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Abstract

As the quantity of structured and unstructured data increases, data processing
experts have turned to systems that analyze data using many computers in parallel.
This study looks at two systems designed for these needs: MapReduce and parallel
databases. In the MapReduce programming model, users express their problem in
terms of a map function and a reduce function. Parallel databases organize data as a
system of tables representing entities and relationships between them. Previous
comparison studies have focused on performance, concluding that these two
systems are complimentary. Parallel databases scored high on performance and
MapReduce scored high on flexibility in handling unstructured data. Both systems
offer a querying language: Pig Latin for MapReduce systems and SQL for parallel
databases. This study compares the operations, query structure and support for
user defined functions in these languages. The findings offer data processing
experts insights into how data organization and querying structure affects data
analysis.
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Chapter 1 : Introduction

MapReduce is a programming model with an associated implementation that was
introduced by Google for large-scale data analysis on clusters (Dean and Ghemawat,
2004). It involves users writing a map and a reduce function for the task they want
to accomplish. The system takes care of data partitioning, execution flow, handling
machine failure and managing inter machine communication. Some of the
advantages of this model as stated by Dean and Ghemawat (2010) is that it is
independent of the underlying storage system, therefore making it suitable for
production environments with a mix of storage systems, it is simple yet expressive
enough to implement complex functions that are difficult to express in SQL, and it
provides fine-grained fault tolerance whereby only the task on nodes that failed
have to be restarted.

Some of the evidence for this model’s wide acceptance includes the extensive use of
its open source implementation called Hadoop in various organizations, including
Facebook, which as of 2009 had 400 terabytes of data that were managed by the
Hadoop MapReduce system and ingests about 15 terabytes of data each day
(Facebook, 2010). Other users and vendors include Yahoo! and Aster Data who are
not only using the system but working on different ways to improve the model and
incorporate it with an SQL system (Aster, 2010).

The programming model requires users to program their tasks into mappers and
reducers:
Example 1

map: (k, v) => (K, v') reduce: (K',v') => (k',v'*)
The map function is applied to a set of key-value tuples (k,v) and transforms each
tuple into a set of tuples of a different type (k’,v’). For example, if you have a text
document and you want to find frequency of words, then the map function gets a
line of text as the value, v and the name of the document as the key, k. The map
function transforms this input into a new key-value pair such that each word is the
key k’ and 1 as the value, v'. The reduce function aggregates the set of values v’ with
the same k’. In this example, it would sum all of the ones for each distinct word. In
the Hadoop open source implementation, mappers and reducers are written in the
Java programming language.

Parallelization may be handled differently depending on different system
implementations. The system proposed by Google (Dean and Ghemawat (2004)),
which Hadoop was based on, manages parallelization as follows:
1. The system automatically partitions the data into a set of M splits. M is
controlled by the user via an optional parameter. It then starts up multiple
copies of the program on clusters of machines.



2. One of the copies acts as a master and the rest are workers. The master has M
map tasks to assign and R reduce tasks. R is determined by a partitioning
function [e.g. hash (key) mod R] where R (the number of partitions) and the
partitioning function are determined by the user. The master picks idle
workers and assigns them either a map or reduce task.

3. A worker, who is assigned a map task, reads data from its given input split,
parses input key value pair depending on the user-defined map function and
produces intermediate key value pairs. The intermediate key value pairs are
buffered in memory.

4. The system periodically checks buffered memory, stores the data into local
disk, partitions the data into R regions, where R is determined by a
partitioning function, and notifies the master about the pending reduce jobs.

5. Areduce worker reads all the intermediate data for its partition and sorts the
data by intermediate key.

6. Once the sorting is done, the reduce worker parses each intermediate key
encountered together with its values to the users reduce function. The output
of the reduce function is then appended to the final output file.

Figure 1.1 from Dean and Ghemawat (2008) shows the overall flow of the
MapReduce operations according to the above description

According to Stonebraker et al. (2010), parallel database systems were introduced
in the mid 1980’s. The Teradata (Teradata Corp (1985)) and Gamma(DeWitt at
al.(1986)) projects were the first to pioneer the architecture for databases on
clusters of commodity computers. The architecture is based on horizontal
partitioning of relational tables, together with partitioned execution of SQL queries.
The rows of relations are distributed across nodes using techniques such as hash
range, and once they are in separate nodes, execution of queries happens in parallel.

These database systems use SQL language for query execution. SQL is a higher-level
language that is easier to understand as compared to Java, because the user defines
what the query should return and not exactly how the system should retrieve it. A
user only needs to understand the relational model of how the data is stored,
different operators that are available for data manipulation, and how they can be
applied within the SQL schema. Parallelization happens automatically, depending on
the distribution of data on the nodes. In addition to parallelization, the queries
themselves are highly optimized using indices.

Pavlo, et al. (2009) did comparative studies between MapReduce and parallel DBMs
and concluded that these two systems are complimentary. Several authors have
argued that the range of applications and data analysis tools that MapReduce was
good for include:



a)

b)

ETL-Extract, Transform, Load systems

This involves tasks such as parsing and cleaning log data, performing
complex transformations such as “sessionization”, which is the process of
reading log information from several different sources and loading
information into DBMS or other storage engines. They argue that MapReduce
performs better in these kinds of tasks. [ would point out that DBMS were
never designed for this, but the need for processing such large amounts of
data prior to storage for further analysis is an important development in the
past decade.

Complex analytics

In data mining and data clustering applications, a system may need to make
several passes over the data and Stonebreaker et al. (2010) argues that
MapReduce makes a good candidate for such systems. Most of these analyses
cannot be modeled as a single SQL query or set of queries because they
require a complex data flow where output of one function is the input of
another. Examples of such analysis include machine learning and graph
analysis, which in most cases involve extracting the data out of databases and
doing the analysis on different system. Chu et al. (2006) presents a
framework for using MapReduce for machine learning by supporting vector
machines, k-means and neural networks. Cohen (2009) explores the idea of
using MapReduce to perform graph algorithmic tasks such as determining
vertex degrees and identifying trusses (sub-graphs of high connectivity
which may be useful in analyzing social networking data (Gruska and Martin,
2010)).

Semi-structured data

Stonebreaker et al. (2010) also argues that with semi-structured data,
MapReduce has an advantage because it does not require any schema
support. In relational databases, the data can be modeled using large
relations with many attributes, and nulls for the values that are not present.
This incurs a heavy performance cost for row-based databases. On the other
hand, column based databases can overcome this cost because they are
capable of only reading the relevant attributes and ignoring the null values.
Therefore, if the data is to be stored for further analytical purposes, the
vertical databases are even better than MapReduce. For quick and dirty
analysis, MapReduce works better because it does not need schema support.
An example of a scenario that may involve semi-structured data is an
Internet company with a database containing customer profiles with
information such as address, name and gender. The company may wish to
predict user behavior using large amounts of ad-hoc data such as click-
streams (Gruska and Martin, 2010). In this case MapReduce will do a better



job of combining database information about the customer and the click-
stream data, which will probably get discarded afterwards.

When looking at performance advantages for various tasks, parallel databases
outperformed the MapReduce system significantly, especially for the Join task.
However, the authors concluded that the quick set-up advantage one gets from
MapReduce is something normal DBMs should aspire to. From a usability
standpoint, Pavlo, et al. (2009) also suggested that it would be better if there were a
higher-level interface for Hadoop because even with the flexibility that MapReduce
offered, SQL was still much easier to write than the Java Mapper and Reducer
classes.

The Pig Latin scripting language is one of the projects that aimed at improving
usability of Map Reduce (Gates et al. 2009). This language is designed to fit in “a
sweet spot between the declarative style of SQL, and the low level procedural style
of MapReduce” (Olson, 2008). This language is not only a higher level data flow
language but it also has operators similar to SQL such as FILTER and JOIN that are
translated into a series of map and reduce functions. However, unlike SQL, Pig Latin
does not require the data to conform to the first normal form rule. In this paper I
will be analyzing the expressiveness of the Pig interface of Hadoop as compared to
SQL. I will be looking at the algebra that is formed with Pig and comparing that to
relational algebra. I will compare SQL’s implementation of relational algebra to the
language used by Pig, I will analyze how each language incorporates user defined
functions, and finally look at MapReduce implementation of Pig operations to see if
there is a performance price.

