











Previous work, such as that done by Korfiatis and Naeve [14] and Ortega et al. [19] also
created libraries for parsing Wikipedia revision histories. However, these libraries were built
to fulfill specific goals. Ortega et al. [19] performed descriptive analysis that did not require
a parsed link graph. Korfiatis and Naeve [14] did not parse a link graph that persisted
beyond their metrical analysis.

Parsing the link graph is a five-stage process involving both map/reduce and non-map/reduce
steps (Figure 5). Red boxes represent input and describe the input formats. Blue boxes
represent individual functions. Each stage is summarized below.
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Figure 5 — Link Graph Parsing. The link graph parsing process, step-by-step. Red boxes are data formats, and
blue boxes are WikiParser components.

Stage 1: LzmaPipe takes an input file containing the revision histories for a single article,
decompresses it, and outputs it to a stream. ArticleParser converts the LzmaPipe output
stream to a stream that handles the Revision XML format and uses it to parse out Article
information and iterate through Revisions.

Stage 2: LinkParser processes the text of each Revision individually, looking for each type
of Link in turn. FingerprintingParser also acts on the text of individual Revisions, but only
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Talk: and User talk: pages. It finds neighboring-editor links for all the users communicating
on the Talk and User talk: Articles.

Stage 3: InitialLinkMapReduce uses both the Stage 1 and Stage 2 processes to find the links
present in the ID:xml key-value input file. ArticleNameldMapReduce and
UserNameldMapReduce are contained in the NameldMapReduce step in Figure 5. They
both use just the Stage 1 processes to extract the IDs of all Entities in the same file.

Stage 4: NameldSubstitution uses the stage 3 functions to create a copy of the link graph
with only IDs instead of a mix of IDs and User and Article names.
CommutativeLinkMapReduce isn’t shown on Figure 5 in order to save space. It takes the link
graph representation and applies all links commutatively.

Stage 5: This final link graph file can be used by metrics to evaluate Wikipedia. A
description of the components required to perform this process follows.

5.2 Data Classes

The graph structure is represented by five main data classes: Entity, Article, User, Revision,
and Link, as in Figure 6 below.
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Figure 6 — Data Classes UML. UML diagram for WikiParser’s data classes.
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Entity is the parent class for Articles and Users, and contains a name, an Article or User id
(which are unique by type), a list of Revisions, and a list of Links. The meaning of the Link
list is the same for both Articles and Users, but the meaning of the Revision list is not. For
Articles, the list of Revisions represents edits to that one article. For Users, the list of
Revisions is the list of all edits performed by the user to any article. The Revision class
represents the information contained in the <revision> XML tag: namely, a Revision id, a
timestamp, the contributor, whether the revision is minor or not, any comments, and the
entire text of the article as of that revision. The Link class represents the connection between
two Entities, so it has two entity fields and a Link type.

5.3 LzmaPipe

An LzmaPipe takes as input an array of LZMA-compressed bytes and outputs a
decompressed PipedInputStream. It uses an additional thread to provide a persistent stream
object for as long as its contents are needed. This allows for the decompression of very large
files without requiring large amounts of memory. This is used for the largest files which are,
when decompressed, too large to reliably fit in memory. For example,

“Wikipedia: Administrator’s noticeboard/Incidents” is 37 MB compressed and 51 GB
decompressed, and “Wikipedia:Reference desk/Miscellaneous” is 18 MB compressed and 19
GB decompressed. :

5.4 ArticleParser

The ArticleParser class, Figure 7, parses Article information from an input stream.
ArticleParser provides methods for reading information from an InputStream containing a
MediaWiki .xml file. Each map task creates the InputStream using an LzmaPipe instance.
The ArticleParser then converts the input stream into an XMLStreamReader, which enables
it to traverse the file text through individual tags.

o, storeFuliTextinArticle: boolean
9, storeRevisionMetadata: boolean

& AticleParser()

® getNextRevision()

@ getStorefuliTextinArticie()
® getStoreRevisionMetadata()

Figure 7 — ArticleParser UML. UML diagram for the ArticleParser class.

. There are two primary methods in ArticleParser: getArticle() and getNextRevision().

Article getArticle(): This method instantiates an Article object inside of the ArticleParser and
returns it. Each call to getNextRevision() adds a new Revision object to the local Article
instance. An Article object with all of its Revisions can be retrieved by calling
getNextRevision() until it returns null.

