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Abstract

The purpose of this project is to understand the electrical conductivity and in-

frared absorption spectrum of a hybrid material between Tellurium nanowires and a

carbon polymer called PEDOT:PSS. This hybrid material shows much higher conduc-

tivity than its components and this behavior gives a great promise for thermoelectric

effect. The most intriguing property of this material is observed when taking absorp-

tion spectrum from far to near infrared. The hybrid material shows a much bigger

absorption edge than Te NW. This project attempts to explain this shift using the con-

finement energy model and Fermi blocking (due to doping). The result from these

two models shows that the absorption can be best explained using the Fermi block-

ing model in which the hybrid material acts as a highly doped semiconductor. This

result might be useful to understand its behavior further by controlling the amount of

PEDOT:PSS in the hybrid.
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I Introduction

Thermoelectric effect is the direct conversion of temperature differences to electric voltage

and vice versa. This effect is well studied and started in 1820 by German scientist Thomas

Johann Seebeck. Seebeck found that a circuit made from two dissimilar metals, with

junctions at different temperatures would deflect a compass magnet. Seebeck initially

believed this was due to magnetism induced by the temperature difference and thought

it might be related to the Earth’s magnetic field. However, it was quickly realized that a

”Thermoelectric Force” induced an electrical current, which by Ampree’s law deflects the

magnet. More specifically, the temperature difference produces electric potential (voltage)

which can drive an electric current in a closed circuit. Today, this is known as the Seebeck

effect and typically has a unit of µV
K [3].

However different devices have different ability to change temperature differences into

thermovoltage. This ability is measured by the thermoelectric figure of merit ZT( Figure

of merit Z multiplied by T). ZT is used to characterize thermoelectric performance of a

device[1].

ZT =
S2σT

k
(1)

Where σ is electrical conductivity, S is thermopower and k is thermal conductivity.As

shown in equation (1), the thermal figure of merit ZT increases as function of the Seebeck

effect S and electrical conductivity σ and decreases as a function of thermal conductivity

k. Unfortunately, these variables cannot be independently controlled, and the resulting

trade-offs severely limit ZT to a value several times, lower than the practical require-

ments, with the best know material tellurides of bismuth (Bi2Te3) having only ZT ∼ 1 .

For instance materials such as metals have higher electrical conductivity,however, due to

lower Seebeck effect and much higher thermal conductivity they have low thermoelectric

figure of merit ZT. In most inorganic materials, S, σ, and k are degenerate. To illus-
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trate this, consider increasing the electrical conductivity of a semiconductor by doping

the material and therefore increasing the carrier concentration. By doing this, the electri-

cal conductivity increases but thermopower decreases as there is less asymmetry in the

distribution of charge carriers. Similarly in the denominator, the thermal conductivity

will also increase as the electronic component of the thermal conductivity increases. In

this manner all three material properties are in competition with one another making de-

coupling or simultaneous optimization of these properties difficult. This phonomena can

be explained using a triangle as in Figure 3.

However on the basis of equation 1, electronically conductive organic polymers are inter-

esting candidates for thermoelectric materials since their k values of 0.05 − 0.6Wm−1K−1

at room temperature are an order of magnitude or more lower than the values for crys-

talline thermoelectric materials such as tellurides of bismuth, and their σ values are ad-

justable from metallic to semiconducting values depending on doping [4]. One good

example of these polymers is Te nanowire doped with PEDOT:PSS.

A conducting poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is

conjugated polymer produced from PEDOT and PSS as shown in Figure 1. PEDOT:PSS

as a conjugated polymer has three sp2 orbitals out of which two sp2 orbitals form the σ

bond ( stable and strong). The third sp2 orbital (PZ) form the π bond. This bond is weak

and results in electron de-localization. Hence the π bonds are responsible for conduction

in PEDOT:PSS. This polymer is also p-type by nature [2]. Even though PEDOT:PSS is the

most widely used conducting polymer, full understanding of charge transfer mechanism

is still lacking [2]. However the dominant charge transfer mechanism in conducting PE-

