














to Bluetooth nor any of the iterations of 802.11. Given this, though, the optimal
node density for the Bluetooth nodes in this protocol will naturally be higher.

In contrast to the fairly simple model described above, [26] uses a complex se-

ries of probability equations to analyze the performance of a buffered data sharing
algorithm, seven degrees of separation, over a MANET given parameters of the
devices including the transmission range, the buffer size, and the size of the area
over which the devices are distributed. The primary characteristic that the model
measures is the buffer hit rate, which depends on the probability of accessing the
information in local buffers and in remote devices.

The model provided is quite thorough, but its applicability to my current 51tu-
ation is limited. As all the models discussed here do, the paper assumes a homo-
geneous network, wherein all devices are identical. This could be worked around;
however, much of the efficiency analysis relates to buffer size and similar features,
which will vary widely depending on the type of machines running the protocol.
While I have only tested the implementation on full computers, it is entirely pos-
sible that handheld devices with significantly less available memory could be run-
ning stripped-down AODV implementations. Due to these issues, and because of '
the model’s complexity, implementing it and testing it for Bluetooth networks lies
beyond the scope of the paper. In addition, the math of the paper is closely tied to
the buffer system used, so I shall not go into detail on it here. That said, it should-
be noted that, for the parameters of the equation they used (similar to 802.11g),
an increase in the number of nodes generally yielded a small linear increase in
performance (about 10 percentage points from 50 to 250 nodes). While it should
be noted that the area considered is relatively small (1000x1000 meters), these
results may indicate that, in general, once there is a decent level of connectivity
within the network, increasing the number of nodes will only gradually affect the
distribution of data. '

5.3 . Simulation Models

While analytical models are quite useful in their own right, they have their limita-
tions. In order to be tractable, they need to make broad simplifying assumptions,
such as a uniform node distribution throughout the sample area, and they often fail
to account for details of the specific protocol being used. To obtain more accurate-
models, one must ultimately turn to simulations.

The complexity of such models often varies quite a bit. [34] uses a fairly
simple simulation to back up heavy analysis work. This paper looks at a very
similar issue to that explored in [3], seeking to ascertain the “critical transmission
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range” given a number of nodes. Unlike [3], the range is determined using a graph
that connects the nodes based on their “direct neighbors”, pairs of nodes closer
to each other than any other nodes. The algorithm then constructs a minimum
spanning tree over this graph, and finds the longest edge, the length of which is
the critical transmission range. Though there is a strong theoretical basis behind
the model, it cannot be effectively used without simulating node movement using
a computer, which also allows multiple mobility models to be considered.

The model used three different mobility models (random waypoint, a random
Gauss-Markov model, and an unrealistic model in which nodes randomly appear
at points in the area) and an area of 500x500 units. In all cases, which included -
up to 100 nodes, the mean critical transmission range was over 100, agreeing
with the results of [3] when applied to Bluetooth MANETs. This model lacks
some of the pitfalls of the analytical connectivity model, but since it requires a
simulation and the experiments performed with the simulation are fairly limited
in scope, it is difficult to make any conclusions about the performance of the mixed
Bluetooth-wifi protocol proposed here. However, since 802.11 has a significantly
longer range than Bluetooth, the possibility exists that, in many cases, critical
transmission range will not be a problem, though, once again, this points to a
need for the PANU nodes to cluster around the NAP nodes.

The above model is something of an exception regarding simulation models
for MANETSs. The majority of simulation models go into heavy detail in simu-
lating networks, attempting to simulate nearly every aspect of the protocol and
the environment. [23] provides a list of the components that generally comprise
a simulation: an underlying simulation program (such as ns-2 or JiST/SWANS);
a simulation of physical characteristics, like the mobility model and transmission
range; emulation of the underlying transmission protocol, such as 802.11 or Blue-
tooth; a version of the network protocol programmed for use in the simulator;
and some means to collect and analyze results, which include metrics like rout-
ing overhead, the ratio of packets delivered to those received, and the length of
paths through the network [7]. The code for the network simulator that emulates
the protocol ends up looking very similar to the actual code for the protocol. In
AODV-UU, for instance, the simulator code and the real code share the same files;
the two are distinguished using a compiler option when building the program.

The first option that confronts one when trying to create a detailed simulation
such as this is which simulator to use. ns-2 seems to be by far the most commonly
used simulator, and it has a good deal of libraries written for it, including emu-
lation of Bluetooth. [23] makes a fairly strong case for JiIST/SWANS, arguing in
favor of its scalability, faster speed, and implementation in Java, rather than C. Al-
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ternatively, given the complexity of these sort of programs, one can try to code a
MANET simulation by hand; this will likely not be able to be as comprehensive as
simulations using pre-existing software, but may be adequate for one’s purposes.