Revision getNextRevision(): This method returns the next Revision in the XMLInputStream,
or null if there are none left. getNextRevision() uses the private matchElement() method to
find each of the six Revision fields, "id," "timestamp," "contributor," "minor," "comment,"
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and "text." Each field is stored as a String, except for "minor," which is saved as a boolean,
and "contributor,"” which is stored in a User object that is returned by the private method
readContributor().

This class was originally designed to hold the entire Article object, with complete Revision
and User lists, in memory. However, the individual MistRider cluster machines did not have
enough memory to handle the largest decompressed .xml files. Instead, each mapper uses an
LzmaPipe to create an InputStream for the ArticleParser.

A related problem also arose: even though the entire revision history was no longer being
held in memory, large files with lots of revisions could still use up all the memory available
to a single map task. MistRider mappers do not have very much memory available, but
nodes on Amazon's S3 can be configured to have more than enough. There are two options
that can be set in ArticleParser to handle this variation in memory availability. One option is
to determine whether the text of every revision is stored in the local Article instance. This
can help keep down memory overhead. A second option sets whether any Revision objects
are stored in the local Article instance. If this is set, the local Article instance never has any
Revisions added to its Revision list. Although this has the effect of causing getdrticle() to
only retrieve the Article's ID and name, it also nearly eliminates memory overhead issues.

5.5 LinkParser

The LinkParser class, Figure 8, finds the Links emanating from a particular Entity.
LinkParser finds links by looking at an Article created by ArticleParser. If the article is in
the User: or User talk: namespaces, then the Entity is a User. If the article is in the default or
Talk: namespaces, then the Entity is an Article object. The findLinks() method uses
LinkGenerators to find and return a list of Links for each Revision.
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Figure 8 — LinkParser UML. UML diagram for the LinkParser class and the LinkGenerator family of classes.
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LinkGenerators are classes that implement the LinkGenerator interface. Each one forms a
list of Links meeting specific criteria. The LinkGenerators used for parsing the link graph
have rules taken from the list of Link types reviewed earlier.

Due to Java 6's elegant for-each syntax, LinkGenerators provided a very simple way to look
for each individual Link type. There have been issues with not every Link being found, or
the Link being of the wrong Link type, but by compartmentalizing the functions for finding
Links into the LinkGenerator classes, logic bugs were much easier to find and resolve.

5.6 FingerprintingParser

FingerprintingParser, Figure 9, finds user-user-talk links. In contrast to coauthoring an
Article, Users communicate with each other when they talk on a Talk: or User talk: page.
The FingerprintingParser discovers which user pairs have had a conversation by finding each
User's unique contributions to a Talk: or User talk: page. It then finds the contributions
nearby it, which indicate other authors the User has talked to.

o FRngerprintingParsen()

& FAngerprintingParser()

® findUniqueText()
getCacheSize()
neighboringContributors()
neighboringContributors()
update()

Figure 9 — FingerprintingParser UML. UML diagram for the FingerprintingParser class.

The FingerprintingParser implements a rolling hash to find unique text. A rolling hash works
by setting up a "window" of text that the parser is currently looking at. All the words and
delimiters inside the window are sent to the hash() method, which returns an almost-unique
integer fingerprint. An internal hashmap stores all the fingerprints as fingerprint-Revision
pairs. The rolling hash window iteratively looks at the entire document, yielding a number of
fingerprint-Revision pairs.

The rolling hash window finds new words when it passes over them. However, if the words
start out in the window, it can’t determine if they are new, unique text or old. Changes in
words at the beginning of the text are detectable, because the window will produce an altered
fingerprint, but we can’t determine which specific words changed. In order to pick up these
changes, FingerprintingParser prepends and concatenates a special marker onto the text of
every Revision that it analyzes. By putting a number of markers equal to the size of our
rolling hash window on the beginning and end of every Revision text, the window can hash
words at the beginning of the text and determine whether they are new or not. A small
example of the rolling hash function, with special markers, is shown in F igure 10.
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“@ Lorem{space}ipsum{space)”, hash-

) olor sit amet, consectetur adipiscing elit.DQQ®

mm sit amet, consectetur adipiscing elit. 9Q0

-
-
L

“sit{space)ameticomma){space)consectetur”, hash-

e
QPPLoremi psum dololht amet, mmmturbdlpiscing elit QO

Figure 10 — Windowing. An example of the rolling hash’s “windowing” functionality. The first window shows
the beginning of a section of text including markers, the second window shows just the beginning of the text,
and the third showcases the middle of the text: note that the comma and space in the third window count as one
‘word’ to the function.