DOT:PSS is thought to be hopping conduction. Films of PEDOT:PSS are considered to

consist of a phase-segregated material consisting of about 25 nm wide lentil shaped PE-

DOT:PSS grains surrounded by a nanometer-thick shell formed by PSS[1]. The resulting

conductivity is therefore strongly dependent on variations in this morphology in that the

3
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hopping conduction occurs between carbon nanotubes. The thermoelectric properties of

PEDOT:PSS have been widely studied. PEDOT:PSS like many other polymers has much

lower thermal conductivity (0.2 − 0.3Wm−1K−1) but exhibit the same competing trends

with S and σ. Even though PEDOT:PSS has small thermopower S compare to other poly-

mers, as a conducting polymer it has a much higher electrical conductivity σ which is in

the order of 80Scm−1. This gives a much higher S2σ and hence greater figure of merit ZT

at room temperature.

Tellurium nanowires on the other hand have lower electrical conductivity (in the order

of 0.1Scm−1) as compared to PEDOT:PSS but has a much higher thermopower (S ∼

400µVK−1) as shown in Figure 7. These nanowires also exhibit lower thermal conduc-

tivity k but higher than the thermal conductivity of PEDOT:PSS.

In recent research at the University California Berkeley [3], have shown that a hybrid

bulk network (i.e., interdigitated nanowires forming a haystack) of crystalline tellurium

nanowires can be coated in a conducting polymer, PEDOT:PSS. This material was first

synthesized by See et al [3]. who observed that the electrical conductivity of the hybrid

material was greater than either of the constituent components as shown in Figure 4. This

conductivity behavior of the hybrid material became an area of interest to undertake my

independent research with Professor James Heyman at Macalester College.

To understand this behavior, infrared absorption, X-ray diffraction and terahertz conduc-

tivity measurements were taken. Infrared spectroscopy exploits the fact that molecules

absorb specific frequencies that are characteristic of their structure. These absorptions are

resonant frequencies, i.e. the frequency of the absorbed radiation matches the transition

energy of the bond or group that vibrates. The atomic planes of a crystal cause an incident

beam of X-rays to interfere with one another as they leave the crystal. The phenomenon

is called X-ray diffraction. The X-ray diffraction helps to study the structure of states in

a sample. This is important to understand the average spacing between layers or rows

4
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of atoms, to determine the orientation of a single crystal and to measure the size of small

crystalline regions.

II Methodology

The samples for this experiment were obtained from D.r Nelson Coates at Molecular

Foundry, Lawerence, Berkeley National Laboratory. The samples include Te nanowires

with wire diameter d ∼ 71nm (Figure 6), PEDOT:PSS (Figure 5), and Te˙PEDOT:PSS with

wire diameter d ∼ 30nm (Figure 7).

The first part of the experiment X-ray diffraction (XRD) is designed to observe the con-

centration of Te nanowires on the Te nanowires sample and Te+PEDOT:PSS sample. The

concentration of Te nanowires is then proportional to the integration of the area under

each peak of the X-ray diffraction data shown in Figure 10. As shown in Table 1 the peak

areas of [100] and [110] lines suggest Te nanowires concentration in the two samples are

roughly the same. This suggestion was also supported when we undertook Scanning

Electron Microscopy (SEM) andEnergy Dispersive X-Ray Spectroscopy (EDS measure-

ments. However, XRD peaks in the Te+PEDOT:PSS sample are broader which indicates

lower long range order. This may arise from smaller Te nanowires radius, lower crys-

tallinity, or stress. Peaks for which the third Miller index [101] is non-zero are weak or

absent in the the Te + PEDOT:PSS. This may indicate partial orientation of wires on sub-

strate i.e., they might all be laying down.

The second experiment was terahertz conductivity measurement. This measurement is

designed so the conductivity behavior of the samples as we increase the frequency.