Chapter 2 : Background

The MapReduce framework and system was built in 2003 to simplify construction of
inverted indices for handling searches for Google (Dean and Ghemawat, 2010). Over
the years the system has been widely used for tasks such as large scale graph
processing, text processing, machine learning and statistical machine translation. To
illustrate how the model works, Listing 1 is an example of pseudo-code from
Ghemawat (2010) that one would write if they wanted to count the number of
occurrences of each word from a large collection of documents:



map (String key, String value)
//key: document name
//value: document contents
For each word in value
Emit intermediate(w,”1");

reduce (String key, Iterator values)
//key: a word
//values: a list of count
int result =0;
for each v in values
result +=parselnt(v)

Listing 1: Word Count Example

While the map function emits each word with a count, in this case its just 1, the
reduce function sums up all the counts for each given word. In Hadoop, the open
source version of MapReduce, coding is done using Java and the source code for the
mappers and reducers for Listing 1 is in Listing 2. The model simplifies distributed
computing, because the system is the one that handles data partitioning, program
execution flow across all machines, handling machine failure, and the inter-machine
communication.

public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text,
IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizertokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

}
}

public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text,
IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}

output.collect(key, new IntWritable(sum)); }

Listing 2: MapReduce Word Frequency



SQL is a high-level declarative language that is derived from relational algebra. In
addition to the level of abstraction produced from using operators?, SQL is called a
declarative language because the user only specifies what the result should be and
the database handles optimization and how the query is executed. Using operators
makes this language easier to use as compared to lower level languages such as Java
because the user just states what they want instead of stating an algorithm of how to
get it. Additionally, SQL also does not follow the sequence of operators that are in
the underlying algebra step by step. In other words, there is not always a one-to-
one mapping between the SQL language and the relational algebra operations. While
on one hand it makes the queries more compact, it also makes it harder to
understand how the data is being transformed when one has very complex queries.

The MapReduce programming model, on the other hand, requires the user to give an
algorithm for data access. This gives it more flexibility in how one can manipulate
data. But since programming is done using Java, the accessibility is only limited to
people who know the language and it is harder to learn than SQL.

Structurally, parallel DBMs were designed for different types of data. They were
designed for highly structured relational tables with indices and operators used for
data manipulation. These operators are highly optimized and they use indices that
help in sorting, finding, or grouping data. Since these operators do not accommodate
all analytical needs, some relational DBMS lets their users define their own
functions subject to some constraints. These functions are called user-defined
functions (UDF) and I explore them in detail in Chapter 6.

MapReduce systems on the other hand are very flexible about the representation
and storage of data. Since the storage system is independent of the programming
model, the only requirement is that data can be presented in a map function as a key
and value pair. This again gives MapReduce more flexibility but perhaps at the cost
of performance and ease of use.

The following is a summary of data analysis tasks examined in a comprehensive
study of performance difference between the two systems undertaken by Pavlo et
al. (2009), who implemented these tasks on Hadoop and two other parallel database
systems named Vertica and DBMSX (the paper did not disclose the name for this
database):

1. Grep task: This was meant to be a representative of the type of task that
MapReduce was built for— it involves going through large sets of documents
looking for a particular pattern.

! An operator is a function that takes one or more relations as input and transforms
it to produce an output



The result showed that for all the clusters that they worked on, the Hadoop
system had a better data load time. In task execution, however, the Hadoop
system was outperformed by both of the parallel DBMS in almost all the
tasks.

2. Analytical tasks: This was a set of html processing related tasks.

a. Aggregation task: This task required the systems to calculate total
ad-revenue produced by each sourcelP address from a table mapping
userVisit to [P addresses and advertisement revenue.

This task was designed to measure the performance on a single table.
It forces the systems to exchange intermediate data between nodes to
reach a final result. In this test, the parallel databases outperformed
the Hadoop system by a significant amount.

b. User Defined Function Aggregation task: This was a task that
required each system to write a user defined function. The task was to
produce the in-link count of each html document. The systems had to
go through the documents and find the number of unique URLs in
each document in the file system and for each unique url find all the
unique documents that referenced that url.

The results showed that Hadoop outperformed the row based RDBMs
but was outperformed by Vertica. The authors also noted that the task
was much easier to implement on Hadoop system than on the parallel
DBMS they worked on.

c. The JOIN task: This required finding a URL that generates the most
ad revenue for a particular date range. The most important aspect was
forcing the systems to combine information from two different data
sets.

The parallel database outperformed Hadoop by a very significant
amount, which revealed a weakness in MapReduce’s ability to
combine information from two different data sources. The DBMS are
able to take advantage of the fact that the two tables involved a
partition by the join key and therefore they are able to do the join
locally without any overhead of repartitioning before the join.

In addition to revealing the strength and weaknesses in these systems, this
performance study also revealed an important usability aspect that both of the
systems needed to address. While it was easier to setup and load unstructured data
in one system (Hadoop), the actual writing of code appeared to be simple in the
other (parallel DBMS). Therefore several efforts have been made to bridge the gap
between the two system’s functionalities.



Gruska and Martin (2010) devised a classification of various systems that have tried
to integrate MapReduce and parallel databases. The classification is based on how
the two systems are integrated. This classification is as follows:

a) MapReduce dominant systems

These are MapReduce systems with relational databases added. An example
of this system is the HadoopDB (HadoopDB , 2009), which is a hybrid of
Hadoop’s MapReduce and PostgreSQL database. Hadoop acts as the
coordination and communication layer; while the storage layer is formed by
both systems. Therefore the system can process both structured and
unstructured data.

b) RDBMS dominant systems

These are relational database management systems with MapReduce
functionality. This is especially for the execution of user-defined functions
(UDF), which are difficult to parallelize in traditional systems. These systems
are aimed at expanding UDF capabilities in parallel databases. Examples of
such systems include Aster Data (Argyros, 2008) and Greenplum
(Greenplum, 2008).

c) Loosely coupled system.

In these systems, the DBMS and MapReduce portions are kept separate.
Vertica (Vertica, 2011) is one example of a system that allows for a
communication with Hadoop in this way. While these systems are simpler,
the user is forced to know how to use both and because the systems do not
communicate between each other, optimization becomes difficult.

While Pig Latin does not exactly fit this system integration framework (because it is
entirely on top of a MapReduce system), its interface tries to pull from the strengths
of both systems in terms of ease of use for the programmer. This paper is aimed at
looking at the comparison question by specifically focusing on usability of the
systems.

Chapter 3 : Problem Statement

The introduction of Pig Latin offers a good opportunity to revisit the comparison
question from a different focus. While most of the studies that have focused on
performance conclude that the systems are complimentary, the question of usability
and system flexibility is still not fully explored. The popularity of MapReduce,
despite some of its performance setbacks, is evidence that we might be missing
something when we only look at performance. Pig offers a highly comparable
interface to SQL because it is a higher level language like SQL, it uses operators, and
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it has implementations for tasks such as JOIN that further reduce the gap between
what MapReduce and parallel DBMs could be used for. Therefore, I will be
comparing the user interfaces for these two systems first to determine how similar
they are and finally to see which one is more user friendly by looking at following
questions:

a. How similar is relational algebra to Pig algebra?

Since Pig Latin was designed to fit in the sweet spot between declarative
style of SQL, and low-level, procedural style of MapReduce (Olston, 2008), it
will be interesting to see in what areas Pig chose to differ from SQL. I will
explore these differences by first comparing the language respective
algebras, and finally look at syntactic differences in how they implement
their respective algebras. These differences will give an indication of each
system’s capabilities and the similarity level. I will try to answer this
question by making an analysis of major Pig operators and compare them to
their relational algebra counterpart to see how different Pig algebra is to
relational algebra. For each Pig algebra operator, I will be looking at the
input, the transformation on the input, and the output. I will compare the Pig
algebra operator to its relational algebra counterpart if it exists, or a series of
operators that we can combine to make a similar transformation.

b. How does Pig’s implementation of its algebra affect usability?