Another highly important factor is the selection of the mobility model to use.
[9] provides an in-depth analysis of how the mobility model affects the perfor- .
mance of MANETS, looking at both individual and group models. The paper
spends the most time analyzing the Random Walk model, where nodes randomly
choose directions and speeds at which to travel, and the Random Waypoint-model,
wherein nodes pause for a time and then choose a random destination and speed.
Other models analyzed include the Gauss-Markov model mentioned earlier and
the Nomadic Community Mobility model, in which nodes travel together in clus-
ters. The paper concludes that the mobility model chosen can have a dramatic
effect on performance, and recommends that the mobility model should be cho-
sen based on the anticipated scenario. It also gives specific recommendations for
models in general circumstances, particularly recommendlng the. Random Way-
point and Gauss-Markov models.
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6 Testing

6.1 Introduction

The implementation section proved that Bluetooth and 802.11 MANET integra-
tion could be done, and the modeling section gave some idea of how this would
work; now, it remains to demonstrate more specifically whether it can be done
effectively. In order to do this, I must perform two steps. First, I must do actual,
physical testing to get an idea of the various physical parameters affecting the
network. Ideally, I would then be able to perform a rigorous physical test of the.
MANET, but a dearth of equipment makes this impossible. Therefore, I must do
simulation testing, using the parameters gleaned from the previous phase to make
this as realistic as necessary. In these latter tests, I will principally look at the aver-
age time each node spends connected, as well as the time each spends connecting.
The former will give some basic insight into how usable the network is; the latter
will help indicate whether any problems that exist are because of Bluetooth’s low
range (if the time spent connecting is relatively low) or because of Bluetooth’s
slow connection times (if the time spent connecting is relatively high).

6.2 Preliminary Performance Testing

Before actually testing the performance of AODV with Bluetooth, I first did some
basic testing of Bluetooth’s capabilities to get some idea of how well Bluetooth
performs in general. The first tests I did were of the time for a PANU device to
discover and connect to a NAP node. I did three instances of these tests, with
one, two, and three NAP nodes present. The connection times in milliseconds are
as follows, along with the NAP to which the PANU connected. The first NAP
was immediately next to the PANU, the second was on the floor above the NAP,
and the third was in the same room. These tests strictly measure discovery and
connection time; they do not account for the time it takes to discover services.
From this data, several details become apparent. First, the proximity of each
NAP to the PANU seems to have little effect on the NAP to which the PANU
will connect. Secondly, increasing the number of available NAPs from one to two
dramatically increases connection time, though going from two to three yields
little, if any change (using three NAPs yielded no outliers, but this is not likely
to be significicant). This indicates that it may be better for to have a network in
which the NAP distribution is relatively sparse, as a ten second connection time
could cause severe problems for any application that relies on uninterrupted data
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Table 2: Two NAPs
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transfer, like VOIP. However, it could be difficult to both achieve this and ensure
that almost all PANUs have a NAP with range.

When the service check before connection is implemented, the times for a
PANU to connect when there is a single NAP in range resemble those to connect
to two or more NAPs. The times appear in the table below; naturally, these will
be increased if there are devices in range that do not support the NAP service (like
other PANU ).

Z
>
v}

Time (ms)
11561
11459
11498
11539
11955
10750
11733
11789
11521
12546
11467
10761

= N NN =N = WWwN N

Table 3: Three NAPs

Connection Time (ms)
10826
11079
11329
11325
11117
11667
11089
11166
10735
11342
11420

Table 4: One NAP with service check
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Interestingly, however, there is no noticeable difference between the version
with the service search and that without when the number of NAPs is increased to
two. This strongly implies that there is no change in connecting time when there
are multiple available NAPs. ‘

Time (ms) NAP
11161 '
11158
11234
11461
12298
12324
11286
11366
11293
11342
11234
11274

Table 6: Connection Time With Two NAPs and the Service Search

Similarly, there is no significant difference when not all of the machines are o
valid NAPs, as seen in tables 8 and 10. ‘ \