The hashmap that stores the fingerprint-Revision pairs acts as a cache for the fingerprints.
When the maximum number of key-value pairs is reached, the hashmap automatically
removes the oldest entry. This functionality enables us to configure how much memory we
are using for the FingerprintingParser.

ArrayList<String> findUniqueText(Revision revision): This method finds the unique text that
a single Revision adds to the Article as a whole. The findUniqueText() method does not add
any newly-discovered fingerprints to the hashmap. Instead, it uses the existing contents of
the hashmap to determine whether a given fingerprint is new. This method also doesn't
check for fingerprint ownership, so it should only be called on a Revision before that
Revision is passed to the update() method, which does add fingerprints to the hashmap. If
this is not done in the correct order, findUniqueText() may not find actual unique text for a
given Revision because that Revision’s fingerprints are already in the hashmap.

findUniqueText() travels iteratively through the document to find fingerprints. It also uses a
state transition to determine when a new word has been found. A window can be looking at
either old text or new, unique text. The state transitions are as follows.

¢ Old text = new text: If the window moves from looking at old text to looking at new
text, then a new word is necessarily at the end of the window, and the window is
moved forward to the first word of new text, which is also added to a String of unique
text.

¢ New text = new text: If the state of the window moves from new text to new text,
then the new first word of the window is also added to the unique text String.
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* New text > old text: If the window stops observing new text and comes across
fingerprints that are already stored in the HashCodeMap, then that section of new text
is finished, and can be added to the ArrayList<String> that this method returns. This
is equivalent to the window moving from new text to old text.

* Oldtext -» old text: If the window continues to observe old text, then nothing
happens.

The ArrayList of new text sections compiled during the iterative process is returned after all
the text has been fingerprinted.

ArrayList<User> neighboringContributors(Revision rev, ArrayList<String> uniqueText):
The neighboringContributors() method uses what is called a “neighborhood” to determine
what users have communicated with a particular Revision’s author. A “neighborhood” is a
set amount of space located before, or after, text that a particular Revision added. All users
who edited text within a piece of text’s neighborhood are “neighbors” for the User who wrote
the text. If User B's Revision is being considered, and User A has text within the
neighborhood of text that User B has written, then User A is added to the ArrayList<User>
for User B.

This method works iteratively, although not in the same manner as JfindUnigueText(), because
this method has both the full Revision text and the small strings of unique text returned by
JfindUniqueText(). For each section of unique text, the neighborhood before and after that
text are both inspected. The rolling hash window goes through each of these neighborhoods.
When the author of those text sections differs from the author of the original Revision, the
contributors of the text are added to the ArrayList<User>.

This method can only return neighboring contributor information to the extent that the edit
history of the Article is known to the FingerprintingParser's hashmap. Consider the situation,
shown in Figure 11, where Revision 1 adds a few lines of text to an Article, Revision 2 adds
a few lines at the end of Revision 1, and Revision 3 adds 12 words in the middle of Revision
I's text. If this method were passed Revision 2's unique text before passing Revision 3 to
update(), then it will only return the author of Revision 1. However, if this method were
called on Revision 2 after Revision 3's fingerprints are added to the hashmap, then the
method will return the authors of both Revision 1 and Revision 3. Furthermore, if a fourth
Revision just removes:all of Revision 1's text, then passing Revision 2 to this method yields
only the author of Revision 3.
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Revision1 Revision2 Revision3

Example text of lorem ipsum
A common form of lorem ipsum text reeds as follows:

Lorem jpsum dolor sit amet, consecisturadipisicing elit, sed do eiusmod lempor incididunt ut
inbore etdolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercilation ullemco
Inboris nisiut aliquip ex ea commodo consequat. Duis aule iure dolor in reprehenderitin
vohpinie veltease cillum dolore eu fugint nulia pariatur. Excepiaur sintoccaecat cupidatat
non proident, suntin culpa quiofficis deseruntmolitanim i est laborum.

Anoﬁnrmbnofﬂ»hnusumid'adbibf(nﬂmﬁun “adipisicing”). Otherversions of lorom jpsum
include additional words i add varisly a0 thet repested veses will not woid-wmp ori the exact same
phmses.

Figure 11 — Sample Text by Revision. A selection of sample text from the article on lorem ipsum, split up
along arbitrary revision lines [18].