This question tries to explore how easy and intuitive it is for the programmer
to use each language’s algebra in solving day-to-day tasks. Since SQL does
not directly map to its algebra, we will explore whether Pig does a better job
of mapping and whether or not the mapping of the language to its algebra
affects its usability.

[ will do this analysis by looking at how different sample queries are written
in SQL versus Pig to see which language is more intuitive. I will also take
some sample queries from the Pavlo, et al. (2009) performance benchmark
that had examples of queries designed according to analytical difficulty
starting from grep task, to weblog tasks and finally a Join task.

c¢. How does each system support complex analytics using User Defined
Functions?
The ability of a system to support user-defined functions has become more
and more important because of the increasing demand for complex ad-hoc
computations on large datasets. This paper will explore how far each system
has come in supporting this demand. I will answer this question by looking at
the level of support each system offers and how easy it is to implement the
user-defined functions.



Chapter 4 : Relational algebra vs Pig algebra

4.1 Relational Algebra Theory

Pioneered by Edgar F. Codd (1970), the relational model represents data as a
collection of relations. Each relation can be implemented as a table of rows of
entities and columns of attributes of those entities. The model represents facts
about the entities and the relationships between them. For example, Figure 2 shows
how information about students and student organizations might be stored. Student
Relation gives facts about each student, Organization gives facts about each
Organization and Student of Organization reveals the relationship between Students
and Organizations. For example, there is a many to many relationship between
Organization and Student and therefore Student of Organization has several
students who share the same organization. This relationship between the three
entities is derived from matching data values of the attributes. For example both
Student and Student of Organization have students with the names John, Mary, Kate
and Bill and both Organization and Student of Organization have organizations
named MacSoup, Afrika and Adelante.

StudentName Age GPA

John 20 4.0

Mary 18 3.8

Kate 21 3.9

Bill 18 3.8
Student Relation

OrgName

MacSoup

Adelante

Afrikal

Organization Relation

OrgName StudentName
MacSoup John

Adelante Kate

Adelante Bill

Afrika, Mary

Student of Organization Relation

Figure 1: Student and Organization Relation
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In relational databases, each row represents a tuple. The tuple is a list of named
values where each value is an element of a domain. The order of the tuples in a
relation does not matter. Moreover, each domain value has to be atomic, thus
indivisible as far as the database is concerned, an important distinction from how
Pig defines its data structure (see Section 4.1.2). This is why we needed a new
relation called Student of Organization to store students and organizations because
in relational databases, we are not allowed to have a column called students with
more than one value. In addition, a relation is defined as a set of tuples with each
tuple being unique. In order to make sure that each tuple is unique, i.e. no two rows
share exactly the same data on every column, databases usually designate certain
column(s) as key attributes that have to be distinct.

Relational algebra is a system of operations for manipulating relations that is used
by relational databases, including parallel databases. The operations are called
operators and they work by selecting tuples from individual relations or combining
tuples from several related relations to produce another relation. Other operators
can further manipulate the result. A nice way of visualizing these operators is using
precedence charts that show the input relation(s), the operator used, the arguments
the operator works on, and the output. [ will use these charts to compare and
contrast relational algebra operators to the operators provided by Pig.

4.2 Pig Algebra Theory

Since Pig was designed to fit in the sweet spot between SQL and MapReduce (Olston
(2008)), it also uses operators. Pig also defines its own relation as a bag of tuples,
and for the purpose of this paper I will refer to it as a Pig-relation. Unlike relational
databases, tuples in Pig do not have to be unique. Pig also does not require the
tuples to have the same number of fields or data from the same column to be of the
same type.

Pig also accepts complex data types for each field. Therefore, unlike fields in
relations, fields in Pig-relation do not have to be atomic; a value in a Pig relation can
be a tuple, bag or a map that can be further expanded within the same Pig relation.
Pig defines their data model as a fully nested one with operations for nesting and
un-nesting in addition to other operators that are similar to SQL. This flexibility
allows Pig to operate over plain input, without any schema support. Table 1 is an
example of a Pig-relation that can store students and their organization in the same
entity and Table 2 describes some of the simple and complex data types that Pig
supports, according to their user manual (Pig Latin Reference Manual (2010)).

OrgName Students
MacSoup {John}
Adelante {Kate, Bill}
Afrikal {Mary}

Table 1: StudentOrg Pig Relation

11



Data type \ Definition
Complex data types
Tuple An ordered set of fields.
Bag A collection of tuples.
Map A set of key value pairs.
Scalar data types
Int Signed 32-bit integer
Long Signed 64-bit integer
Float 32-bit floating point
Double 64-bit floating point
Chararray | Character array (string)
Bytearray | Byte array (blob)

Table 2: Pig’s Data Types

4.3 Pig Operators and Corresponding SQL Operators

In this section I am going to look at individual Pig operators and provide an SQL
operator that is similar. In each example, if there are two comparable operators
then I will place the Pig operator on the left and the relational algebra on the right. If
a section has only one operator then, it is a Pig operator without an SQL counterpart.
[ will use precedence charts to describe what the operators are doing and discuss
main differences in the input and output between the two systems. In this analysis, I
start by using two relations from Figure 2 while treating them as Pig’s nested bags.

Name: Student Pig-Relation
Columns: Name, Age, GPA, Year
(John, 20, 4.0, 2)
(Mary,18, 3.8, 1)

(Kate, 21, 39, 4)

(Bill, 18, 3.8, 3)

Name: StudentOfOrganization Pig-Relation
Columns: OrgName, Student Name
(MacSoup, John)
(Adelante,  Kate)
(Adelante,  Bill)
(Afrika, Mary)
Figure 2: Sample Pig-Relations

4. 3.1 FOREACH ...GENERATE

This operator generates data transformations based on columns of data. When no
other operator or function is used in conjunction with it, this operator works like a
PROJECT operator in relational algebra. In addition to projecting columns (Figure 4
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part a), this operator can project arithmetic computations using column values
(Figure 5 part a), and when used after the GROUP operator this operator can project
functions such as count, max, sum and average. Some of the examples of its use are
outlined on Figure 4 and 5 with left-hand column showing Pig Algebra and right
hand column showing relational algebra. Figure 4 part a shows an example of the
precedence chart and part b shows how the operation works on a nested bag.
Figure 5 part a shows how the operator can generate columns while part b shows
how it can use aggregate functions

PIG ALGEBRA RELATIONAL ALGEBRA
a) Simple Project
Student
Student

FOREACH [..|GENERATE
col: name, age

PROJECT
col: name, age

Name and age of Student

Name and age of Student

Name and age of Student Result

(John, 20) Name and age of Student Result
(Mary, 18)
(Kate, 21) Student Name Age
(Bill, 18) John, 20
Mary, 18
Kate, 21
Bill, 18

b) Nested operation after group

A = StudentOfOrganization;
B = GROUP A BY OrgName;

DUMP B;

(MacSoup, {(MacSoup, John)})

(Adelante, {(Adelante, Kate), (Adelante, Bill)})
(Afrika, {(Afrika, Mary)})

X =FOREACH B GENERATE group, Count (A);

// The language lets you refer to the group over column as group
DUMP X;

(MacSoup, 1)

(Adelante, 2)

(Afrika, 1)

Figure 3: FOREACH (Pig Operator)
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PIG ALGEBRA RELATIONAL ALGEBRA
a) Column arithmetic operation on Pig
lgeb
a'gebra Student
Student

FOREACH
col: name,
((age — year)+1)

Name and age of
student at year 1

Result:
ge;llltlg) Name Ageatyr1
ohn
) Ohn 19
(Mary, 18) {\/Iary 18
(Kfelte, 17) Kate 17
(Bill, 15) Bill 15

PROJECT
col: name
Cal col: ((age — year)+1)

v

Name and age of
student at year 1

b) Nested operation with function on nested column on Pig algebra

Let A=A =LOAD 'bag data' AS (
B1: bag {T1: tuple (t1: int, t2: int)},
B2: bag {T2: tuple (f1: int, f2: int)});

DUMP A;

({(89), (0,1)},{(8,9), (1L,1)})
({(2,3), (4,5)}, {(2,3), (4,5)})
{(6,7), 3,7} {(2.2), (3,7)})

DESCRIBE A;
a: {B1: {T1: (t1: int, t2: int)},B2: {T2: (f1: int,f2: int)}}

X = FOREACH A DIFF (B1, B2);
dump x;

({(0,1), (1,1)})

)

({(6,7), (2,2)})

Figure 4: FOREACH (Pig Operator) continued
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Analysis of a FOREACH operator

In theory a FOREACH operator behaves exactly the same as the project operator in
the way it works on columns. In practice, however, since data in a Pig-relation is not
atomic, the operator can perform aggregate functions on the nested data such as the
one on Figure 4 b and Figure 5 b. The complex data type support also enables it to
easily model simple matrix computations such as the one Figure 5 part b.