A difference does occur, however, when trying to connect to a NAP with one
PANU to which it is already connected. The connection times are shown in Ta-
ble 12. This difference is statistically significant, with a p value of .0028 when
compared to the standard results for connecting to a single NAP when using the
service search. Unfortunately, logistical obstacles prevented me from carrying out
this experiment with more than one PANU; however, these results have an impor-

tant signficance in the simulation results, as described in the section below. In

addition, they indicate, contrary to previous impressions, that it may be better to
have a denser amount of NAPs, so as to reduce the average number of PANUs
connected to each NAP, as well as make it more likely for any given PANU to
have at least one NAP in range.
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2 machines, 1 NAP 3 machines, 1 NAP

Time (ms) Time (ms)
11199 11732
11291 11752
11263 11879
11250 11747
11497 11714
12026 11653
11252 11755
11294 11723
11239 11778
10981 11737
11002 11763
10999 12434
11207 12704
10996 - 11800
11228 ' 11779
Average 11248.3 11863.3
Standard Deviation 258.204 294,982

Table 8: Connection Times With One Valid NAP and One Non-NAP Device
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- Time (ms) Connected NAP
' 11872 1
11918
- 11619
11683
11879
11883
11861
11820
12472
11824
11773
11915
11892
11886
, 11784
Average 11872.07
Standard Deviation 186.54

o om0 RN = RN == N —

Table 10: Connection Times With Two Valid NAPs and One Non-NAP Device'
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One PANU already connected =~ No PANU connected

Time (ms) Time (ms)
13848 11369
14931 12096
13084 11773
12473 11387
12276 11574
12697 11450
13539 13901
13576 11483
14369 12100
12510 11816
12908 11437
12303 12658
12590 11371
13173 13273
12498 11450
12529 11465
12521 11358
13410 11519
12515 11439
14102 11405
24309 11200
Average 13626.7142857143 11786.9
Standard Deviation 2556.79 - 692.70

Table 12: Connection Times For a NAP With and Without a PANU Already Con-
nected
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~ After connecting the PANU and NAP nodes, I then needed to test the time it
takes for the two nodes to discover each other over AODV-UU. The average value
for this was 544 milliseconds, with a standard deviation of about half that, a fairly
small value compared to the time to connect the nodes over Bluetooth. The full
results appear in Table 14.

Time (ms)

772

15

484

239

997

658

644

588

702

202

635

61

282

743

647

534

95

816

316

559

584

Average: 544.19
Stdev: | 269.60

Table 14: Connection Times For AODV-UU over Bluetooth

Once the PANU and the NAP were connected, I then ran a ping between the
two devices for 1183 packets, over the course of 1182080 milliseconds. The first
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three packets failed to transmit for some reason, but after this, the average ping
time was 36.147 ms, with a minimum of 9.142 ms, a maximum of 587.992 ms,
and a standard deviation of 23.343 ms.

It is worth noting that I ran into a number of errors when running these tests.
The first time the PANU connection program is run, it will almost inevitably fail
to connect. In addition, the program will occasionally time out when trying to
connect, though this seems to occur without any particular pattern. Finally, the
connection will occasionally drop for no apparent reason. This is particularly
noticeable when using AODV-UU. If, on the PANU, one is merely connecting
with bnep0, the operating system will enter into an uninterruptible infinite loop
waiting for the bnepQ interface to be freed when the connection drops, which
prevents effective use of the terminal and precludes turning off the system. This
is likely fixable by using a net-bridge solution similar to that used for the NAP,
since the PANO interface will persist after the connection dies. I have yet to test
this, however.

6.3 Simulation Testing

Simulating a mixed Bluetooth-wifi network proved to be incredibly problematic.
Initially, I hoped to use ns-2 to gain an accurate view of how AODV-UU would
perform for such a network. This requires several extensions to ns-2 in order to
function properly. First, it needs an extension to simulate the Bluetooth medium.
A number of these exist, the most recent of which is UCBT [1]. In addition,
it also requires support for nodes with multiple interfaces to represent the NAP-
wifi nodes. The only extension I could find for this is The Enhanced Network
Simulator [16].

Unfortunately, these extensions were not compatible with each other. TENS
is written for release 2.1b9a of ns-2, whereas UCBT requires at least version 2.26
[1, 16]. Neither will work with a version of ns-2 that supports the other. In addi-
tion, I could not find other extensions with similar functionality that would work
together. Thus, due to time constraints, I chose to implement my own simulation
in Java.