The last and probably the most important measurement is to undertake infrared absorp-

tion of Tellurium nanowires, PEDOT:PSS and the hybrid material Te + PEDOT:PSS. To

see a full picture of IR absorption spectrum, far-infrared, mid-infrared and near-infrared
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spectrum were taken separately. The results from these measurements were then com-

bined for each sample to give an over all IR absorption trend. It is important to note

that the far-infrared, approximately 400 − 10cm−1 , lying adjacent to the microwave re-

gion, has low energy and may be used for rotational spectroscopy. The mid-infrared,

approximately 4000 − 400cm−1 may be used to study the fundamental vibrations and

associated rotational-vibrational structure. The higher energy near-IR, approximately

14000 − 4000cm−1 can excite overtone or harmonic vibrations. As shown in Figure-8,

the hybrid material (Te+PEDOT:PSS) and the individual components have shown differ-

ent absorption spectrum from the far-infrared to the near infrared.

III Results and Discussion

The conductivity of a material is complex and can be calculated as in equation 2 below.

σ̃ = σ� + ıσ” (2)

In most conductive materials, the real part of the conductivity much greater than the

imaginary part. For conductive materials, as we increase the frequency the Drude model

predicts that the conductivity decreases. This is due to the fact that conduction in conduc-

tors is due to the free mobility of electrons. The conductivity measurements undertook in

this experiment as shown in Figure 11 and 12, however, suggests that our samples con-

ductivity are not due to free electron mobility rather due to the vibration of particles. The

Te NW as shown in Figure 11, are poor conductors. One important feature to observe

here is the the imaginary part of the conductivity is slightly bigger than the real part. This

simply implies the material is lossy dielectric material. The conductivity in the hybrid
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material, however, has bigger real part as compared to the imaginary part suggests that

the material is in fact conductive. However, as the frequency increase the conductivity

also increases which shows the conductivity is due to the partially localized electrons or

holes. This type of conduction can thought be as a hopping conduction as described in

the introduction.

The last and the most important experiment was the IR absorption experiment. As shown

in Figure 8, all the materials have shown their vibrational mode in the far infrared spec-

trum. As the spectrum moves from the FIR to the NIR, each of the materials have shown

different behavior. The pure PEODT:PSS sample shows that its absorption won’t be seen

until about 11000cm−1, far deep into the NIR. However, the absorption edge for the Te

nanowires occur at about 0.35ev. This in fact happens to be the band gap energy of Tel-

lurium which explains why we the absorption line. However, what about the hybrid

material? Is it due to the Te nanowires or the PEDOT:PSS?

To understand this the pure PEDOT:PSS IR spectrum was subtracted out of the hybrid

material so that if the absorption is due to the Te nanowires then the remaining compo-

nent should line up with the Te NW absorption. However this is not the case as shown in

Figure 9. Here, the vibrational mode of the remain spectrum suggests that the vibrational

mode seen in Figure 8 was perhaps due to the pure PEDOT:PSS. The interesting behavior

is however, the absorption which occurs about ∼ 0.8ev. This absorption is about ∼ 0.5ev

more than the absorption of Te NW. So the question is then why do we see this absorp-

tion? This could be explained using either the confinement energy model or the Fermi

blocking ( due to doping) model.

The quantum confinement effect can be observed once the diameter of the particle is of

the same magnitude as the wavelength of the electron wave function. When materials

are this small, their electronic and optical properties deviate substantially from those of

bulk materials. A particle behaves as if it were free when the confining dimension is large
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compared to the wavelength of the particle. During this state, the bandgap remains at its

original energy due to a continuous energy state. However, as the confining dimension

decreases and reaches a certain limit, typically in nanoscale, the energy spectrum turns

to discrete. As a result, the bandgap becomes size dependent. The confinement energy is

calculated using the following equation.

ET = h f = Eg + Ec
electrons + Ec

holes (3)

Ec = Ec
electrons + Ec

holes = (
h̄π

d
)2(

1
m∗

e
+

1
m∗

h
) (4)

Using this model, the total energy would be the absorption edge energy ∼ 0.8ev. This is

then used to predict the size of the crystals in the hybrid material. The result shows the

crystals will have to be about 6nm in diameter to achieve the absorption edge. However,

the measured size of the particles is in fact about 30nm. Therefore this model doesn’t

seem to explain the absorption edge observed.