4. 3.2 GROUP

This operator is the same as COGROUP. But unlike relational algebra, it works both
as unary and as a binary operator. Usually for programming purposes GROUP is
used as a unary and CO-GROUP is used as a binary operator. This operator takes a
Pig-relation and returns another relation with two columns, a new group column
containing a tuple of all the columns you grouped by and a bag of all rows in the
original column that match that particular group. Figure 6 first describes how this
operator works using a precedence charts in part a, it then outlines how different it
is from relational algebra group in part b.

PIG ALGEBRA
a)

Student

v

GROUP
Column = Age
Func: none

Student by Age

Student by Age Result:

(18, {(Bill, 18, 3.8), (Mary, 18, 3.8)})
(20, {(John, 20, 4.0),})

(21, {(Kate, 21, 3.9)})
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PIG ALGEBRA RELATIONAL ALGEBRA

b
) Student Student
v 4
GROUP over: Age
Column = Age func: count(*)
Age-group and students in that v
age group Age and num
students
FOREACH: age-group
GENERATE: age-group,
count(name)
[ Age and number of students ]
Age and number of students Result: Student by Age Result:
(18, 2)
(20, 1) Age Num Students
(21,1) 18 2
20 1
21 1

Figure 5: GROUP OPERATOR

Analysis of GROUP

Pig algebra’s group behaves like relational algebra’s group when it is used together
with a FOREACH operator as we see in Figure 6 part b. The actual operation on a
Pig-relation when only the GROUP is used is very different from relational algebra. It
creates a new column consisting of values it groups by and then merges elements in
the same group into one row. This means that the aggregate function in Pig-algebra
also works in rows that contain aggregate data. Since values in relations have to be
atomic, there is no relational equivalent for Pig’'s GROUP operator when it is used on
its own.
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4.3.3 COGROUP

This is a binary operator that takes a Pig-relation with two columns from each of the
relations to group by. It returns a relation with three columns, the group key like the
one for GROUP and two columns with bags from either Pig relations that match the
given key. This acts like the relational algebra’s full outer join operator, since it
keeps both data sets even when there is no matching value on the other side. In the
same way that you can specify Left Outer Join or Right Outer with SQL, Pig uses the
word INNER beside each column key to indicate whether null values for that key
should be excluded e.g. column A INNER, column B means return all records of
column B and only matching records for column A. Figure 7 shows differences and
similarities between pig algebra COGROUP on the left column and relational algebra
OUTER JOIN

PIG ALGEBRA RELATIONAL ALGEBRA
Student Student of Org Student Student of Org
COGROUP OUTER JOIN
colA: Name colA: Name
colB: Student Name colB: Student Name
A 4
A\ 4
Cotudent&Org Student&Org
CoStudent&Org Result: Student&Org Result:
(Bill, {(Bill, 18, 3.8)}, {(Adelante, Bill)}) Name | Age | GPA | Org
(John, {(John, 20, 4.0)}, {(MacSoup, John)}) || Bill 18 | 3.8 | Adelante
(Kate, {(Kate, 21,3.9)}, {(Adelante, Kate), | | John |20 |4.0 | MacSoup
(Afrika, Kate)}) Kate |21 |3.9 |Adelante
(Mary, {Mary, 18, 3.8}, {}) Kate |21 |3.9 |Afrika

Figure 6: COGROUP

4. 3.4 DEREFERENCE

This is similar to project and/or reduce except that it does not have a computed
column. It takes a relation as an input and returns specified columns or sub-columns
of that Pig-relation. Since Pig can have tuples, bags or maps as data types in each
column, the operator exists in three forms.
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a) tuple.id or tuple.(id1, ...)

In Pig, a FOREACH statement can access tuple elements in a Pig-relation.
For example, if relation A has two columns f1 and f2 with this sample data:
(1,(1,2,3))
(2, (4,5,6))
Then the query:

X =FOREACH A GENERATE f2.t1, f2.t3;

Will produce the following result
X=(2,3)
(5, 6)

b) bag.id or bag.(id1, ..)
In Pig, a FOREACH statement can also be used to access element in a bag
inside a Pig-relation. For example, if we have a Pig relation B with the
following columns and data:

Pig-relation B: (col1l: int, col2: bag ({f1: int, f2: int, f3: int}) )

DUMP B;
(1,{(1,2,3)})
(4,{(421), (4.3,3)})
(7,{(7,2,5)})
(8,{(83,4), (8 4,3)})

Then the query:
X=FOREACH B GENERATE col2.f1

Will produce the following result:
X =
{1
({(4), (4)})
{7}

({(8), (8)1)
(It will project every first field of the bag called col2)

c) map #key
The FOREACH statement can also access map elements in a Pig-relation.

For example, if we have the a studentOrg Pig-relation in Table 3 with the
second column holding maps with key value pair separated by # symbol,
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OrgName | orglnfo

MacSoup | [students#{John}, budget#2000, yearFounded#1995]

Adelante | [students#{Kate, Bill}yearFounded#1998]

Afrikal [students#{Mary}, yearFounded#1998]

Table 3: Student and Org Pig Relation

The query:
X =FOREACH A GENERATE orgInfo#'yearFounded’;

Will give the following result:
X = (MacSoup, 1995)
( Adelante, 1998)
(Afrika, 1998)

Since relational algebra only deals with atomic data for each column, I cannot
produce the corresponding relational algebra operation for these examples.

4. 3.5 FLATTEN

This operator is unique to Pig’s algebra. It takes bags and tuples and un-nests them.
This process is different for each data type and the process happens as follows:

a) For a bag, this operator replaces the tuple with the different fields of that
tuple. For example:
A= (a, (b))
The expression B= FOREACH A GENERATE $0, flatten ($1)
Means: project the 0t column and the flattened column of index 1
Result will be: (a,b,c)

b) The process is more complex with a bag. For example:
A= ({(b,c),(de)})
The expression B= FOREACH A GENERATE flatten ($0)
Means: project a flattened Oth column.
Result: ((b,c),(d,e)) .(One level of nesting disappears )

c) However if the bag is not the only element in the relation then a cross
product will occur in removing the level of nesting. For example:
A=(a,{(bc,).(de)})
The expression B= FOREACH A GENERATE $0 flatten ($1)
Means: project the 0t column and the flattened column of index 1
Since $1 column was a bag, projected right after another element,

a dot product will occur.
Result: ((a,b,c), (a,d,e))
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4. 3.6 OTHER SIMILLAR OPERATORS

In addition to the operators above, Pig has a lot of operators that are exactly like
SQL operators. Below is a list of Pig operators and their corresponding SQL
operators:

a) CROSS is similar to CARTESIAN PRODUCT
b) FILTER is similar to FILTER
c) JOIN is similar to JOIN.

d) UNION similar to UNION. However unlike in relation algebra, Pig algebra
does not require the two Pig-relations to have the same degree, therefore Pig
UNION can be considered as a vertical merge and to make the values distinct
one has to use the DISTINCT operator.

4.4 Analysis of the Differences between Pig Algebra and
Relational Algebra

Pig algebra appears to be very similar to Relational algebra as far as operations. The
main differences in how their operators transform the input comes from their
differences in the data types they support and the degree of control each system
wants to give to the user.