This ambiguity is useful because we can use this method to find two different sets of users.
We can find users who are actively talking as of a particular Revision, or find all the users
who have ever talked in an Article, regardless of whether their conversation has been saved.

5.7 InitialLinkMapReduce

InitialLinkMapReduce is the first map/reduce step in parsing the link graph. This mapper
function consists of 3 steps: unescaping the input line, decompressing it through an
LzmaPipe, and finding the links. The series of modules just reviewed represent the entirety
of the InitialLinkMapReduce step from Figure 5.

Due to the double-escaping performed in the data formatting step, the value of each line
needs to be unescaped back to its original state before it can be decompressed without errors.
After it is unescaped, the compressed text is passed into an LzmaPipe, which creates an input
stream in a separate thread that can be accessed iteratively. Each article needs to be streamed
because the LZMA compression algorithm is very effective, and filesizes balloon when they
are decompressed. For example, the article "Wikipedia: Administrator's
noticeboard/Incidents" has a compressed filesize of 37MB, but a decompressed filesize of
51GB, which is far too large to be able to fit in the memory available to a single mapper.

Once the pipe is created, the ArticleParser class takes the LzmaPipe's output stream and reads
in the article a revision at a time. This allows each individual revision to be processed on its
own. The LinkParser class is then used to find all the Links between the article and other
entities. If the article is a User: or User talk: page, the Links are created between the article's
owner and other entities instead. Each Link is emitted to the reducer, which aggregates the
Links into article-or-user-ID:list-of-links pairs, as in Figure 12.
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a2546600 a01Istria aO1Istra_Resivoir a01Istra_River u06Mikkalai
u06Markussep u06Jesuislafete u06Goudzovski\n

Figure 12 — Sample Link Output. An example of the InitialLinkMapReduce output format.

Every Link is outputted in the following format: {a,u}[link type][name]. Each link type has
been coded into a numerical value to make them easier to compare. The first letter denotes
the type of the targeted Entity, the next two digits refer to the type of the Link, and then the
name of the article follows. The letter at the beginning of the line denotes the type of the
parsed entity. Here, article 2546600, “Istra (disambiguation),” has links to a variety of
Entities, including an article-user-edit Link to “Markussep” and an article-article-link Link to
“Istra-Resivoir.”

5.8 NameldSubstitution

Note in Figure 12 that only “Istra (disambiguation)” is referred to by an ID. This is because
we can’t get IDs for the other Entities just by looking at this one article. The next step to
parsing the link graph is to substitute IDs for the article names and user names emitted by the
Initiall inkMapReduce. Using IDs universally allows us to apply links commutatively in the
next step. This step builds on the InitialLinkMapReduce and NameIldMapReduce steps in
Figure 5.

ArticleNameIldMapReduce and UserNameldMapReduce output name:ID pairs for Articles
and Users, respectively. Each ID value is encoded with the type of the entity at the
beginning of the ID. After this job runs, NameldSubstitution, a non-map/reduce program, is
run to substitute in each ID. NameldSubstitution creates one HashMap for each type of
Entity, and uses the output encoding from ArticleNameldMapReduce and
UserNameldMapReduce to determine which ID is an Article ID and which is a User ID.
Each line in the link graph file is rewritten to a new file by looking up each link's name in the
appropriate HashMap and substituting the correct ID.

5.9 CommutativeLinkMapReduce

The final step in creating the link graph is the CommutativeLinkMapReduce job. This step is
an additional step not shown on Figure S. It reads in each line of the InitialLinkMapReduce
and outputs links from each former link target to the key entity as well as the original links.
This is then aggregated by the reducer and output, creating the final representation of the link

graph.

6. Metrics

The metrics reviewed below each produce different evaluations of the connectedness of the
link graph. These evaluations each tell us something about the presence of balkanization in
Wikipedia. Each metric takes the parsed link graph as input and outputs real-valued results.

18



6.1 Global Density

Global density is the number of edges in a graph divided by the number of possible edges in
the graph. It measures how connected a graph is by comparing it to an ideal, completely
connected graph. A densely connected graph shows little signs of balkanization, because
users and articles are widely connected, and not constrained to small groups. A not very
connected graph would be balkanized, as would a graph with pockets of connectedness that
aren’t themselves interconnected. Both of these graphs would have low global density.
However, a graph with pockets of connectedness that are themselves relatively connected
would have high global density, and would not be balkanized. Further analysis of the link
graph would need to be performed in order to determine what the underlying structure of the
graph is. The formula for density is as follows:

E|
i o
vI*(vit-1)
A density close to 0 means that the graph has very few edges and is not very well-connected.
A density closer to 1 represents a graph that is very well connected and has close to the full
set of possible edges. A balkanized graph would have a global density score close to 0, since
it would contain very few of the total possible links.