In the interests of avoiding complexity, I made a number of simplifying de-
cisions in the model. First, because the area over which I ran the tests would
generally be small enough that the range of the wifi would be inconsequential, I
assumed that all wifi nodes would be in range of each other throughout the exper-
iment, and only modeled the Bluetooth connections. Based on empirical testing,
I assumed the connection time to be about 11 milliseconds, and modeled time
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on a second by second basis. This ignores the case in which there is only one
NAP in range, as the case is unlikely to occur and checking for it would signif-
icantly increase processing time. For NAPs with multiple PANU connections, I
took the worst case scenario from my empirical testing earlier, and assumed that
each PANU connected to a node increased the time it takes to connect by two sec-
onds. While this may not be accurate, any differences will likely only improve the
results (unless the increase in the amount of time increases with each ‘additional
PANU, in which case the results will be worse). Finally, because it is relatively
small, I ignored the AODV-UU connection time.

For a mobility model, I used a simple random waypoint method, where each
node selects a destmatlon and moves towards it. Because the area is relatively
small, I assumed that movement would be accomplished by walklng, which should
move at a relatively constant rate of .5 m/s. :

The algorithm for the simulator works as follows. First, it creates an array
of nodes with a set number of NAP and PANU nodes placed at random indices
throughout .the array. Once this is complete, it enters a loop for a number of
iterations; each iteration represents the passage of a second. In each step of the
loop, the simulator iterates through the node array and updates each node therein.
For all nodes, this entails moving the node closer to its set destination, or, if the
node is stationary, checking to see whether it is assigned a new destination. In
addition, the PANU nodes also have to check their Bluetooth connection.

Checking the Bluetooth connection involves several steps. First, if the node
is not currently connected to a NAP, or “searching”, it iterates through the node
array until it finds a NAP node that is in range. If it succeeds, it sets its state to

“connecting”, sets a timer to eleven ms-the amount of time for a PANU to connect
to a NAP-and returns. Otherwise, it does not change its state. )

If the node is currently connecting, it first checks to see if the node to which it
is trying to connect is still within range. If not, it clears its timer and resets its state
to “searching”; it will resume its search from the array index of the-node following
that to which it tried to connect. However, if the node is still in range, it checks
the timer. If the timer is currently zero, it checks the NAP to ensure that it has
fewer than seven connections. If so, it sets its state to “connected” and notifies the
NAP node of the connection; otherwise, it resumes searching as described above.
This assumes that, when a piconet is full, other devices will be refused only after
completing discovery. ‘While this may not be the case, I lacked the resources to
verify it; if devices are instead immediately refused, the connection process may
go significantly faster in some cases (this is addressed later).

If the PANU node is connected to a NAP, it first performs the range check,
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returning to searching if out of range and notifying the NAP that it has been dis-
connected. Otherwise, it increments a timer that measures how long the node has
been connected. Upon being disconnected, this timer gets appended to a linked
list of times; the average time that a node spends connected is then calculated by
taking the average of the times contained in this list, along with the current value
of the connected timer.

The simulation collects a number of statistics about the experiments, which
consist of 100 runs for each set of parameters. The primary statistics that I ana-
lyzed were the average time each PANU spent connected, as well as the average
time that each PANU spent connecting. In addition, the simulation also reported
the average number of connections for each node, the maximum and minimum
amount of time any one node spent connected, and the aggregate time spent con-
nected by all the nodes.

In total I conducted six different experiments. Three of these varied the area’s
size, the number of NAP nodes, and the number of PANU nodes, respectively,
with a .5 chance of movement each second after a node reaches its destination.
The other three varied the same parameters, but used a .05 chance of movement.
Each experiment was run for ten hours. In all cases, the results were statistically
significant, except where noted.

The results of the first experiment, in which the area varies and the probability
of movement is .05 appear below in Figure 5. This was conducted with 10 NAP
nodes and 40 PANU nodes.

As one would expect, the average connected time begins at a high percentage
of the total time of the experiment, and then gradually decreases as the area of
the experiment is increased. Correspondingly, the time spent connecting gradu-
ally increases. The curves seem relatively hyperbolic, though it is difficult to say
whether this trend will be continued. It seems unlikely for the connecting time
curve, since the last point demonstrates a slight decrease that falls ]ust short of
statistical significance with a p-value of .054. :

The corresponding experiment with .5 probability of movement, shown in Flg-
ure 6, provides similar results, but with worse performance. With the exception
of the 30x30 trial, each trial seems to have its total connection time decreased by
about 500, which likely results from the higher mobility making it. more likely for
a PANU to move out of range of its NAP. The connecting times curve is shifted -
correspondingly higher; interestingly, it exhibits a decrease in the final point sim-
ilar to the previous data, but here, this decrease is significant. The decrease likely
arises from the increased area, which makes it more probable that a PANU will
be completely isolated from other nodes and thus unable to begin the connecting -
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process.