When looking at the differences between COGROUP and GROUP with their relational
algebra counterparts, the basic concept of the transformation is the same, but the
outputs they give are different. The relational algebra takes a further step of
cleaning the output and giving the user an output of the same basic structure (a
relation). To achieve the same output with Pig, one has to go an extra step of using
the FLATTEN operator or simply use JOIN instead. In this case Pig is giving users
more options on how they can transform their data and the size of the steps in
transformation they would like to take. The potential usefulness of such a choice
will be determined in Chapter 5. We still need to determine if this choice is useful to
users.

For operators such as GROUP and DEREFERENCE, the differences are mainly caused
by the differences with the data types each system supports. While Pig offers the
user more ways to access and manipulate the data, it also forces her/him to be very
careful in understanding what the relation contains. This is also evident on the Pig’s
UNION operator, where users can combine two relations that are very different
because a UNION is mealy a vertical merge.

FLATTEN is a very important operator for Pig’s nested data model and it appears to
be very useful in supporting easy import of data. However, its application on bags
can be confusing for the user, especially since it sometimes combines values to
create new tuples as we saw on the example in Section 4.2.5.
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Chapter 5 : Mapping of Algebra to Actual Language

In order to explore how Pig algebra and Relational algebra map to their respective
languages, I am going to look at various tasks with varying degrees of complexity.
First I will look at simple tasks that look at searches for particular data from a single
relation. This will allow me to explore the language structure and basic differences
in mapping from algebra to a query statement. Then I will explore more complex
aggregation tasks that require the system to group information from the same table
for various analytical goals. And finally I will explore various tasks that involve
collecting and joining information from two separate tables. For each level of task
complexity I will either explore a general example or a task that is similar to one of
Pavlo et al. (2009)’s benchmark task to establish continuity from their study to this
one. In each case I will describe the task, draw the precedence charts for each
language, and finally compare the actual queries to implement the task.

For the Pavlo, et al. (2009) benchmark [ will be using data that I created based on
the following SQL schema:

a)
CREATE TABLE words(
id INT PRIMARY KEY,
word VARCHAT(100)

b)

CREATE TABLE ranking(
pageURL VARCHAR(100)
pageRank INT,
avgDuration INT);

c)

CREATE TABLE userVisit (
sourcelP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT);

The tables I created for the Pig system have the same column names but they don’t
have primary key as this is not required nor supported by Pig. The data types used
are also the same in Pig and they have the same names except for VARCHAR, which
is called CHARARRAY in Pig. Since Pig does not have DATE as data type, I used
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CHARARRAY instead. While in relational databases the data is stored as relations,
with Pig, the data is stored as raw data example .dat and .txt files. The schema is
utilized at runtime and hence only defined in the script for executing the queries.

The words table contains one million randomly generated sets of strings as words
with five to ten characters each. This is representative of a text file where various
searches could be made on different patterns of words. The last string contains a
unique pattern with 123 in the middle of the word. The unique ids are added in
order to satisfy the relational database model.

The last two tables are representative of log files from HTTP server traffic. Using the
same script (Brown University, 2009) that was used to generate data in Pavlo et al.
(2009)’s analysis, I generated the userVisit and ranking tables. Since I did not have
the same number of clusters available as the original study, I only generated 10,000
userVisit records and 1,099,560 ranking records. The script first generates random
html documents with random links generated using Zipfian distribution. Then using
those html documents it generates ranking and userVisit data. According to Pavlo et
al. (2009), while visitDate, adRevenue and sourcelP are picked randomly from
different ranges, other fields are picked uniformly from sampling real world data
sets.

5.1 Structure of the queries

SQL queries have the following structure:

SELECT (DISTINCT) <projected column list>

FROM <input relations>

WHERE <select condition>

GROUP BY <grouped over column list>

HAVING <group condition>
The first two clauses are required and the rest are optional. An important element to
the query structure is that it can contain one or more relational operations, for
example SELECT and WHERE clause indicates a PROJECT and FILTER operation
within the same query.

A Pig query on the other hand is formed by a series of Pig statements. Since Pig
systems create their input and output at runtime, the queries have the following
structure:
a) LOAD statements that read the data from a file system.
b) A Series of Operator Statements.
c) STORE or DUMP statement that writes to an output file or displays an output
on the screen.
The operator statements (with the exception of LOAD and STORE) have the
following structures:
outputPigRelation = OPERATOR inputPigRelation(s) KEYWORD (input
Arguments)

22



For operators that dictate the columns to be produced, the KEYWORD is GENERATE.
For operators that do transformation based on a particular column, e.g. GROUP and
JOIN, the KEYWORD is BY. For operators that don’t have input columns or input
arguments, e.g. UNION, there is no KEYWORD. Operators that work on more than
one Pig-relation separate the Pig-relations with commas and may declare the input
arguments after each Pig-relation, e.g.
X=]OIN A BY field A, B BY field B;

The input argument may be a column, sub-column, scalar value, comparison
condition, or an arithmetic transformation of a column.

5.2 Simple Tasks from One table

One of the simplest functionalities for a data analysis system is finding and
retrieving data in some format. This usually involves filtering the data using some
condition in order to get only the specific columns that we are interested in. When
indexes are used, the filter task can be executed very fast, but in other cases the
system may need to go over every data value searching for a particular pattern. In
this section [ will go over some of the tasks that only use data from one table
A. Grep Task

This is very similar to the original MapReduce task from the first paper on
MapReduce. In this task they system is required to go through every word in the
table named words to find a word which has a 123 pattern in it. In relational algebra
this task can be expressed shown on Figure 8:

words

FILTER
Col: word contains ‘%123%’

|

words with pattern %123%

Figure 7 : Grep Task Precedence Chart

The Pig and SQL queries for this task are as show on Table 4:

SQL Pig
SELECT * FROM words WHERE | FILTER words BY (word matches
word LIKE ‘%123%’; *123%)

Table 4: Grep Task Queries

When comparing the two queries, Pig does a better job of mapping directly to the
algebra shown in Figure 8 and it makes more intuitive sense of the transformation
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that is taking place. This is because SQL requires the SELECT statement, which is
redundant if we are not projecting the data in any way. Pig also uses the same
regular expression syntax as Java and many programming languages and therefore
it may be more intuitive for programmers. On the other hand, the key word LIKE
may be more intuitive for a non-programmer.

B. Selection Task
Suppose we are interested in finding the pageURL and pageRank from the ranking
table of pages that have a ranking that is above a certain threshold. In this case, we
want pageRank to be greater than 8. This involves filtering information and limiting
the output only to the columns that we want. This task is also similar to Pavlo et al.
(2009) benchmark task and the relational algebra and corresponding queries are
shown in Figure 9 with their corresponding queries in Table 5.

ranking

FILTER
Col: pageRank>8

PROJECT
Col: pageURL, pageRank

URL and RANK for greater
than 8 ranking

Figure 8: Selection Task

SQL Pig
SELECT pageURL, pageRank X=FILTER ranking BY (pageRank>8)
FROM rankings WHERE pageRank>8 | Y=FOREACH X GENERATE pageURL,
pageRank

Table 5: Selection Task Queries

For this task the order of operation doesn’t matter for the task execution within the
system. SQL offers a one step query for this task while Pig forces you to break each
step. While the SQL statement might be shorter, Pig offers you more flexibility in
thinking about the order of operations and does a better job of mapping the
transformation on the data.
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C. Aggregation Task
When using the userVisit table, we could be interested in finding the total
adRevenue generated for each sourcelP. This task is also in the Pavlo et al. (2009)
benchmark and can be analyzed by the relational algebra found in Figure 10 with
the corresponding query in Table 6.

userVisit

GROUP
over: sourcelP
func: sum(adRevenue)

sourcelP and their sum of
revenues

Figure 9 Aggregation Task

SQL Pig
SELECT sourcelP, A= GROUP userVisit BY (sourcelP)
SUM(adRevenue) B=FOREACH A GENERATE
FROM userVisit group, SUM(userVisit.adRevenue)
GROUP BY sourcelP;

Table 6: Aggregation Task Queries
For this task the SQL maps directly from relational algebra precedence chart. Pig
however breaks this task into two, GROUP and a FOREACH operator and the
transformation happens as follows:
Since userVisit = (

sourcelP: charArray,

destURL: charArray,

adRevenue: double, ...)