We decided to use the density metric because we wanted to perform a simple analysis related
to the metrics outlined for general application by White and Harary in [27]. They gave
general formulae for a measure of group connectivity based on how many vertices needed to
be removed for a group to become disconnected. They then expanded that measure to
approximate conditional density, which proportionally rates groups based on how many
edges they would need to increase their connectivity rating. We decided that an analysis of a
simple density function would serve as a proof-of-concept for more complicated models,
such as conditional density. However, the data needed to perform any one of these analyses
is present in the link graph. Our implementation for calculating D(G) reads in the link graph
file one line at a time and keeps track of [|E]| and ||V]|, which we then use to calculate density.

6.2 Global Degree Centrality

Global degree centrality measures how much a graph resembles a star-shaped network, with
one central vertex and many fringe vertices connected only to the center. On a global scale,
this measures balkanization by describing the overall structure of the link graph. If the graph
is generally star-shaped, with a small number of central vertices, it has a chance of being
balkanized. If, on the other hand, the graph is not very star-shaped, that means the links
could be evenly distributed throughout the network, suggesting a lack of balkanization.
However, this could also mean there are many central vertices, each with its own star-shaped
or evenly-distributed graph subsection. To determine the precise structure, the global degree
centrality metric would need to be applied to smaller subsections of the graph. We did not
take this step for this research due to time constraints.

The degree centrality of a single vertex is the number of edges it has divided by the number
of edges it could have; a degree centrality close to 1 represents a vertex that is well-
connected to all the other vertices, and a degree centrality of O denotes a vertex that is not
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well connected. Cd(G) represents the global degree centrality, where V* is the vertex with
the highest individual degree centrality, as calculated in (2).

deg(V))
Cd(V)) = =12 )
Iv]-1
jid
Y Cd(v*)-Cd(v,)
Cd(G) = 1 €)

Ivl-2

The numerator of equation 3 is the degree centrality of each vertex compared to V*, with
these differences then summed, and the denominator is the number of edges outside of the
pair being compared. This formula also yields a result between 0 and 1, with a result close to
1 meaning the graph has a shape with a few central nodes and many nodes with few
connections (see Figure 13), and a result close to 0 representing a universally well-connected
graph, as in Figure 14.
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Figure 14 — Fully-connected Graph
An example of a fully-connected
network for the global degree
centrality metric (equation 3).
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Figure 13 — Star-shaped Graph,
An example of a star-shaped
network for the global degree
centrality metric (equation 3).

The social significance of Figure 13 and Figure 14 should be quite plain. If the vertices in
Figure 13 were users, then outside vertices could only communicate with each other through
the central node. This could lead to miscommunication between users. In F igure 14, each
vertex would be able to communicate with every other vertex. ‘The social space represented
by Figure 13 is much more balkanized than the space represented by Figure 14. However, a
more realistic balkanized graph would be made up of many Figure 14-like star-shaped
graphs.

The degree centrality metric presented in Korfiatis and Naeve [16], which analyzed in- and
out- degrees of articles on Wikipedia, influenced our choice of global degree centrality.
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They used the metric for creating a ranking mechanism, rather than to test for balkanization.
As a metric that focuses on individual nodes, as opposed to edges, global degree centrality
also balanced well with the density metric reviewed above, which was another reason we
chose to use it for this research.

The implementation of degree centrality reads in the link graph file line by line, creating an
ID:degree HashMap of vertex degrees. These stored values are then used to calculate Cd(G).

6.3 Conditional Probability

The conditional probability metric evaluates the chance that a user talks with a user they’ve
coauthored with versus with a user they have not coauthored with. This metric focuses on
the vertices which represent users and the edges that represent links between users.

These conditional probabilities were directly inspired by discussions about user-specific
balkanization and communication. Specifically, we wanted to determine whether
communication was affected by coauthorship, so we developed these conditional
probabilities to evaluate those ideas.