Both experiments where the number of NAPs varied, shown in Figures 7 and
8, provided predictable results: as the number of NAPs increased, the average time
connected increased in a roughly asymptotic fashion approaching 1800 ms for the
more mobile network, and 2400 ms for the less mobile one. Again, the less mobile
network outperformed the one with more mobility; the difference generally some-
where around 600 ms. In both cases, the average connecting time increased with
a similar, though less regular curve, which ultimately approached 1200 ms for the
less mobile network and 1800 ms for the more mobile. The curve here likely oc-
curs because, initially, the PANU nodes have a greater opportunity to connect to
NAP nodes when a NAP node is added, increasing the connecting time. Eventu-
ally, though, there are enough NAP nodes so that when one connection breaks, a
node can then immediately start to connect to another, so adding additional NAPs
has little effect.

The experiments with the PANUs varied also gave the expected results, shown
in Figures 9 and 10, with the time connected holding an inverse linear relationship
to the number of PANUs. Again, the less mobile network outperformed the more
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mobile one, with the connected and connecting times both differing by about five
hundred for each trial. The connected time becomes greater than the connecting
time significantly more quickly for the more mobile network, with the curves
intersecting at 20 PANUSs. In contrast, the curves for the less mobile network only
intersect at 100 PANUEs.

These experiments show that the most important factor in determining the
performance of a Bluetooth-wifi network is the number of PANUs. Increasing
the number of PANUs will have a roughly constant detrimental effect. Increasing
the number of NAPs available will aid performance significantly early on, but the
effect of additional NAPs will gradually grow negligible as their number grows
large. This corresponds with the results mentioned in [26], which, as mentioned
in section 5.3, find that adding additional nodes once the NAP is well-connected
becomes ineffective. Finally, increasing the area will naturally make the perfor-
mance worse, but the degree by which this does so also decreases as the area
grows large.

In addition, I also tried several of these experiments with the PANUs check-
ing the fullness of the NAP’s piconet before connecting, to simulate the PANU
simply ignoring these piconets, rather than trying to connect. Surprisingly, in
every case tested—100x100 with 10 NAP nodes and 40, 80, and 100 PANUs—
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statistically significant differences were not achieved in connected times, though
they were in times spent connecting. This is likely because full piconets only be-
come problematic when the number of PANUS significantly exceeds that of the
NAPs. Using higher number of PANUSs would likely cause a statistically signifi-
cant diffeérence, as the p value progresswely grew smaller (.08 for the experiments
with 100 PANUS), but the prospect of PANUs outnumbering the NAPs by more
than ten to one seems improbable.

Finally, I also ran an experiment with 400 PANUSs and 100 NAPs in a 130mx130m
area with .05 movement probability. According to the connectivity model exam- -
ined in 5.2.1, a network with 500 Bluetooth nodes in an area of this size should be
connected close to 99% of the time (the exact area should be around 121mx121m
for this probability). This, however, was not the case: on average, nodes were
connected for 1568.03 seconds out of 3600, or 43.6% of the time, with a standard "
deviation of 85.14 seconds. The time spent connecting was almost equal to this,
at an average of 1583.87 s with a standard deviation of 96.06 seconds. Thus, the
model provided a good predictor of the amount of time the nodes would be in
contact with each other; however, it failed to account for connection times. These
connection times caused the PANUS to be connected for drastically less time than
they otherwise would have been, indicating that this will be a serious factor when
considering- Bluetooth MANETs. In addition, that fact that the two times were-
almost equal indicates that the PANUs are likely seldom in contact with a single
NAP for more than ten seconds at a time, since that is the amount of time it takes
to connect.

7 Results

To some extent, the results of these experiments surprised me with how well they
performed; I had expected something virtually unusable, but instead, the PANUs
tended to be connected about one third of the time even in the worst case tested.
“ However, this is far from ideal, as the unstable connection will cause problems
for applications that require constant data transfer. VOIP would be completely
infeasible, as would anything requiring streaming media.

Currently, these results will support, albeit with a good amount of potent1a1
user frustration, basic web browsing and messaging services. The latter would
likely require some kind of buffering of messages on the NAP end, since it'is
entlrely possible that the destination PANU would move out of range before the
message could be completely transmitted. The network could not 51mp1y drop the
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messages, as this could lead to uncertainty as to whether the message had been
transmitted.