A GROUP over sourcelP operator creates the following Pig relation A
A=(
group:charArray,
userVisit: bag({sourcelP:charArray, ,adRevenue:double, ...}) )

Where group is a column containing individual sourcelPs
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The FOREACH statement then, projects the column and sub-columns we want:
B = (group, sum (adRevenue))

For this task, both of the languages map directly to their respective algebras. This
task highlights the main differences of the GROUP operator in each language. While
GROUP in relational algebra projects a set of rows and a computed aggregate
function over set of rows, a GROUP in Pig algebra mainly bundles the Pig relation
based on values of a particular column. While it is unclear in this example if it is
more useful to break up the GROUP operator into two, as Pig algebra has done, or
have it as one step, Olston et al (2008) argued that breaking up the group operator
is useful because it gives the user an option to either use a user defined aggregate
function or cross product the result to get a join result. Carlis (2010) has mentioned
that it might be easier to think of GROUP as a REDUCE operator that has the
aggregate function. Therefore breaking it up into two might be more intuitive
because it helps keep track of the transformation on the data.

SQL also added the HAVING clause instead of having the WHERE clause contain an
aggregate function. Therefore a modification of the aggregation task could be,
finding total adRevenue for sourcelP whose total adRevenue is above 5000. This
would produce the queries in Table 7.

SQL Pig
SELECT sourcelP, SUM A= GROUP userVisit BY (sourcelP)
(adRevenue) B=FOREACH A GENERATE
FROM userVisit group, SUM (userVisit.adRevenue) as rev
GROUP BY sourcelP; C=FILTER B BY rev> 5000
HAVING SUM
(adRevenue)>5000

Table 7: Aggregation Task Querie(continued)

In this case, the Pig script forces the user to break down the query into three steps,
while with SQL you have one compact query. It is much easier to infer the sequence
of steps from Pig scrip than from the SQL query.

5.3 Task from Two Data Sources

A. JOIN Task

This is a more complicated task that requires the system to make an analysis by
combining information from two datasets. The task is to find the pageRank and total
adRevenue of pages that users visited and arrange them in order of most revenue
generated. The task differs from Pavlo et al. (2009) benchmark in that I did not limit
the dates the pages were visited because | was using a smaller dataset. Figure 11 is
a relational database model of how the analysis should be made and Table 8 has the
corresponding queries.
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ranking

JOIN

a: destURL
b: pageURL

userVisit

userVisit and their ranking

GROUP

l

over: sourcelP
func: avg(pageRank),
sum(adRevenue)

Revenue

SourcelP with avgRank and total

Figure 10: Join Task

SQL Pig
SELECT INTO D sourcelP, UV = userVisit
AVG pageRank as avgPageRank R=rankings

SUM adRevenue as totRevenue
FROM Ranking AS R, UserVisit AS UV
WHERE R.pageURL= UV.destURL
GROUP BY UV.sourcelP;

SELECT sourcelP, totalRevenue,
avgPageRank FROM D
ORDER BY totalRevenue DESC

C=COGROUP UV BY destURL INNER, R
BY pageURL INNER;

D= FOREACH C GENERATE group,
AVG(R.pageRank) as avgPageRank,
SUM(UV.aRevenue) as total Revenue;
E= ORDER D BY rev DESC;

Table 8 Join Task Queries
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The transformation of data in Pig happens as follows:
UV =(

sourcelP: charArray,

destURL: charArray,

adRevenue: double, ...)

R=(
pageURL: charArray,
pageRank: int,
avgDuration: int)

A COGROUP UV BY destUR INNER, R BY pageURL INNER creates the following Pig-
relation

C=(

group: charArray,

UV: bag ({sourcelP: charArray, ,adRevenue: double, ...},

R: bag {pageURL:charArray, pageRank:int, avgDuration:int})

where group is a column containing individual destURL and pageURL's.

The FOREACH statement then, projects the column and sub-column we want and
also performs the aggregate functions

D = (group: charArray, rank: int , revenue: int)

In this task, Pig offers a step-by-step analysis that focus on the transformation of the
data and therefore it matches the flow of the precedence chart. The co-group
operator just collects data together and therefore the Pig query does not need the
GROUP operator because the aggregate functions can be performed in the FOREACH
statement. This makes Pig query shorter because the intermediate state of the data
allows us to skip the group.

SQL on the other hand has a format that lumps operators together and it makes it
difficult to discern the actual flow of the data. In this example we could have used
the JOIN operator for Pig, which is exactly the same as the relational algebra Join
operator, instead of COGROUP. In this case the operations would have almost
matched what we see in the precedence chart.

5.4 Analysis

For the examples that we have looked at so far, Pig queries force the user to focus on
the step-by-step transformation of the data, which is more similar to precedence
charts than their SQL counterparts. This makes it easier to follow how data is being
transformed, especially as the query becomes more complex. This is more evident
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in the JOIN and GROUP tasks where the static structure of SQL query makes it hard
to infer which operation happens first.

In some cases Pig operators themselves appear to be further breakdowns of
individual relational algebra operators. The GROUP operator in relational algebra is
equivalent to GROUP and FOREACH operator in Pig. This is a structural difference
in how the two systems handle aggregate functions—whereas Pig collects data into
a single row, by nesting it together, and performs the aggregation data on the row;
relational databases perform aggregate functions on columns. The intermediate
steps in Pig were also useful because in the JOIN task they allowed for a JOIN and a
group to be merged into one step.

SQL in these tasks has been shorter and more compact, which may save time when
using a common query several times. Pig’s choice of the word group as a key word
for the column name after a GROUP operator may be confusing while reading the
query, which lessens its usability.

Chapter 6 : User Defined Functions

In the comparison study between MapReduce and parallel databases performed by
Pavlo et al. (2009), User Defined Functions (UDF) was the only task in which parallel
databases did not significantly outperform the MapReduce system. In addition to
UDFs being key to analyzing semi-structured data, processing needs on structured
data are also changing, therefore making the support for UDF key to a systems’
reach for more general applications. In the next section I will be examining whether
the UDF capability has been enhanced with Pig and explore the strengths and
limitations in relational databases.

6.1: UDFs in Relational Databases

Relational database systems that support UDFs may have three types of user-
defined functions:

a. Scalar functions

b. Inline table-value functions

c. Multi-statement table-value functions
Scalar functions take zero or more parameters and they return one value. This may
involve a simple arithmetic operation or complex operations across multiple
relations in the database. Listing 3 is an example of a scalar function from Carpenter
(2000) who defines some UDFs for SQL server 2000 using a language called T-SQL:
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CREATE FUNCTION whichContinent
(@Country nvarchar(15))

RETURNS varchar(30)

AS

BEGIN

declare @Return varchar(30)

select @return = case @Country
when 'Argentina’ then 'South America
when 'Belgium' then 'Europe’

when 'Brazil' then 'South America’
when 'Canada’ then 'North America'
when 'Denmark’ then 'Europe’
when 'Finland' then 'Europe’

when 'France' then 'Europe’

else 'Unknown'

end

return @return
end
Listing 3: Scalar UDF

Scalar functions can take expressions or as in the above example, column values as
their input arguments. They can retrieve data but they are not allowed to call any
SQL statements that can alter information in the database. A main advantage of this
type of function is that it can be used anywhere in an SQL statement where there is a
scalar of the same data type. While with SQL server you can define UDF in T-SQL
logic, other databases such as Sybase let the user define UDF with C or C++.