Users can connect directly with each other in one of two ways: coauthoring articles together
and discussing on Talk: and User talk: pages. In the article-editing paradigm, these two
actions are related. If a user wants to make improvements to an article, they are likely to
discuss those changes with other users working on the article beforehand. If a user is
discussing changes with other users, it's likely that they'll coauthor an article with those
users.

If a pair of users has a high probability of talking to each other given that they have
coauthored versus given that they have not coauthored, then we know that coauthoring
improves the chance that users talk.

This metric uses Bayes' Theorem of conditional probability to look at the probabilities
involved in editing articles with and talking to other users, as in equation 4.

P(coauthoring A talking)

P(talking | coauthoring) = C))

P(coauthoring)

P(talking | coauthoring) is calculated from the probabilities for a pair of users to coauthor,
talk, and coauthor and talk, as shown below.

P(coauthoring) = #ofP alrsWhoCo.author -
#ofTotalPairs
P(talking) = #ofPair SWhOTalk o
#ofTotalPairs
P(coauthoring A talking) = #OﬁalrSWhOCOaut@rAwTalk o
#ofTotalPairs

The count values needed for equations 5, 6, and 7 are culled from the final link graph output.
The number of coauthor pairs can be found by pairing up users and counting the number of
user-article-edit Links across every article with more than one contributor. The number of
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user pairs who talk can be found by looking for user-user-talk links. For this metric, we
sampled down to one hundredth of the userbase, because the memory overhead for
remembering every user pair was too large.

7.  Preliminary Results
7.1 Library Implementation

The library successfully parsed the entire Wikipedia revision history. Each step in parsing
the link graph took between an hour and an hour-and-a-half to complete on both
ElasticMapReduce and MistRider, which operate with 26 and 38 CPUs, respectively. Each
run produced output with sizes in excess of 4 GB; storing this amount of data is not an issue
for modern computers. In addition, S3 and ElasticMapReduce are publicly available, making
this an easily usable platform from which to run balkanization metrics.

7.2 Density

We found that there were 436,489,820 edges and 39,214,905 vertices in the link graph,
yielding a global density (1) of approximately 2.8384*10~-7. That means the graph is very
sparse, with few links compared to the total number of possible links.

The link graph is composed of both articles and users, and the set of edges represents links
between articles, links between users, and links between articles and users. It is certainly
possible that: 1) density by link type is not uniform, and one or more link types are
negatively affecting the global density; or 2) that individual subsections of the full graph,
such as just user vertices, are far less dense than others, which would also affect the global
density value. It is our intuition that this first hypothesis is true, and we can see in Figure 15
evidence that link type affects density. Links of type user-user-link and user-user-mention
are very sparse compared to links of type article-article-link.
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Link Type | Edge Counts | Density
article- 275572609 1.7920*107-7
article-link

user- 44207941 2.8747*10"-8
article-edit

user- 76705564 4.9880*10"-8
article-link

user- 24988551 1.6249*107-8
article-

mention

user-user- | 0* 0.0*

edit

user-user- | 2125554 1.3822*10~-9
link

user-user- | 10132905 6.5892*10"-9
mention

user-user- | 0* 0.0*

coauthor

user-user- | 1 6.5028*10/-16
talk

Figure 15 —Density Values by Link Type. A table of edge counts and density values, by link type. *User-user-
edit and user-user-coauthor were not calculated.

Due to an error in the parsing process, the density values for user-user-edit Links and user-
user-coauthor Links were not calculated. The addition of these links would affect global
density. However, given the scale of the other link type densities, it is our intuition that
global density would not be dramatically altered.

Regardless, further research is needed to prove or disprove either of these hypotheses.
Overall, this metric does tell us something about balkanization: when taken as a whole,
Wikipedia has a low amount of global connectivity, which suggests balkanization into
smaller subgroups.

We also do not know the scale of these values in relation to other real-world examples. For
example, taking subsections of the link graph by topic area may yield differently scaled
results. This would tell us more about the global density value as well.
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7.3 Degree Centrality

We found a global degree centrality (2) score of 0.02504. Average degree per vertex was
13.17 and average degree centrality for each vertex was 3.3578*%10~-7. The top ten degree
and degree centrality scores are shown in Figure 16.

