Reasoning” in Phi-
losophy of Mathematics: Selected Readings ed. Paul Benacerraf and Hilary
Putnam. Cambridge: Cambridge University Press. 394-402.

Popper, Karl. 1963. Conjectures and Refutations. New York: Routledge Clas-
sics.

42




The Geometry of Intuitions M. Bennett McNulty
May 5th, 2008 Macalester College

Reichenbach, Hans. 1958. The Philosophy of Space and Time trans. Maria
Reichenbach and John Freund. New York: Dover Publications Incorporated.

Reid, Constance. 1970. Hilbert. New York: Springer-Verlag.

Russell, Bertrand. 1897. An Essay on the Foundations of Geometry. Cam-
bridge: Cambridge University Press.

Saccheri, Giovanni Girolamo. 1920. Euclides Vindicatus ed. and trans. George
Bruce Halsted. Chicago: The Open Court Publishing Company.

Shabel, Lisa. 2006. “Kant’s Philosophy of Mathematics” in The Cambridge
Companion to Kant ed. Paul Guyer. Cambridge: Cambridge University Press.
94-128.

Van Fraassen, Bas. 1980. The Scientific Image. Oxford: Clarendon Press.

Wittgenstein, Ludwig. 1922. Tractatus Logico-Philosophicus. New York: Rout-
ledge Classics.

43



	Macalester College
	DigitalCommons@Macalester College
	5-1-2008

	The Geometry of Intuitions: Reconsidering Kantian Constructivism
	Michael McNulty
	Recommended Citation


	tmp.1222354128.pdf.4ifLG