Inline table-value functions take in arguments and return a table. In addition to
difference in output, they also allow only one select statement inside the body.
Therefore they provide means of selecting particular elements from a relation or a
set of relations and modifying them using the input argument. Listing 4 is an
example of inline table-value function:
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CREATE FUNCTION udf_Category_ProductCountTAB(
@MinProductsint = NULL)
RETURNS TABLE
AS
RETURN
SELECT c.CategoryID, c.CategoryName, COUNT(ProductID)as NumProducts
FROM Northwind.dbo.Categories c
LEFT OUTER JOIN Northwind.dbo.Products p
onc.CategoriesID= p.CategirylD
GROUP BY c.Category, c.CategoryName
HAVING (@MinProducts IS NUL
or COUNT(ProductID) >= @MinProducts)
GO
GRANT SELECT ON dbo.udf_Category_ProductCountTAB to PUBLIC
GO
Listing 4: Inline Table Function

The main advantage of this type of function is that it allows the user to create small
unit blocks of code that can be included in other SQL statements. For example we
can re-use the UDF in Listing 4 in a Join statement to retrieve categories of products
we want, as shown in Listing 5 .

SELECT cp.CategoryName, c.Description NumProducts
FROM dbo.udf Category_ProductCountTAB cp
Inner join NorthWind.dbo.Categories ¢
ON c.CategorylID = cp.CategorylD
ORDER BY cp.CategoryName

Listing 5: Join Operation with UDF

Lastly, multi-statement table-value functions return tables and allow for multiple
select statements in their declaration. When creating the functions, you are
required to declare the structure of the table that will be returned. An example of
such a function is shown in Listing 6 from Arcane Code (2007):
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create function dbo.f LotsOfPeople(@lastNameA as nvarchar(50),
nvarchar(50))
returns @ManyPeople table
(PersonlID int, FullName nvarchar(101), PhoneNumber nvarchar(25))
as
begin

insert @ManyPeople (PersonID, FullName, PhoneNumber)
select ContactID
, FirstName + “ “ + LastName
, Phone
from Person.Contact
where LastName like (@lastNameA + ‘%");

insert @ManyPeople (PersonID, FullName, PhoneNumber)
select ContactID
, FirstName + “ “ + LastName
, Phone
from Person.Contact
where LastName like (@lastNameB + ‘%");

return
end
Listing 6: Multi-Statement UDF

@lastNameB as

Listing 6 is a UDF that takes two regular expressions for first name and last name
and returns a table of people with names that match that pattern. It can also be
adopted to search for people from different tables because the insert statements can

each declare its own source tables.

According to Chen et al. (2009), pushing down analytics into the database engine
has several benefits, including fast data access, reducing data transfer time, and
taking advantage of programming languages in data manipulation. They argue
however, that relational databases have two main limitations in incorporating UDFs

for complex applications, namely:
a) Poor expressive power of UDFs

Chen et al. (2009) argues that since SQL systems offer scalar,

aggregate, and

table functions they lack a generality that is required for complex analysis.
For example, while the scalar or aggregate function cannot return a set, the
table functions have constraints on the input. And while creating the UDF, a
user is not allowed to internally call other UDFs that were defined previously.
This makes it hard to model matrix and vector manipulation (Ordonez and

Garcia, 2007) because they need multi-variable input, multi-

variable output

and in some cases several passes over the data to do the analysis.
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Moran and Novick (2004) also add that there is usually a performance
penalty when using UDFs. This is because the UDF can cause a set based
operation to act like a row-based operation. Here is an example that Moran
and Novick (2004) give to illustrate this point: Imagine that we had a relation
with employees, another relation with departments, and a scoring system
that assigns a review grade to each employee. If we need to find average
review grade per department, we might write a UDF that returns a review
grade when given an id, and then use that to find the average per
department. This will ultimately incur a per-tuple performance penalty,
because the system will have to execute the UDF for each row that needs to
be evaluated. Using a JOIN will improve the performance. Therefore UDFs in
relational databases are limited in how they can support multivariate
statistics, machine learning and data mining

b) Difficulty in hiding DBMS internal details from the application developers.

Currently there is a tradeoff between efficiency and ease of coding when
incorporating UDFs into RDBMS. For example, with systems such as
Teradata, system information is passed as strings to the UDF, which is easier
for the developer to understand but incurs a heavy burden in per tuple
processing. On the other hand, in systems like Postgres, UDFs are coded like
other system functions, which makes them more efficient but the developer
has to be aware of the database internal data structures and system calls
(Chen et al. 2009).

6.2: UDFs in Pig

Pig has extensive support for UDFs. A user is required to write the functions in Java
and register the jar file that was used to define the functions. Listing 7 is an example
from Pig’s reference manual of using a UDF called UPPER that was defined in
myudf.jar file.

-- myscript.Pig

REGISTER myudfs.jar;

A =LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = FOREACH A GENERATE myudfs.UPPER(name);

DUMP B;

Listing 7: Registering a UDF in Pig

Pig describes several types of UDFs, including simple eval functions, aggregate
functions and filter functions. A simple eval function is a function that is used in a
FOREACH statement like the above example. Therefore it works on rows of data. It
extends the EvalFunc interface and the return statement is a Pig object. Listing 8 is
an implementation of the UPPER function in Listing 7.

33



packagemyudfs;

importjava.io.lOException;
importorg.apache.Pig.EvalFunc;
importorg.apache.Pig.data.Tuple;
importorg.apache.Pig.impl.util. WrappedIOException;

public class UPPER extends EvalFunc (String)
{
public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)
return null;
try{
String str = (String)input.get(0);
returnstr.toUpperCase();
}catch(Exception e){
throwWrappedlOException.wrap("Caught exception
processing input row ", e);

Listing 8: EVAL UDF (UPPER FUNCTION)

The next type of UDF is the aggregate function. This works on grouped data and
therefore it is used in a FOREACH. It also extends the EvalFunc interface and can
return any Pig data type. Listing 9 is an example of this type of function, which takes
in a bag of reviewers and their scores and returns the best reviewer and his or her
score:

Sample data:

bookreview:

title reviwer score
book1 aaa 1
book1 bbb 3
book1 ccc 12
book?2 aaa 4
book?2 bbb 1
book3 ccc 1
book3 bbb 5
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Public class BestReview extends EvalFunc (tuple){
@Override
Public Tuples exec (Tuple_input) throuws 10 Exception{
Iterator<Tuple>bagReviewers = ((DataBag)p_input.get(0)).iterator();
Iterator<Tuple>bagScores = ((DataBag)p_input.get(1)).iterator();

private HashMap<Integer, List> scoresMap = new HashMap ()
int bestScores =-1;
String bestReviews =null;

while(bagReviewers.hasNext() &&bagScores.hasNext()){
String revName = (String) bagReviewers.next().get(0);
Integer score = (Integer) bagScore.next().get(0);
if (IscoresMap.containKey(score)){
ArrayList <String> r = new ArrayList<String> ();
scoresMap.put(score, r);

}

scoresMap.get(score).add(revName)
If (score.intValue () >bestScore){
bestScore = score;

}
}

return TupleFactory.getinstance().newTuple{
Arrays.asList((Interger) bestScore, BagFactory.getInstance()
newDefaultBag( scoresMap.get(bestScore));

Listing 9: EVAL UDF(BestReview)

How it is used

Register myUDF.jar

A = LOAD ‘books’ as (name: chararray, reviewer: chararray, score: int);

B =GROUP A by name;

C = FOREACH B GENERATE group BestReviewer (A.reviewer, A.score) as
reviewandscore

dump C

(book1, (ccc, 12))

(book2, (aaa, 4))

(book3, (bbb, 5))

Another type of UDF is the Filter function. This is a UDF that returns a Boolean value
and it can be used whenever a Boolean expression is needed. For example, one could
implement an isEmpty function that returns true if a given value is empty. This
function will be very useful, especially when used with other functions such as filter.
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Pig also has support for other types of UDFs like custom schemas for data types that
are not part of Pig, creating custom loaders that only take specific data that is
needed by the user and progress report. They also have a library called Piggybank
(which is open for public contribution) with javadoc that has custom functions such
as xml loaders, wrappers for java math functions and UDF’s for computing
correlation and covariance between data sets.