The main problem for usability, moreso than the range, seems to be the ten
second or more connection time. If the only issue were range, there still would
be problems with achieving a necessary density to have all nodes connected at all
times. However, in situations where the density was less than this, being discon-
nected would not necessarily be terribly problematic, as one could hypothetically
move around a bit until one came in range of another NAP. Unfortunately, though,
with the long connection times, even if there is a high enough node density to
hypothetically support 99% connectivity, a PANU would still encounter a delay
of at least ten seconds when the NAP to which it was connected inevitably moved
out of range. This kind of delay is usually unacceptable to most users.

Furthermore, the connection problem becomes more severe when one notes
that the simulation only accounted for the perfect scenario: no obstructed range,
no arbitrary breaks in the connection, and no failures to connect. Any number of
these factors could prove problematic, again because of the lengthy connection -
time. I was unable to accurately measure the frequency of these occurrences,
but if they occur often, they would provide yet another barrier to successfully
implementing a useful Bluetooth-wifi MANET.

Admittedly, however, the current method for connecting to devices may not
be not the most efficient one. The task that appears to occupy the majority of the
time is device discovery. If the Bluetooth address of a device is already known,
it usually takes a negligible amount of time to connect (at least when the device
is the first one to connect). Thus, if there is some means of getting the Bluetooth
addresses of the NAPs in the network to a PANU upon connection, connection
and discovery time could hypothetically be shortened by quite a bit. A protocol
for doing this would take a fair bit of investigation; in addition, I am unsure of
how long it takes for an attempted BNEP connection to time out. If this time is
fairly long, such address sharing might not actually save any time. - -

Another alternative would be to keep the NAP nodes stationary in a sort of
wireless mesh network set-up. This has its own set of problems, though, mainly
stemming from the eight node size limit for piconets. With this, if there are a de-
cent number of PANU users, it is not at all unlikely that they would congregate in
one place in the actual network, rather than being randomly distributed, causing
the NAP in that area to fill up rather quickly. Even allowing for the use of scatter-
nets, a large number of connections would quickly sap bandwidth from the NAP,
as mentioned earlier in this paper. One potential solution would be to use multiple
NAPs to cover an area, and, for low mobility networks, this is probably the best
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~ solution.

It is worth noting that the network architecture proposed here i 1gnores the pos-
sibility of scatternets. Scatternets could, hypothetically, improve the situation a
fair bit, especially if they were used to “daisy-chain” several PANUs to a NAP; .
this would alleviate the problem of limited range and allow for a much smaller
NAP to PANU ratio. Redundant connections created with scatternets would also
make a connection break to a NAP less cataclysmic, since a PANU could have ac-
cess to multiple NAPs at once. Unfortunately, support among Bluetooth devices-
for scatternets seems spotty and possibly non-existent. The Bluetooth adapters
that I used in the course of my research claim to support scatternets, but I have no
idea how this works and was unable to test this due to a lack of resources. This also
would require significantly more complexity in the routing protocol, which could
lead to difficulties with the small processing power found in many Bluetooth-only
devices. Finally, as mentioned earlier, it is entirely possible that scatternets could
introduce significant delays of their own [28].

Even with the current network architecture, the routing protocol could be prob-
lematic, as others have addressed [22]. Not only are memory-usage. and process-
ing power an issue, but actually implementing the protocol would be necessary,
since current implementations of most MANET protocols are written for major
operating systems like Windows and Linux. One possible means of dealing with
both problems would be to- write a client tailored specifically to this network ar-
chitecture. Because AODV does not require the route to go out with the package,
PANU nodes would only need to store the IP address of the NAP to which they
are connected. Similarly, much of the protocol’s instructions for dealing with
things like link repair and error messages could be ignored, since all routes from
the PANU go through the NAP. This should simplify the behavior of the protocol
significantly. Again, though, with scatternets, a full implementation of AODV or
a similar protocol would be necessary since a node could have multiple routes
leading from it. :

On the whole, a number of obstacles must be overcome before an integrated -
Bluetooth-wifi mobile ad-hoc network could become truly practical. While there
is more promise than I initially thought, overall performance is still mediocre at
best, and the ten second connection time could prove hugely problematic, even
in well-covered networks. Given the increasing availability of wifi capabilities on
small devices, barring any kind of major improvement in Bluetooth, the utility
of pursuing this line of research further is debatable. That said, if some of the
approaches suggested here, such as storing the device addresses, work, there could
be promise.
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