Ranking | ArticleName Degree | Degree Centrality
1 Wikipedia:Sandbox 982100 | 0.02504
2 Wikipedia: Version 1.0 Editorial 865523 | 0.02207
Team/Assessment log
3 Cyde/Archive 638215 | 0.01627
4 Help:Reverting 610332 | 0.01556
5 User 433328 591237 | 0.01508
6 Wikipedia:Introduction 590275 | 0.01505
7 Wikipedia: Vandalism 559524 | 0.01427
8 User 1215485 552085 | 0.01408
9 Wikipedia:Welcome, newcomers 551418 | 0.01406
10 Wikipedia: Version 1.0 Editorial 452387 | 0.01154
Team/Biography articles by quality log

Figure 16 —Top Ten Degree Centralities. A table of the top ten degree counts and degree centrality values, by
vertex. :

As a measure of how much the graph deviates from a basic star shape, this value is telling us
that the link graph is not star-shaped. On the surface, this appears to be evidence of a lack of
balkanization. However, the top-ten results illustrate another important point: the range of
possible values is only [0, 0.025]. Global degree centrality compares the individual degree
centrality of vertex pairs. If you recall, in (2), ¥* represents the most well-connected vertex,
and it is compared with V;, every other vertex. If the most well-connected vertex doesn’t
have a high individual degree centrality, then the range of other possible individual-degree-
centrality values is small. The largest degree-centrality is only ~ 0.025, and the mean
indicates that most vertices have Cd(V)) close to 0.

This result does not preclude the existence of balkanization in the graph. Rather, the results
simply don’t say very much about balkanization on a global scale. Once again, we have no
sense of the scale of these values, so we don’t know what these results could be telling us.
Further research would need to be done on smalier portions of the link graph in order to
determine if degree centrality varies throughout the network, and if this metric can be used to
detect balkanization.
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7.4 Coauthor/Conversation Probabilities

After sampling down to one hundredth of the data set, our sample link graph contained
110,257 total users, 12,156,495,792 possible user pairs, 2,757,654 users pairs who
coauthored together, and 1,366 user pairs who conversed on Talk: or User talk: pages with
one another. The probability that a pair of users coauthored an article together was
2.2685*10”-4 (equation 6), the probability that a pair of users talked with one another on a
Talk: or User talk: page was 1.1237*10"-7 (equation 7), and the probability that a pair of
users did both was only 1.9743*107-9 (equation 8). The probability that a user pair talked
given that they coauthored an article together was 8.7030*10”-6 (equation 5), and the
probability that a user pair coauthored an article given that they had talked with each other
was 0.01757 (equation 4).

Both conditional probabilities were higher than their unconditional counterparts, which
points towards communication between users yielding positive results for the community as a
whole. Specifically, users who coauthored were also almost 11 times more likely to talk
given that they had coauthored, as compared to all users who talked.

These results tell us two things: firstly, the chance that users communicate is fairly slim;
secondly, communication and co-participation seem to be correlated. This second conclusion
has multiple implications: it can be taken as evidence against balkanization, because users
who interact are much more likely to participate in the site, or, alternatively, it can be taken
as evidence of balkanization, because those users still aren’t interacting with users outside of
their editing group. Research looking at these probabilities by topic area could yield results
that shed further light on this problem.

8. Conclusions and Further Research

This paper has detailed the basis for and implementation of a library that uses the Hadoop
map/reduce system to create a graph of Wikipedia by parsing Wikipedia revision histories.
Furthermore, metrics have been presented which parse the link graph and evaluate it. These
contributions allow future researchers to easily investigate and evaluate the presence of
balkanization on Wikipedia.

We found evidence of balkanization in the results for the global density metric. The global
degree centrality and conditional probability metrics did not find explicit evidence against
balkanization. The presence of one metric finding evidence of balkanization suggests that
further research should be undertaken. For density and global degree centrality, we found
that the scale of the results is unclear. It is important that further research using these
balkanization metrics uses a variety of subsections of the English language link graph in
order to clear up the real-world scale of these results.

Other non balkanization-metric-based projects can also be completed using this library. For
example: visualizing the graph; calculating other graph theory metrics, such as structural
cohesion or the clustering coefficient; exploring probabilistic predictive models; and
determining interesting statistics. With a Hadoop installation and sufficient processing time,
many applications can be created which use this library. By taking advantage of services like
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Amazon's Elastic Map/Reduce and S3, even those without access to a dedicated cluster can
use the methods and tools presented here to analyze Wikipedia.

Finding balkanization on Wikipedia is important, not only to ensure the quality of Wikipedia

articles, but also to fine-tune metrics and techniques that can be used to detect balkanization
and social polarization in other social and informational networks.
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