6.3: UDF Analytical Task

In this section I am going to look at an implementation of UDF task using the
userVisit table from section 5 with both Pig and SQL. The schema for the table is
listed below for easier reference.
CREATE TABLE userVisit(

sourcelP VARCHAR(16),

destURL VARCHAR(100),

visitDate DATE,

adRevenue FLOAT,

userAgent VARCHAR(64),

countryCode VARCHAR(3),

languageCode VARCHAR(6),

searchWord VARCHAR(32),

duration INT);

The task involves finding the URL domain with the most userVisits. This involves
working with the destURL to extract a domain, grouping over the extracted domain
and coming out with the domain with the highest number of userVisits.

6.3.1: Pig’'s Implementation of a UDF Task

If we were looking for a particular domain, a Filter would be sufficient because we
can search for particular regular expression. In this case, a UDF that extracts the
domain is needed in order to group over all possible values of domains. Listing 10
shows what the UDF for extracting the domain would look like.
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import java.io.lIOException;

import org.apache.Pig.EvalFunc;

import org.apache.Pig.data.Tuple;

import org.apache.Pig.impl.util. WrappedlOException;
import java.util.*;

import java.lang.*;

import java.net.*;

public class GetDomainName extends EvalFunc (String){
public String exec(Tuple input) throws I0OException {
if (input == null || input.size() == 0){
return null;

Hry{
String urlAddress = (String)input.get(0);
URL url = new URL(urlAddress);
String domain = url.getHost();
return domain;
}catch(Exception e){
throwWrappedIOException.wrap("Caught exception processing input row ", e);

Listing 10: Eval Function (GetDomain)

This is another example of a simple eval function that can be used in a FOREACH
statement. Now that we have this function, we can generate a domain for each
userVisit, group the data by domain, and return the domain with the most userVisit.
Below is sample of how this UDF will be used.

-- myscript.Pig

REGISTER myudfs.jar;

A =userVisit;

B = FOREACH A GENERATE myudfs.GetDomainNam(destURL) as domain, A;
C = GROUP B by domain;

D=FOREACH C GENERAT group, count(A) as numVisits;

E= FOREACH D GENERAT group, MAX (numVisits);

6.3.2: Parralel DBMS’s Implementation of a UDF Task

VOLTDB

VOLTDB is an example of a highly distributed parallel DBMS. It does not support
UDFs, therefore additional functionality has to be done through stored procedures
in Java. While stored procedures are more flexible, in that they allow queries that
change the base table and there are no limitations against non deterministic
functions, they also have a disadvantage in that they cannot be used within SQL
queries.
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TERADATA

Teradata has extensive support for specialized UDFs by both allowing UDF packages
from third party vendors and allowing you to define your own functions. You can
define your own functions using C or C++ programming languages. The
categorization of functions is very similar to that described in Section 6.1- It is
divided into scalar, aggregate and table functions. The actual steps in developing a
UDF differ depending on whether you will use OS system /0 calls (e.g. opening
files) or whether the UDF implements UDT?2 capabilities such as ordering or sorting.
If the UDF implements OS I/0 system calls and if those system calls require
resources that ordinary users have access to, then the UDF can run in ‘protected
execution mode’. If it requires specific OS resources, then the user has to create
context that identifies the user and allows them to perform those operations. If the
UDF needs to implement UDT functionality then it has to be registered as a cast,
ordering, or transform routine (Terradata User manual, 2007).

Going back to our example of extracting domains in Section 6.3, in Teradata the UDF
for extracting domains will be an example of a scalar function which takes an input
argument list and returns a single value. On an actual relation, it will be invoked
once for every row. Since in this study, I do not have this database, I will only
explore how such a function could be incorporated in an SQL query.

Assuming we have a function called extractDomain that takes a url and returns a
domain for that url, The SQL for the task in Section 6 will be as follows:

SELECT extractDomain(destURL) as domain, MAX(domain)
FROM userVisit
GROUP BY domain

6.4: Analysis of UDFs

MapReduce has been used for various problems with a high degree of complexity
and its flexibility is evident in its success in Pavlo et al. (2009) UDF task. The
success of Pig in combining the benefits of both SQL and MapReduce relies on its
ability to enhance or at least retain MapReduce’s strengths. One of the weaknesses
of MapReduce is that it required the use of Java, something that is still a problem
with Pig’s UDF implementation. However since there is various support including an
interface, documentation on how to declare and incorporate the UDF in other Pig
queries, it makes Pig more user-friendly than MapReduce.

When we compare Pig’s support of UDFs with other relational DBMS, there is mixed
result depending on the system used. For example when compared to Voltdb, Pig is

? UDT is a custom collection of one or more data values that can be expressed as a single custom data
type with associated functionalities on that data type.
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more user friendly, but compared to SQL 2000 server (section 6.1), Pig can be
considered as being more primitive because it uses a lower level language as
compared to T-SQL. When compared to Teradata, there are mixed results. They both
have a high level of support for UDFs because, they support similar types of UDFs,
they both use object-oriented languages and they support extensions from other pre
defined functions. In some respects, Pig can be considered more flexible, because
Teradata is still susceptible to the shortcomings outlined by Chen et al (2009), such
as limited expressiveness of the functions, because of the underlying relational data
structure. Therefore, while usability is somewhat determined by the level of support
for UDF’s, the adaptation of each system to different kinds of analysis is highly tied
to the data structure each system supports. Pig accepts complex data types such as
tuples, bags and maps, which thus makes it more adaptable to other forms of
complex analysis.

High UDF performance was another advantage that MapReduce had over row-based
databases in the analysis of Pavlo et al. (2009). This was because the UDF execution
in parallel databases could not take advantage of optimizations that other operators
had and were executed on a per-tuple basis. Therefore even with automatic
parallelization on each row, MapReduce was still faster. This analysis has not
compared the performance of UDFs in both systems. The result of such an analysis
will depend on how well Pig translates UDFs into efficient MapReduce tasks.

Chapter 7 : Conclusion

The analysis in Chapter 4 not only reveals some of the key differences in the kinds of
operations Pig Latin and parallel databases support but it also shows the level of
abstraction that Pig has created over its Map-Reduce architecture. Pig has done a
very good job of improving usability of Map Reduce into very simple operators that
are more easily accessible to users than Java both in terms of time it takes to devise
a query and simplicity of the language used. The two scripting languages are very
similar in terms of the operators they support and the transformation on the data.
Pig offers almost all of the relational algebra operators like filter, union, difference
and project, which transform data in a similar manner. It also offers other operators
that are specific to Pig because of the more flexible data model it supports. These
include dereference, flatten, group, co group and FOREACH...GENERATE. The group
operator is one of the most different operators between the two systems, which
reveal Pig’s philosophy of step-by-step transformation of data.

On the mapping of the language to its respective algebra, Pig offers a more intuitive
declaration flow, which directly maps to the precedence charts. This is very useful
for complex functions, because it makes it easier to follow the sequence of
operations and in some cases makes the actual analysis shorter. SQL, on the other
hand, offers a more compact declaration style that is easier to user for simple
queries. Pig’s support for more complex data types also warrants the step-by-step
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transformation because the structure of the base Pig-relation can change drastically
from nesting and un-nesting of columns.

Pig’s support for UDF is similar to support offered by some parallel databases such
as Teradata. The UDFs they support can be categorized into scalar, aggregate and
table functions, depending on how they can be integrated into other queries. The
ease of use can be determined by the language used in creating those UDF’s and the
data types the system supports. Pig in this case is less user-friendly as compared to
databases such as SQL server, which has a simpler language as compared to Java.
The level of analytical flexibility however, is highly tied to data types each system
supports. Pig has an advantage in this case because it supports highly unstructured
data.

This study however has not fully explored the relationship between usability and
performance, something that might be very important especially with UDFs and
determining computational flexibility of each system. Some studies have suggested
that there is a performance penalty in using UDF’s if there is a set operation
involved. Other studies have pointed out the restrictive nature of UDFs in parallel
databases in supporting complex analysis Chen et al. (2009). This study has shows
that Pig offers very good support for UDF’s and it is easy to implement simple UDF
functions. Future studies should compare performance of Pig’'s UDF and a parallel
database that supports UDFs.
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