The Fermi energy (EF) of a system of non-interacting fermions is the increase in the

ground state energy when exactly one particle is added to the system. It can also be

interpreted as the maximum energy of an individual fermion in this ground state. The

chemical potential at zero temperature is equal to the Fermi energy. In this model the

total energy of the system is then calculated as shown below.

ET = h f = Eg +
h̄2k2

f

2m∗
e

+
h̄2k2

f

2m∗
h

(5)

k f = (3πne)
1
3 (6)

Where ne is the concentration of electrons and k f is the fermi wave vector. From equation

5 and 6, if we know ne we would be able calculate the value of the total energy or vice
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verse. In this experiment, the absorption edge of the hybrid material is the total energy

∼ 0.8ev. From this the concentration of the electrons is calculated to give ne = 1019cm−3.

Even though this result seems to be high, it is a reasonable explanation for the conductiv-

ity behavior we see. The concentration of electrons is also similar to highly doped silicon.

IV Summary and Conclusion

Thermoelectric has long been too inefficient and has not been applicable due to materials

low performance. However, materials such as Te+PEDOT has shown a better electrical

conductivity and very low thermal conductivity which would make this material the best

candidate. The conductivity behavior of this hybrid material has been an area of research

as it behaves much different from its individual components. This conductivity behavior

is not, however, due to free electron mobility in staid it is due to electron delocalization.

The most interesting behavior is seen when we undertake IR measurement which showed

that the absorption edge of the hybrid material very different from the individual com-

ponents. This phenomena can be explained using Fermi blocking ( doping) model.

The next step in this project will be study the behavior of the hybrid material by control-

ling its PEDOT:PSS component. I hope to see that by changing the amount of this carbon

polymer component the absorption edge shift would also change and this would give a

better understanding of the hybrid’s electrical property. Even though I won’t be working

on this next section anytime soon, my Advisor professor James Heyman has planned to

proceed with the next experiment.
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VI Tables and Figures

Figure 1: PEDOT:PSS chemical structure [2]
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Figure 2: One of the primary challenge in developing advanced thermoelectric material
is decoupling S,σ and k, which are typically strongly interdependent [3]
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Figure 3: Tellurium nanowires on PEDOT:PSS. This material is solution-prcessable, which
enables applications outside the bounds of traditional Tellurium manufacturing [2]
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Figure 4: The electrical conductivity of the hybrid material is much greater than the indi-
vidual components [3]
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Table 1: Te particle size calculated using Scherrer formula
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Table 2: Relative concentration of Te nanowires
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Figure 5: Pure PEDOT:PSS polymer film, 100kx magnification (200nm scale bar)
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Figure 6: Pure Tellurium nanowire film, 100kx magnification (200nm scale bar)
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Figure 7: Co-synthesized Tellurium nanowire coated in PEDOT:PSS polymer, 100kx mag-
nification (200nm scale bar)
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Figure 8: IR absorption for Te nanowire, PEDOT:PSS and Te + PEDOT:PSS (Te coated in
PEDOT:PSS) samples
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Figure 9: IR absorption in Te nanowire and Te+PEDOT:PSS with PEDOT features sub-
tracted
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Figure 10: X-ray diffraction data for Te nanowires and Te+PEDOT:PSS samples. Vertical
lines : predicted diffraction peaks for hexagonal Te (ordinary phase)
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Figure 11: THz conductivity measurement of Te nanowires
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Figure 12: THz conductivity measurement of Te nanowires + PEDOT:PSS
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Figure 13: When we zoom in around 100cm−1, the far-infrared spectra containing Te show
phonon absorption lines
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Figure 14: The same Te phonon absorption line is also seen in the Te+PEDOT:PSS
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Figure 15: Far-infrared spectra show infrared allowed phonon modes in Tellurium. The
pure Te samples show strong absorption compare to Te+PEDOT:PSS
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Figure 16: Confinement energy does not seem to explain the observed shift in absorption
edge seen in Figure 10
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